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Abstract: Ramie (Boehmeria nivea) is believed to be one of the strongest natural fibers, but it still
remains behind synthetic materials in terms of tensile strength. In this study, ramie materials were
prepared to evaluate the modification crosslinking effect of natural fiber. The aim is to optimize
various concentrations of citric acid (CA) crosslinking by adding Sodium hypophosphite (NaPO2H2),
which is activated at different temperatures, to obtain the highest tensile mechanical strength. This
crosslinking effect has been confirmed by FTIR to show the esterification process in the molecular
structure of cellulose. The changes in the character of the fiber surface were analyzed by SEM. The
tensile strength increased from 62.33 MPa for 0% CA to 124–172.86 MPa for decorticated fiber with
a CA concentration of 0.75–1.875% (w/w). A significant increase in tensile strength was observed
more than 19 times when CA/SHP 1% was treated at an activation temperature of 110 ◦C with a
superior tensile strength of 1290.63. The fiber crosslinked with CA/SHP should be recommended for
application of Natural Fiber Reinforced Polymer Composite (NFRPC), which has the potential to use
in functional textile and industrial sector automotive or construction.

Keywords: Boehmeria nivea; cross linking; natural fiber; tensile strength

1. Introduction

The toughness of a fiber’s mechanical properties can be determined by its technical
parameters, such as strength, thermal resistance, or other attributes. High air diffusivity
and hydrophilicity in natural fibers cause a substantial amount of water in plant fibers,
which can increase biomass weight, promote weathering, and weaken fibers. Due to their
inferior mechanical qualities compared to synthetic fibers, natural fibers are still challenging
to use today.

Ramie fiber, which contains 80–85% cellulose, is mostly utilized as a raw material for
textiles [1]. Ramie also has superiority in terms of productivity, with 200–237.5% higher
productivity yield (2–2.7 tonnes per hectare per year) [2] compared to cotton, with only a
yield of 0.8 tonnes per hectare per year (global average) [3], thus making it way more cost
and land efficient than cotton as natural fibers.

It stands out among other natural fibers for its exceptional mechanical characteristics
and highest thermal conductivity [4]. Ramie can withstand tensile loads three times
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as effectively as cotton fiber, but it still remains behind synthetic materials in terms of
tensile strength [5].

Many methods have been studied in recent years to enhance some of the features of
ramie by changing the molecular structure and surface characteristics of the fiber and the
cellular processes necessary for polymer impregnation, such as by treating them in alkaline,
enzymatic, or crosslinked forms. Improvements in mechanical, thermal, and adhesion have
been made using anionic polyamide-6 (APA-6) [6], polylactic acid (PLA) combined with
isophorone diisocyanate (IPDI) compatibilizer [7], and diammonium phosphate (DAP) as a
pretreatment for PLA/ramie applications [8]. Polyurethane non-isocyanate resin (NIPU) is
made from tannins [9], while another type of resin called polyurethane resin (LPU) is made
from low-viscosity lignin [10]. There is a way to remove hair from ramie fabrics using a
special technology that includes a mixture of NaOH and urea, making the fabric stronger
and less likely to absorb water [11]. The fabric can absorb dyes better and maintain its
color longer by adding a certain type of polymer with an aliphatic mechanism, such as
aliphatic amino-terminating polymer (HBP-NH2) and amino-terminating hyperbranched
polymer (at-HBP) [12,13].

The chemical procedure known as crosslinking is commonly employed within the
cellulose textile sector to address the issues pertaining to mechanical properties and di-
mensional instability [14]. Some of the new studies related to the use of environmentally
friendly natural crosslinking materials are from the Polycarboxyl Acid (PCA) group, which
includes carboxylic acid groups such as Maleic acid (MA), Malic acid (MLA), Succinic acid
(SUA), Citric acid (CA), and 1,2,3,4-butane tetracarboxylic acid (BTCA) were reported to
be potentially reactive with the cell wall in the fiber surface modification process because
they have -COOH groups that can crosslink with cellulose polymers in the cell wall [15].
In addition, the application of a crosslinking agent from CA can use three carboxylic
groups per molecule to facilitate the optimization of the synthesis process with several
other advantages, such as readily accessible, cost-effective, and more environmentally
sustainable [16,17].

