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Kuşkun, T.; Güray, E. Analyses of

L-Type Corner Joints Connected with

Auxetic Dowels for Case Furniture.

Materials 2023, 16, 4547. https://

doi.org/10.3390/ma16134547

Academic Editors: Jalel Labidi,

Carmen-Mihaela Popescu

and Simon Curling

Received: 15 May 2023

Revised: 18 June 2023

Accepted: 20 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Analyses of L-Type Corner Joints Connected with Auxetic
Dowels for Case Furniture
Ali Kasal 1 , Jerzy Smardzewski 2,* , Tolga Kuşkun 1 and Ersan Güray 3
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48000 Muğla, Turkey; alikasal@mu.edu.tr (A.K.); tolgakuskun@mu.edu.tr (T.K.)

2 Department of Furniture Design, Faculty of Forestry and Wood Technology, Poznan University of Life
Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland

3 Department of Civil Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University,
48000 Muğla, Turkey; ersan.guray@mu.edu.tr

* Correspondence: jsmardzewski@up.poznan.pl

Abstract: Tests were carried out to develop and manufacture various types of auxetic dowels using
3D printing technology. These dowels were then used to connect L-type corner joint specimens for
case furniture, and their strength and stiffness were analyzed through experimental, theoretical, and
numerical means. In the scope of the study, eight different types of auxetic dowels including two
inclusion types, two inclusion sizes, and two dowel hole diameters, as well as a reference non-auxetic
dowel, were designed. Accordingly, a total of 180 specimens that included 10 replications for each
group were tested; 90 were tested under tension and the remaining 90 were tested under compression.
The results demonstrated that the assembly force required for the corner joints connected with auxetic
dowels was significantly lower compared to non-auxetic dowels. Furthermore, the numerical and
theoretical analyses yielded similar outcomes in this study. Both analyses revealed that the dowels
used to connect the corner joints experienced substantial stresses during mounting and bending,
ultimately leading to their failure. Upon concluding the test results, it was observed that the corner
joints connected with dowels featuring rectangular inclusions exhibited superior performance when
compared to those with triangular inclusions. In light of these findings, it can be concluded that
further enhancements are necessary for auxetic dowels with rectangular inclusions before they can
be utilized as alternative fasteners for traditional dowels.

Keywords: auxetic; dowel; corner joints; furniture; FEM

1. Introduction

Furniture design must meet four essential criteria: aesthetic appeal, functionality,
durability, and feasibility [1,2]. Among the various types of joints used in furniture, corner
joints are the most common, connecting vertical and horizontal elements. Recently, there has
been a growing interest in ready-to-assemble (RTA) furniture joints, including techniques
such as welding [3–5], the use of auxetic materials and structures [6,7], or shrink-fitting
methods [8–10].

Numerous studies have investigated the strength and stiffness of L-type corner joints
using glued dowels or mechanical fasteners. For instance, in compression and tension tests
of single-dowel corner joints with particle board (PB), Zhang and Eckelman [11] found that
tension loads had a higher moment capacity than compression loads. Increasing the dowel
diameter or length is directly correlated with enhanced bending strength. When evaluating
the flexural strength of multi-dowel joints in PB, Zhang and Eckelman [12] concluded
that a 75-mm spacing between dowels provided the highest moment capacity per dowel.
Wan-Qian and Eckelman [13] conducted tests on screwed and dowelled corner joints
under compression and bending, revealing the eccentric bending moment capacity. Their
results demonstrated that the moment capacities of the fasteners significantly increased
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as long as the impact zones did not overlap. Smardzewski and Prekrat [14] examined
the rigidity and strength of disconnected joints used in cabinet furniture, highlighting
the importance of trapezoidal joints for optimal rigidity-strength properties, with wood
dowels playing a significant role in supporting their strength. Tankut and Tankut [15]
investigated the factors influencing the bending capacity of corner joints constructed with
wood biscuits, emphasizing that joint strength mainly relied on edge gluing rather than the
glued biscuits themselves.