Several kinds of fiber have been shown to have CA crosslinking treatment, including
improvement of mechanical properties and the thermal stability of bamboo [18]; enhanced
in cotton fabrics treated with CA/chitosan and graphene oxide improved color fastness,
crease resistance, and antibacterial properties that were effective against Gram-positive and
Gram-negative bacteria [19], and mechanical properties (of flexural strength and hardness)
as well as the thermal stability of kenaf [20]. CA-cellulose Ceiba pentandra has no cytotoxic
effects on human skin fibroblasts. It is appropriately used in the pharmaceutical sector as a
manufacturing material for drug release systems [21].

The majority of recent studies on fiber modification with CA crosslinking improved
the effectiveness by including other chemicals, such as: bleaching with hydrogen peroxide
may reduce the yellowing effect and maintain the anti-wrinkle effect of citric acid treated
fabrics under proper alkaline conditions, short times, and high temperatures [17].

Several kinds of catalysts, including monosodium phosphate, sodium carbonate, and
N-heterocyclic, can accelerate the esterification reaction during the crosslinking process,
although their use can be rather costly [22]. As a catalyst for the crosslinking process
employing the citric acid crosslinker, SHP has been found to be the most effective [23].
Application in a wood combination of CA/SHP reduced the mobility of the carboxyl group
(-COOH) from CA so as to minimize cellulose degradation [24].

In this research, to the best of our knowledge, there has been no report on using
ramie cellulose fiber to be crosslinked with CA to improve tensile properties. The goal is to
optimize the composition of CA as a crosslinker with the addition of SHP catalyst examined
on decorticated ramie fiber at a specific temperature level in order to obtain the highest
mechanical strength value. The best CA/SHP composition was tested on degummed-fibers
and ramie yarn to see how the strength properties changed.
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2. Materials and Methods
2.1. Materials

The ramie samples (Boehmeria nivea L. Gaud) that were used for the material in the
crosslinking test are decorticated fiber (cellulose content 80–85%), chemically degummed-
fiber as fine fiber with a diameter of 0.2–0.13 mm with code product: Rfiber_CD/hthp_P01
and two types of product ramie yarn with code Yarn A_RmRy3/1; and Yarn type_RmRy9/1.
Additionally, chemicals citric acid and sodium hydrophosphite were supplied from PT
RAJANTARA, Indonesia (Figure 1). The method of Wulandari (2021) [4] was used to
produce bio-degummed-fiber, and the preparation of the starter was adopted from Wulan-
dari, 2016 [25].
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Figure 1. Ramie material for evaluation of CA/SHP crosslinking: (A) decorticated-fiber,
(B) degummed-fiber, and (C) ramie yarn: code Yarn A_RmRy3/1; and Yarn type_RmRy9/1.

2.2. Preparation of CA-Treated Specimens

The crosslinking process refers to the method carried out by Hassan et al., 2020 [26]
with some modifications. The decorticated fiber 2.5% (w/v) was submerged in water. The
fibers were then treated with variations of citric acid (0.5%, 0.75%, 1.25%, 1.875%, and 2.5%).
Sample decorticated fiber without immersion treatment will act as a control. The fiber
specimens were immersed in CA solution for 3 h.

All specimens were rinsed off with deionized water to remove any remaining CA.
Furthermore, the fibers were dried for 8–10 h at 90–110 ◦C in a drying cabinet (Memert,
Schwabach, Germany, type UN30 230 V-50/60 Hz DIN12880-2007-Kl). The resulting
samples were ready to be analyzed for tensile strength. The storage conditions for samples
prior to testing were at room temperature between 25–27 ◦C.