In these tests, one crucial characteristic of the fasteners used was the minimal ex-
ternal energy required during assembly, making the process easy. The forces were typi-
cally applied using screws or eccentrics, such as screwing moments facilitated by screw-
drivers [16,17]. Zhang et al. [18] examined the effects of screw diameter and length, loading
type, board material, board surface condition, and gluing on the moment resistances of
three-screw L-type corner joints under tension and compression loads. Their findings
indicated that surfacing PB with synthetic resin and applying glue to the contact surfaces
significantly improved the moment resistances of PB joints. The recommended screw
diameter for connecting corner joints of case-type furniture was 5 mm with lengths of either
50 mm or 60 mm.

The rising popularity of flat-packed, ready-to-assemble (RTA) furniture has led to a
need for creative approaches, particularly for individuals who may lack technical skills
or have physical limitations. As a result, new innovative fasteners have been developed
with original designs and user-friendly installation and disassembly methods. Computer
simulations using the finite element method (FEM) have been employed to model these
fasteners [19]. Furthermore, there are many studies in the literature in which the finite
element method has been used in furniture engineering design.

In one study, the strength of a wooden chair was determined under different kinds of
loads; then, the same chair was modeled and the stresses at some points under the same
loads were determined using FEM. It was reported that the analysis data and experimental
data were very similar [20]. In one study regarding using FEM in the structural analyses of
furniture, it was difficult to analyze the stresses that occur in chair frames; but FEM could
be used to solve this problem. In this research, a wooden chair frame was modeled and the
analysis and design were demonstrated using FEM, and the analysis results were compared
to the real test results. In conclusion, it was stated that chair frames can be analyzed using
computer-aided structural analysis methods [21]. The difficulties in using FEM in wood
materials have been compared and investigated with performance tests with finite element
software [22]. Experimental tests and FEM analyses were performed for different types
of sofa frames constructed of wood and wood-based materials. According to the results,
the FEM results were given reasonable estimates regarding the strength properties of sofa
frames. As a result, it was also emphasized that the joints are the critical points in furniture
and that more durable joints can be made using materials with high bending strength [23].

Although conventional materials are typically used in furniture fastener production,
there is an increasing interest and demand for smart materials. Negative Poisson’s ratio
structures were described as early as 30 years ago [24–26], offering auxetic materials and
structures with desirable mechanical properties, such as shear resistance, indentation re-
sistance, synclastic behavior, varying permeability, high energy absorption, and fracture
resistance [27,28]. Carneiro et al. [29] presented theories explaining the deformation be-
havior of auxetic materials, explored their mechanical properties, and showcased potential
applications. Santulli and Langella [30] shared their experience using auxetic materials in
various design objects, including chairs, bags, and seat belts. The structures were modeled
as chiral with defined geometrical parameters, and real models were fabricated using
neoprene or rubbery materials. Limited studies have explored the use of auxetics in the
furniture industry. Smardzewski et al. [31] aimed to develop a model of an auxetic compres-
sion spring for seating furniture constructions. Ren et al. [32] designed, manufactured, and
investigated the first auxetic nails for the wood and furniture industry, finding that auxetic
nails did not consistently outperform non-auxetic ones. Tabacu and Stanescu [33] examined
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auxetic, anti-tetra-chiral structures designed as tubes subjected to tensile quasi-static loads,
establishing theoretical calculation models to estimate the reaction force under tensile loads.
Ren et al. [34] developed a simple tubular structure exhibiting auxetic behavior in both
compression and tension by extending a recently proposed design concept for 3D metallic
auxetic metamaterials. Zhang et al. [35] developed a combined tubular structure with
tunable stiffness, improving bearing capacity and stability through the length design of
the central column. Such design concepts have potential benefits for adaptive structures,
smart devices, and applications in the furniture industry. A review of design methods and
advanced manufacturing technologies for auxetic tubular structures can be found in [36].
The challenges and opportunities for applying auxetic tubes are discussed to inspire future
research endeavors.

When reviewing the latest literature, it becomes apparent that several auxetic dowel
designs have been developed for use in furniture joints, focusing on their mounting forces
and withdrawal strengths [6,7]. These studies suggest that auxetic dowels could serve
as an alternative fastener to traditional wooden dowels in furniture joints. However, the
application of auxetic materials in furniture joints remains relatively limited. Therefore, this
study aims to leverage the unique property of the negative Poisson’s ratio to design various
types of auxetic dowels, facilitating easy insertion and enhanced resistance to pull-out
forces in case furniture joints.