2.3. Optimization of Catalyst SHP and Activation Temperature

One of the specimens with maximum tensile strength was used to estimate the ideal
CA concentration. The chosen formula was then investigated for the effect of employing
SHP as a catalyst with varying concentrations of 1–2% (w/w) and activated at various
temperatures 90 ◦C, 100 ◦C, and 110 ◦C.

2.4. Mechanical Tensile Strength Analysis

Testing the resistance characteristics of the mechanical properties of the fiber is needed
to measure the tensile strength, which refers to Pua et al. (2013) [20].

The analysis procedure determined by American Standard Testing Materials (ASTM)
D3379 [27] by using an instrument, the Shimadzu Universal Testing Machine (UTM) AGS-X
type X series 5 kN from BRIN Laboratory of Advanced Characterization, in Cibinong, West
Java, Indonesia (Figure 2). The fiber specimens to be tested were randomly cut to a length of
15–20 cm, and five times the fiber was cut for each condition. All samples were conditioned
for at least 48 h prior to testing at 25–27 ◦C.
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2.5. Fourier Transform Infra-Red (FTIR) Analysis

FTIR analysis was carried out to determine the effect of the test treatment on the
functional group content of ramie fiber. Tensile strength for both CA only and CA + SHP
are validated by test standard BS EN ISO 527-2:1996 [28]. Analysis was performed with
PerkinElmer FTIR (Model: System 2000, PerkinElmer Corporation, Waltham, MA, USA)
using the ATR (Attenuated Total Reflectance) method with Spectrum Two Specs, resolution
4 cm−1, and 16 scans. This FTIR analysis will produce data in the form of absorbance
or transmittance graphs. FTIR analysis was then carried out quantitatively by paying
attention to the shape of the spectra at specific peaks and the intensity of the FTIR graph.
The test was carried out in the range of wave numbers 400–4000 cm−1. The resolution was
settled at 2 cm−1 to observe absorption peaks of the OH (hydroxyl) group at wave numbers
3000–3650 cm−1 and -COOR′ (ester) absorption at wave numbers 1710–1780 cm−1.

2.6. Micrograph Surface Structure Analysis

The surfaces of the structural fibers were observed by Scanning electron microscope
(SEM) imaged with FE-SEM Thermo Scientific Quattro S completed with EDS Detector,
WetSTEM, Heating Stage, and Tensile Stage. The samples were coated with gold using
a Cressington 208HR High-Resolution sputter coater (Cressington Scientific Instruments,
Watford, UK). Magnification of 100–10,000 times until the surface object was visible.

3. Results
3.1. Effect of Citric Acid (CA) on Tensile Strength

Tensile strength tests were carried out for crosslinked CA fibers. The changes of
the tensile with various concentrations of CA are shown in Figure 3. In ramie fiber, CA
crosslinking has a positive effect on mechanical properties. The control showed a tensile
strength of 67.77 MPa, which decreased slightly by about 4% when immersed in water (CA
0%). Citric acid is available in the monohydrate form (contains one molecule of water), so it
needs to be activated first in the form of anhydrous/cyclic (water-free) anhydride in order
to bind to the hydroxyl groups on the fiber surface. Therefore, with a weak organic acid
group, it appears to have a limited ability to dissociate with OH- ions at concentrations
below 0.5%.
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Figure 3. Tensile strength of Crosslinked-CA to ramie fiber.

The tensile strength of the fiber will increase with the addition of CA at a gradually
increasing concentration. Adding CA 0.75–1.875% (w/w) can show a significant increase in
tensile strength up to 124 MPa–172.86 MPa or around 83–155% compared to the control fiber.
The concentration of carboxylate ion (-COOH) saturation due to the addition of CA at 2.5%
will limit the mobility of CA and could be acid-catalyzed hydrolytic breakdown of cellulose
would reduce the crosslinking efficiency of the fiber, resulting in lower tensile strength.

3.2. Crosslinking Reaction with Addition of Sodium Hypophosphite (SHP) and Temperature

The increase in mechanical performance, especially the tensile strength of crosslinked
CA in ramie fiber, seems to be dependent on the curing temperature (Figure 4). Citric acid
applications can react to ramie fiber in the absence of the catalyst SHP. Therefore, the re-
search was continued by applying the optimal concentration of 1.875% CA with 1% and 2%
SHP, accelerated at various activation temperatures of 90 ◦C, 100 ◦C, and 110 ◦C. The result
of the change of crosslinking on the tensile strength is shown in Figure 3. When observed
with activation temperature at 90 ◦C, the usage of 1% and 2% SHP showed a tendency
to increase to 214.61 MPa (216%) and 284.25 MPa (319%), respectively. Furthermore, the
crosslinked CA to fiber gave effects at 100 ◦C at 1% and 2% of SHP were 542.92 MPa (701%)
and 589.71 MPa (770%), respectively. Surprisingly, the strength of the crosslinked-CA
with ramie fiber increased more than 19 times when the activation temperature was raised
by 110 ◦C compared to the control (67.77 MPa), reaching a maximum tensile strength of
1290.63 MPa (1804%). However, these results were not applied when 2% SHP was used,
which caused a decline in fiber strength.

The increase in the fiber strength during the crosslinking process with CA/SHP can
occur if the CA structure forms a monohydrate from one water molecule to bind the
hydroxyl group on the fiber surface, for that CA must first be activated in the form of
anhydrous/cyclic anhydride, which is free of water. In this experiment, SHP played an
effective role in the crosslinking reaction with CA at 110 ◦C. As a catalyst, SHP enhanced
the decomposition of CA under thermal conditions for esterification in fiber and reduced
the unsaturated intermediates to methylsuccinic acid [29].
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Phosphate binding takes place in the fiber by the H–P–H reaction of SHP with the C=C
from CA, which causes phosphate anions to diffuse deeper into the fiber polymer, causing
more crosslinks to form [30]. Therefore, it is the potential to promote the formation of
anhydrous cyclic intermediate molecules to accelerate the reaction between the intermediate
and the hydroxyl groups of cellulose [31]. At higher temperatures, this condition might
also reduce the effectiveness of crosslinking in cellulose.

3.3. FTIR Spectra

Changes in functional groups of ramie fiber in the CA/SHP crosslinking were shown
in Figure 5. CA has a tricarboxylic group (-COOH) that can create group ester bridges
(-COOR′) when it is crosslinked with hydroxyl groups (-OH) on the surface of the fiber.
The properties of the -OH hydroxyl group in cellulose, including hemicellulose and lignin,
appear in the band 3329–3332 cm−1.

The peak’s absorption is increased by the residual water in the fiber, demonstrating
the presence of -OH groups. The treatment in this study led to a decrease in the intensity of
the hydroxyl group with alterations because of the reaction between the hydroxyl groups
of cellulose and the positive carbon of the CA carboxyl group, which combined to generate
the ester group.

The C-H unsaturated stretching mode of CA can cause a change in the carboxyl
function group (C=O), indicated at wave number 1719 cm−1. When heated, the reaction
starts with the hydration of CA to form a cyclic anhydride followed by esterification with
an OH-group of cellulose [32,33]. A peak of 1.435 cm−1 shows the nature of the methyl
group, and a peak of 1.064 cm−1 shows the acetyl group in the polymer.

The reaction that occurs in the bonding agents is caused by the ionization of carboxyl
of CA, which is crosslinked with the OH-group on the fiber shown as new bands at
1719–1740 cm−1 with the ester group (C=O) stretching mode. This feature peak can be used
to assess the effectiveness of the CA crosslinking process on the fiber surface. In untreated
fibers, the peak at 1740 cm−1 as the carboxylic (C=O) group in lignin, hemicellulose, and
pectin can also be associated with the ester group. These compounds are removed by
degumming or bleaching treatment by coating the surface of the fiber with nonpolar
groups, giving this chemical modification effect a decrease in the hydrophilicity of the fiber.
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Figure 5. FTIR spectra of ramie fiber crosslinked with CA 1.875% and CA 1.875% + SHP, Temp.
110 ◦C. (a) Typical spectra (b) expand region 3400–3000 (cm−1) (c) expand region 1800–1750 (cm−1).