The aim of engineering design is to manufacture products in the ideal intersection of
technical and economic considerations. Sometimes weak-strength products are strength-
ened, while sometimes, unnecessary excessive-strength products are reduced to a sufficient
strength level, resulting in economic gain. The auxetic dowels within the scope of the
study are designed to be used in corner joints of case-type furniture, and they can provide
one-time ready-to-assemble (RTA) constructions. Furthermore, the auxetic dowels have
advantages over the other fasteners commonly used in the furniture industry. These are:

• significantly lower cost,
• ease of assembly,
• reducing production operations and diversity,
• there is no need for any tools for assembly, it can be easily assembled by hand.

In this context, it could be said that the use of auxetic dowels as an alternative to tradi-
tional fasteners will provide significant technical and economic advantages to consumers
and manufacturers. Accordingly, this study aims to design and produce different types
of auxetic dowels using 3D printing technology and analyze the strength and stiffness of
L-type corner joints connected with these dowels through theoretical, experimental, and
numerical methods.

2. Materials and Methods

Figure 1 shows a flowchart illustrating the universality of the methodology used in
this study.

In the methodology of the study; in the first stage, the design, analysis, and production
of the auxetic dowels were carried out. In the second stage, the elastic properties of
the produced dowels and the elastic and mechanical properties of the material (PA12)
used in the production of the dowels were determined. In the next step, the strength
and stiffness of the corner joints connected with the designed and manufactured dowels
were experimentally, numerically, and theoretically analyzed. In the last stage, the results
obtained from the experiments, numerical analyses, and theoretical calculations were
compared and interpreted.
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Figure 1. The flowchart of the used methodology.

2.1. Design, Production, and Elastic Properties of the Auxetic Dowels and PA12

The purpose of the study was to design 8 types of auxetic dowels with different
geometric patterns and 1 non-auxetic dowel with appropriate face (FM) and butt (BM)
sizes as fasteners for corner joints in case furniture. The auxetic dowels were designed to
include two types of inclusions (T: triangular and R: rectangular), two different inclusion
sizes (A = 0.4 mm, B = 0.5 mm for rectangular inclusions, and A = 1 mm, B = 2 mm for
triangular inclusions), and two different dowel hole diameters (3 and 4 mm). All of the
designed dowels were 40 mm long and 8 mm in diameter; the corresponding butt muffs
were 33 mm long and 12 mm in diameter, while the face muffs were 14.5 mm long and
12 mm in diameter. The general view of all types of auxetic surface dowels with different
patterns and face and butt muffs is given in Figure 2, while the dimensions of the dowel
and muffs are given in Figure 3.
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For comparison purposes, a non-auxetic full dowel was designed as a reference dowel.
The reference dowel was designed without inclusions on the surface (smooth surface), and
there was no hole inside the dowel. Auxetic dowels were patterned with triangular and
rectangular (rectangles with semicircles at two ends) inclusions of auxetic surfaces and
with holes. The pattern on the entire dowel surface consisted of repeating each geometric
inclusion configuration in the longitudinal and circumferential directions. The inclusion
size factor has been described as the dimension of a single triangular or rectangular gap.
All other dimensions depend on these gaps and their periodicity. Detailed inclusion sizes
and cross-sections of the designed dowels are given in Figure 4.
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3D models were first created using Autodesk Inventor v 2023.3 software during dowel
production. Then, based on the CAD models, STP and STL models were prepared for
numerical calculations and 3D printing. Finally, 3D printing selective laser sintering (SLS)
technology was used in an EOS P396 printer (EOS GmbH, Munich, Germany) to produce
the nine designed dowel types and corresponding muffs. The designed dowels were printed
using polyamide EOS PA12—Polyamide 12 (EOS GmbH, Munich, Germany). It should be
noted that the minimum link length of the designed auxetic dowel was only 1.1 mm, and
this value approached the limit (1 mm) of the 3D printing company for manufacturing the
dowels and muffs. The exact diameter of the dowel and the inner diameter of the muff was
individually measured with a digital caliper. Uniaxial compression tests were performed
on all dowel groups to calculate the coefficient of friction and the Poisson’s ratio of the
dowels. In order to obtain the Poisson’s ratio of the dowels, a reference ruler was placed
behind the dowels. Two pictures of the dowels were taken, one before loading and the
other at the time of 2-mm deformation in the vertical (Y) direction. Then, dowel strains
in vertical and horizontal directions were analyzed using National Instruments IMAQ
Vision Builder v6.1 software (National Instruments, Austin, TX, USA). Poisson’s ratios
were calculated by applying the edge detection method in the digital image analysis. Since
the methodology for determining the coefficients of friction has been described in detail
in [6,7], only the final results of the calculations in Table 1 are presented in this part of the
paper. They were used for further numerical calculations.
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Table 1. Characteristics of designed and produced auxetic and non-auxetic dowels in this study.