The P-bonds of SHP can attach to the fiber when CA dan SHP are heated. A single
stretch band appears around the 2375 cm−1 area due to the strain reaction from the H-P-H
mode originating from the SHP molecules. The peak at 2896 cm−1 shows the properties
of the methyl or methylene due to C–H stretching. When heated-SHP is applied, the -HC-
of the CA change as a result of the loss of carbonyl conjunction C=C. The reaction is due
to the ionization of the carboxyl group in the CA, and variation intensity shows C=C at
1623 cm−1, which is also in the area fingerprint C–C–C at 1237 cm−1. Figure 6 shows the
bridging reaction as the reaction of CA with SHP addition. SHP, in this research, played a
role as a catalyst.
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Figure 6. Proposed crosslinking reaction between Cellulose and CA by heating reaction with
SHP addition.

3.4. Surface Morphologies

The surface change was analyzed by SEM to confirm the effect of crosslinking CA
with ramie (Figure 7). The untreated sample as a control showed a complete tuft structure
with a generally flat surface (Figure 7a). According to the hydrophilic cellulose, when
the fibers were submerged in water, swelling occurred as a result of water entering the
polymer matrix and becoming trapped during submersion, which not significantly altered
the mechanical strength (Figure 7b). It can be proved that the addition of CA modified the
fiber surface through this crosslinking reaction using the complete ramie fiber structure.
Figure 5c shows the effect of CA on the surface change caused by crosslinking between
the hydroxyl group of cellulose. The interface became rougher and appeared as vertical
segments between the compartment that connected microfibrils in the filament. When
the fiber treated with CA/SHP at increased temperature exhibited very fast crosslinking,
rendering cellulose highly crosslinked due to its proximity to other molecules (Figure 7d).
The surfaces of the fiber look rougher due to the adhesion between microfibrils. This result
demonstrated the effectiveness of crosslinking CA with ramie fiber, cell structure denser with
regional distribution between cellulose which contributes to the strong tensile strength.
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3.5. Evaluation of the Formula CA/SHP on Ramie Fiber-Derived Material

The tensile strength of ramie cellulose, including decorticated fiber, degummed-fiber,
and ramie yarn, was then examined utilizing the optimal crosslinking CA condition
(Figure 7). The chemically and bio-degumming process has the capacity to alter the surfaces
of the fiber by hydrolyzing the -OH molecule that is modifying the fiber properties.

Ramie fiber that went through chemical or biological degumming processing has
a fiber strength of 584.54 MPa and 310.90 MPa, respectively. The fiber strength of the
bio-degummed-fiber did not significantly increase, which proves that the penetration of
the fungal mycelium on the fiber is effective only degrading the lignin and hemicellulose
components [34]. The yarn type A and type B, also chemically degummed-fibers, showed
a reduction in fiber strength of 39.8%, 30%, and 43.1%, respectively. The treated fibers
and yarn exhibited lower mechanical properties when the materials were oriented toward
reduced tensile strength. According to these findings, the samples may have less exposure
to the -OH bonds on their surface, which could lead to an increase in the number of
weak links when CA/SHP is used to react with the material. The tensile strength of the
treated fiber and the yarn will gradually deteriorate with high CA concentration with SHP
catalyst. These findings demonstrated that the strength of the material is not increased by
crosslinking CA/SHP on processed fiber and yarn (Figure 8).
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Figure 8. Comparison of the tensile strength due to CA/SHP crosslinking at 110 ◦C for ramie-
based material.

4. Discussion

Much work has been completed by many researchers on natural fibers to approach
various ways to improve their mechanical properties. Much data have been reported
indicating that strengthening the tensile strength of fiber gives varying results due to
the possibility of differences in the quality of the initial fiber considering that the natural
properties of fibers are very dependent on the location and conditions of the plant and its
initial processing. Table 1 shows a comparison of the tensile strength of ramie and other
natural materials from different treatments. Several surface treatment methods of ramie can
demonstrate the potential strength of the fiber. According to these data, the crosslinking
technique using CA and SHP as catalysts has been shown to have a significantly higher
tensile strength than the others.