Dowel
(Inclusion)

Type

Dowel Hole
Diameter

(mm)

Inclusion Size
(mm)

Mean
Diameter of

Dowels
(mm)

Mean Inner
Diameter of

Muffs
(mm)

Mean
Tolerance

(mm)

Poisson’s
Ratio of Dowel (ϑ)

Friction
Coefficient of

Dowel

Dowel
Code

Non-auxetic RF Plain 7.86 7.59 +0.27 0.201 * 0.033 RF

Triangular
3

A (1) 7.91 7.56 +0.35 −0.208 0.333 T3A
B (2) 7.90 7.56 +0.34 −0.300 0.212 T3B

4
A (1) 7.89 7.54 +0.35 −0.352 0.416 T4A
B (2) 7.89 7.49 +0.39 −0.391 0.345 T4B

Rectangular
3

A (0.4) 7.87 7.58 +0.29 −0.356 0.367 R3A
B (0.5) 7.86 7.52 +0.35 −0.367 0.244 R3B

4
A (0.4) 7.86 7.59 +0.27 −0384 0.458 R4A
B (0.5) 7.87 7.55 +0.32 −0.445 0.390 R4B

* Non-auxetic.

In the study, we used eight types of auxetic dowels with triangular and rectangular
inclusions and a reference non-auxetic dowel. The real pictures of the produced auxetic
dowels are shown in Figure 5.
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The mechanical and elastic properties of the PA12 material were determined in tensile
tests according to the ASTM D3039/D3039M–17 [37] (Table 2). The dimensions and actual
image of the tensile test specimen are shown in Figure 6.

Table 2. Physical and mechanical properties of the layers of the PB [38].

Property Unit
PB PA12

t = 18 tf = 3 tc = 12

MC % 6.18 (0.08 *) 5.2 (0.09) 6.54 (0.1) (-)
D kg/m3 649 (7) 882 (4.8) 541 (5) 938 (140)
υ 0.29 0.23 (0.042)
G

MPa
991 (112) 1298 (85) 682 (72) 288

Ex 2556 (290) 3350 (220) 1760 (185) 709 (41)
MOR 10.9 (1.8) 14.1 (2.1) 7.8 (1.7) 25.8 (1.1)

* Values in parenthesis standard deviations, MC: Moisture content, D: Density, υ: Poisson’s ratio, G: Modulus of
rigidity, Ex : Modulus of elasticity, MOR: Modulus of rupture.
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Tensile samples were also printed using an EOS P396 printer (EOS GmbH, Munich,
Germany) with a dimensional tolerance of 0.3 mm. A total of 10 samples were prepared.
Tensile tests were performed on a numerically controlled Zwick 1445 universal testing
machine (Zwick Roell AG, Ulm, Germany) with a 10 kN capacity. The loading rate was
10 mm/min. During the tests, strain and strain shortening at the center of the specimens
were recorded using the Digital Image Correlation and Tracking method (DICT) using
the Dantec system (Dantec Dynamics A/S, Skovlunde, Denmark). In order to include the
plasticity properties of the material in numerical calculations, the experimental stress-strain
relationship for polyamide (PA12) after exceeding the linear elastic range was determined
(Figure 7). First, the linear elastic range was determined to establish the linear equation
for this section. As shown in Figure 7, the slope of the line corresponds to the value
of the modulus of linear elasticity for polyamide equal to E = 709 (standard deviation
SD = 41) MPa, tensile strength MOR = 25 MPa (SD = 1.1 MPa), and Poisson’s ratio υ = 0.23
(SD = 0.01). Then, the true stress σT and the logarithmic plastic strain εL, required in
the finite element method (FEM) algorithm were calculated using the equations [6,7]
given below:

εL = εT −
(σT

E

)
, (1)

where σT = σe(1 + εe) true stress, εT = ln(1 + εe) logarithmic strain, E = modulus of
elasticity of polyamide, σe = engineering stress, and εe = engineering strain. For the plastic
range in Figure 7b above the straight line, the graph for σT = f (εL) was plotted.
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2.2. Mounting and Preparation of the L-Type Corner Joint Specimens

L-type corner joint specimens were prepared from three layers (Figure 8) of particle-
board (PB) commonly used in case furniture construction. The PB materials were purchased
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from commercial suppliers. Some physical and mechanical properties of the PB used are
presented in Table 2 [38].
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Figure 8. Three layers of PB used for preparing the specimens in this study.

The L-type specimens consisted of two structural members: a face member and a
butt member. The face member measured 270 mm long, 150 mm wide, and 18 mm thick,
while the butt member measured 270 mm long, 132 mm wide, and 18 mm thick. The
members were joined together with two auxetic dowels without adhesive. The auxetic
dowel corner connections provide a one-time ready-to-assemble (RTA) connection. The
general configuration of the L-type corner joint specimens is shown in Figure 9.
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Figure 9. Dimensions (a) and general configuration (b) of the corner joint specimens.

During the assembly of the specimens, holes 12 mm in diameter and 14.5 mm deep
were first drilled into the face piece and holes 33 mm deep were drilled into the butt
piece of the specimens to insert the face and butt muffs. The face and butt muffs were
then fully inserted and bonded to the holes using Jowat® UniPUR 687.22 melamine-based
adhesive (Jowat Swiss AG, Buchrain, Switzerland). Prior to assembly, the dowels were
manually inserted into the muffs placed on the face members. A Zwick 1445 universal
testing machine (Zwick Roell AG, Ulm, Germany) with a loading rate of 10 mm/min was
used to determine the dowel assembly forces (Figure 10).

A total of 180 L-type corner joint specimens were prepared and tested, 10 per each
type of joint. The experimental design of the study is shown in Table 3.

Prior to testing, corner joint specimens were stored for at least one month in a con-
ditioning chamber at 20 ◦C ± 2 ◦C and 65% ± 3% relative humidity in order to avoid
MC variations.
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Table 3. Experimental design of the study.

Dowel
(Inclusion)

Type

Dowel Hole
Diameter

(mm)

Inclusion Size
(mm)

Tension Test Compression Test

Specimen
Replication

Number of
Dowel

Specimen
Replication

Number of
Dowels

Non-auxetic Non-hole Plain 10 20 10 20

Triangular (T)

3 A (1) 10 20 10 20
3 B (2) 10 20 10 20
4 A (1) 10 20 10 20
4 B (2) 10 20 10 20

Rectangular (R)

3 A (0.4) 10 20 10 20
3 B (0.5) 10 20 10 20
4 A (0.4) 10 20 10 20
4 B (0.5) 10 20 10 20

Total (Auxetic + non-auxetic) 80 + 10 = 90 160 + 20 = 180 80 + 10 = 90 160 + 20 = 180

Total (Specimens/dowels) 180 Specimens/360 Dowels

2.3. Tension and Compression Testing of the L-Type Corner Joint Specimens

Corner joints of case furniture are often subjected to compressive forces, which tend
to open the joint, and tensile forces, which tend to close the joint, during usage. Bending
moments occur at the corner joints under compression and tension loading conditions.
In this study, these two important loading models were preferred as the test method to
determine the strength and stiffness of L-type corner joints with auxetic dowels. Diagonal
compression and tension tests of the L-type corner joint specimens were also performed
on a numerically controlled Zwick 1445 universal testing machine (Zwick Roell AG, Ulm,
Germany) with a 10 kN capacity at a loading rate of 10 mm/min under static loading.
For the tensile tests, the bottoms of each of the two members of the joint were placed
on the pieces with rollers on the bottom and V-shaped grooves on the top, allowing the
two parts of the joint to outwardly move as the corner joint was loaded (Figure 11a). For
the compression tests, two of the same V-groove pieces were placed at each end of the
members. The specimen was then held by hand until the lower surface of the grip of
the testing machine touched the upper surface of the upper V-groove pieces (Figure 11b).
During the tension and compression tests, the maximum forces F (N) were measured to the
nearest 0.01 N and deflection in the direction of the acting force DF (mm) was determined
to the nearest 0.01 mm. A total of 180 L-type specimens were tested; 90 were tested under
tension, and the remaining 90 were tested under compression. First, the bending moment
capacities (MT , MC) of the joints under tension or compression were calculated from
the formulas:

MT = 0.5FLt
′ (Nm) tension, (2)
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MC = FLc
′ (Nm) compression, (3)

where: F (N) is the maximum force of the joints, Lt
′ and Lc

′ (mm) are the length of the arm
of the force F (N) under tension and compression, respectively. The moment arms (Lt

′, Lc
′)

were calculated as 0.09334 m and 0.08061 m for tension and compression, respectively
(Figure 11). Then, the stiffness values of the corner joints were calculated as the quotient of
the bending moment MT (Nm), MC (Nm), and the respective decrease or increase in the
angle (ϕ) (rad) a value between the joint arms.
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These angles were determined based on the measurement of the deflection DF (mm)
caused by the external load F (N). The stiffness coefficients KT , KC (Nm/rad) for the joints
under tension and compression are calculated by Equations (4) and (11), respectively:

KT =
FLt
′

(2ϕ)
(4)

where:
ϕ = (ϕ2 − ϕ1) (5)

Lt
′ =

√
2

2
(LB − t) (6)

0.5ϕ1 = atg
(

Lt
′

ƒ

)
(7)
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0.5ϕ2 = atg
(

Lt ′′

ƒ− DF

)
(8)

ƒ = Lt
′ +

√
2

2
t (9)

Lt
′′ =

√
Lt
′2 + ƒ2 − (ƒ− DF)

2 (10)

KC =
FLc
′

(ϕ)
(11)

where:
ϕ = (ϕ1 − ϕ2) (12)

Lc
′ =

√
2

2
LB − Lc

′′ (13)

Lc
′′ = t

√
2 (14)

ϕ1 = 2atg

(√
2LB

2Lc ′

)
(15)

ϕ2 = 2asin

 √
2

2 LB − DF√
t2 + (LB − t)2

 (16)

were: LB (m) is the length of the butt member, and t (mm) is the thickness of the particleboard.

2.4. Theoretical Calculations for the Corner Joints

The tension and compression of hinges cause the mutual interaction of joints and arms
at pivot points PT , PC (Figure 12a). The tension of the joints by bending moment MT (Nm)
makes the indifferent axis pass through the point PT , and the minimum and maximum
normal stresses σmin, σmax (MPa) occur nearer and further from the point PT (Figure 12b).
Compression of the joints by bending moment Mc (Nm) makes the indifferent axis pass
through the point PC, and the minimum and maximum normal stresses σmin, σmax (MPa)
occur closer and further from the point PC (Figure 12c). Therefore, it was decided to specify
the values of these stresses for all types of dowels and joints used.
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Figure 13 shows diagrams of the tension and compression of the corner joints. The
normal stresses in the dowel of corner joints can be described in general form,

σ =
Mis

A y2dA + (0.5t)2 A
yt (17)
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where: Mi (Nm) (i = T, C) bending moments as in Equations (2) and (3), Jo =
s

y2dA (m4)

dowel moment of inertia, yt =


0.5(t + d)

0.5t
0.5(t− d)

(m) distance from the neutral axis, A (mm2)

cross-section of dowel, d (mm) dowel diameter.
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Hence, the maximum, minimum, and mean stresses in the dowels of joints under
tension can be determined from the equations,

σmax =
2(t + d)MT

4Jo + t2 A
(18)

σmin =
2(t− d)MT

4Jo + t2 A
(19)

σmean =
2tMT

4Jo + t2 A
(20)

assuming that,
MT = 0.5FyLF (21)

LF = LB − t (22)

0.5Fy = 0.5Fcos(ε− 0.5ϕ) (23)

0.5Fx = 0.5Fsin(ε− 0.5ϕ) (24)

0.5ϕ = ε′′ − ε′ (25)

ε′ = arccos
(

H
L′B

)
(26)

ε′′ = arcos
(

H − DF
L′B

)
(27)

H = LT +
√

2t (28)

L′B =
(

L2
B + t2

)0.5
(29)
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where: Fx, Fy (N) component Y and Y of external load F (N), LF (m) length of face member,
LB (m) length of butt member, DF (m) deflection, ε (rad) inclination angle of face member, ϕ
(rad) angle between arms of joint, and other parameters ε′′ , ε′ (rad), H, LT , L′B (m) as shown
in Figure 13a.