When compared to other natural fibers that have been described, ramie-crosslinked
CA/SHP was the strongest fiber among all the treatments that have been reported. Even
though there are many other data showing the potential for high strength of natural fibers,
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due to the lack of details on the procedure and the initial treatment method, we exclude
from the discussion.

The interesting thing is an evaluation regarding the ultimate tensile strength of
crosslinked CA/SHP with ramie fiber when compared to Built 18Ni300 Maraging Steel is
around MPa 1188.6 ± 12.0 MPa–1209.4 ± 16.5 MPa [35]. Martensitic steel is significantly
more cost-effective than aluminum. Using optimized design profiles, the steel can deliver
high-strength performance that is similar to aluminum and at the same weight as a com-
mercial 1200 MPa grade. This kind of steel has been extensively applied in the automobile
industry owing to outstanding mechanical properties: high strength-low weight, high
initial work hardening rate, and good formability [36,37]. It has been accepted that fiber
strength plays a key role in determining the strength of fiber-reinforced polymer matrix
composites. Natural fibers, as light and low-cost materials, when added to a composite
mixture, can become a sustainable alternative for other fibers to produce materials with
better, harder properties and reduce the weight and density of the final composite [38].
This crosslinking approach provides us with new possibilities for ramie fiber orientation
utilization in the form of replacements of synthetic fiber or as functional composites.

In the future, the ramie fiber, which crosslinked with CA in optimum condition,
should be recommended for application for Natural Fiber Reinforced Polymer Composite
(NFRPC). The bio-composites of NFRPC are categorized into complete and partial green
composites [39–42]. There has been much research completed on some of the significant
advancements related to NFRPCs materials that can replace synthetic fibers in numerous
applications, including the car manufacturing industry, which has advantages such as
being more efficient in terms of production costs, lighter in weight, has an excellent me-
chanical quality, has biodegradability properties so it is more environmentally friendly, and
has economic perspective. By lowering material costs and weight for plastic substitution
in the packaging and electrical industries, NFRPC usage offers a great alternative [43].
High-performance fibers could be used for technical textiles, such as for reinforcement
of composites in protective garment applications or such as ropes and belts. These char-
acteristics made NFRPCs as special materials for a variety of transportation applications,
including airplanes, cars, railroads, and construction [44]. Although there are continuing
adverse consequences from its development, in particular, dealing with many challenges
associated with the development and application of NFPRC due to the intrinsic qualities of
natural fibers (NF) issues related to established quality control. Natural fibers remain far
from standardized, nevertheless, and even after going through the same extraction process,
individual fibers can exhibit different qualities when compared to one another.

Table 1. Comparing tensile strength properties of ramie with different treatments.

No Material Treatment Tensile Strength (MPa) Reference

1 Ramie Yarn Polylactic acid (PLA) 38.4–52.7 [45]
2 Ramie Fabric PLA + Cyclic load treatment 75–85 [46]
3 Ramie fabric Alkaline + PLA cyclic load 90.9 [45]
4 Composite ramie diisocyanates 60.1–62.0 [7]

5 Fiber-modified
Ramie/Polypropylene (PP) Amino silicone oil emulsion (ASO) 20.4–28.6 [46]

6 Ramie fiber Diammonium phosphate (DAP) + Polylactic acid (PLA) 19.6 ± 1.2 [47]
7 Ramie Fiber Pectinase-DAP/PLA 32.7 ± 1.5 [47]
8 Ramie Fiber Alkaline-DAP/PLA 33.1 ± 1.6 [47]
9 Ramie Fiber Silane-DAP/PLA 21.1 ± 1.6 [47]
10 Ramie Fiber Alkaline-Silane-DAP/PLA 21.5 ± 1.7 [47]
11 Ramie Fiber Lignin-Based Polyurethane Resin (LPU) 441.19–577.61 [48]
12 Ramie Fiber Low-viscosity lignin-based polyurethane resin (LPU) 648.7 [10]
13 Ramie Fiber Tannin-Bio-NIPU 451.3 [9]
14 Ramie Fiber 8% NaOH, a PLA/fiber composite 57.37 [11]
15 Ramie Fiber Alkaline for prosthetics 62–86 [49]
16 Ramie fiber Crosslinked Citric acid 172.86 This work
17 Ramie Fiber Crosslinking Citric Acid + Sodium hypophosphite 1209 This work
18 Banana peel starch Crosslinking Citric Acid 20–60% (w/w) 80 [14]
19 Bamboo fiber Crosslinking Citric acid 5% 0.953–4.202 [50]
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The development of ramie fibers that have been impregnated with crosslinking
CA/SHP furthermore needs to improve the functionality, especially in terms of the tough-
ness of the material, such as flexural strength, Young’s modulus, density, and color change
to be studied as well as fiber structure, dimensions, microfibril and angles, and physical
structure, chemical properties, cell dimensions, and interaction of fibers with the matrix
must all be taken into account to achieve optimal performance [51–54] Impurities [55],
water absorption [56], orientation [57], and volume fraction [58], which are inherent fiber
characteristics, are also important in determining the mechanical properties natural fiber-
reinforced polymer composites (NFRPC).

Ramie is being used as a model for developing a national priority in Indonesia as a
bioproduct based on textile innovation [59]. This study has significant potential market
value if the product prototype created may be oriented towards the completeness of the
functional elements of the material according to the needs of the industry, which will
be a trend in the future. These exceptional characteristics provide cellulose with special
properties such as flame retardance, high swelling ratio, enhanced wrinkle resistance, and
antifibrillation that are useful in a variety of applications, including the finishing of textile
fibers, biomedical use, and filler applications [32,33,60].

Ramie is used for Multilayer Armor Systems (MAS) and shows the anti-ballistic
properties of a composite of three layers of ceramic (wolfram carbide) and 10 layers of
ramie nonwoven with epoxy resin as the matrix [61]. The suggestion to use crosslinked
CA–ramie produced in this study made it possible to reduce the thickness of the fiber
layer used.

5. Conclusions

In conclusion, the tensile mechanical properties of ramie fiber with CA/SHP crosslink-
ing have been explored. To obtain the highest tensile mechanical strength that can be
obtained as follows:

The addition of CA 0.75–1.875% (w/w) can show an increase in tensile strength up to
124 MPa–172.86 MPa or about 83–155% compared to the control (67.77 MPa).

• A significant increase in tensile strength was observed more than 19 times when
CA/SHP 1% was treated at an activation temperature of 110 ◦C with a superior tensile
strength of 1290.63 MPa. Unfortunately, the effectiveness of CA/SHP crosslinks has
not been successfully applied to ramie fibers that have been processed by degumming
or that have been spun into yarn.

• The crosslinking ramie with CA/SHP may have occurred, and this has been confirmed
by evidence from SEM by a change in the surface structure of the fiber, which is
denser as a result of the closeness of the regional distribution between cellulose, which
contributes to the strong tensile strength. Besides that, FTIR studies support the
evidence of a feature to assess the effectiveness of the CA crosslinking process on the
fiber surface. Crosslinking between cellulose and CA in the presence of a reaction
between the hydroxyl group of cellulose and the positive carbon of the carboxyl
group of CA, which joins to form an ester group which is shown as a new band at
1719–1740 cm−1 with the stretching mode of the ester group (C=O).

• The approach described in this study shows the capability of ramie fibers crosslinked
with CA to be applied on NFRPC, which can replace synthetic fibers with more sustain-
able, cost-efficient, stronger, and lighter ones. The NFRPC offers better characteristics
for textile functional or aerospace and automotive industries such as cars, rockets,
airplanes, railroad, and construction.
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