For the joints under compression, the maximum, minimum, and mean stresses in the
dowels can be determined from the equations,

σmax =
2(t + d)Mc

4Jo + t2 A
(30)

σmin =
2(t− d)Mc

4Jo + t2 A
(31)

σmean =
2tMc

4Jo + t2 A
(32)

where,
Mc = FyLF (33)

Fy = Fcos(ε); Fx = Fsin(ε) (34)

ε = β− ε′ (35)

β = arcsin
(

L− 0.5DF
L′F

)
(36)

ε′ = arcsin
(

t
L′F

)
(37)

L′F =
(

L2
F + t2

)0.5
(38)

where: ε (rad) inclination angle between arms of joints, other parameters β, ε′ (rad), L, L′F
(m) as shown in Figure 13b.

Considering the diverse shapes of the cross-sections of individual dowels, Table 4
shows the minimum cross-sectional area A (m2) and minimum moments of inertia Jo (mm4)
of the dowels according to the cross-sections.

Table 4. Cross-sectional area and moment of inertia values of the dowels.

Dowel Type A (mm2) Jo (mm4)

R3A 9.27 49.54
R3B 11.36 59.31
R4A 8.85 48.61
R4B 10.63 57.57
T3A 6.47 40.90
T3B 5.69 36.47
T4A 7.21 44.89
T4B 5.69 36.47

Equations (9) and (21) were used to determine the relationships between the average
stresses in the dowels and the deflections of the joints. The obtained results of the analytical
calculations were compared with the results of the numerical calculations.

2.5. Numerical Model of the L-Type Corner Joints

In order to investigate the damage mechanism of the auxetic dowels under the tension
and compression loading of corner joints, the finite element method was used to simulate
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the deflection, deformation, and failure process of the fasteners. According to the symmetry,
half of the joints were constructed with the dimensions of the tested specimens, as shown in
Figures 8 and 9, using the commercial software ABAQUS/Explicit v6.14 (Dassault Systemes
Simulia Corp., Waltham, Ma, USA). A nonlinear model was selected for the calculations
to account for the geometric and material nonlinearity of each component. The elastic
properties of PB and PA12 at the limits of linear elasticity are given in Table 2. In addition,
the plastic properties of PA12 are shown in Figure 6. For polyamide, the ductile damage
model was adopted with a fracture strain of 0.03, a stress triaxiality of 1/3, a strain rate of 1,
and a displacement at failure of 0.1. As shown in Figure 14, the face and butt members of
the corner joints were modeled by C3D8R—eight nodes, linear brick, reduced integration,
and hourglass control elements (total number of nodes: 16642; total number of elements:
13324). The maximum mesh size of the arms was about 4 mm.
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Figure 14. Mesh models of joints where red points: RP-T, RP-B—a reference points for the top and
bottom support, respectively.

The optimum face and butt member mesh size was selected based on a series of
numerical calculations. Figure 15 shows the effect of the mesh size on the load value. This
figure shows that satisfactory agreement between the numerical results of the experimental
tests can be obtained for a 4 mm mesh and a computation time of about 8 h. A mesh size
of 2 mm obtained similar results. but over a much longer time. Contact with a friction
coefficient of 0.1 was added between the arms of the joint.
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Models of dowels and muffs were created according to the nominal dimensions
shown in Figure 1. The element type of the dowels was C3D10: a 10-node quadratic
tetrahedron (number of nodes: 61732, number of elements: 38239), with an approximate
global element size of less than 0.5 mm. A series of numerical calculations tested the mesh
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convergence analysis for the dowel and muff until the results satisfactorily converged. The
convergence analysis showed that the most preferred numerical models were obtained
when the inclusions were omitted along the entire length of the dowel and only used at the
point of contact between the two arms (Figure 16). In Abaqus, dowels were partitioned into
three parts: a solid shorter part, an inclusions part and a solid longer part. The mechanical
properties of PA12, as in Table 2, were used for the inclusions part. In the case of the solid
parts, mechanical properties of PA12, as in Table 2, were used, but negative Poisson’s ratios
were applied from Table 1 for each dowel type. A surface contact with a coefficient of
friction, as shown in Table 1, was applied between the dowel and muff.
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As a result, a model corresponding to the real model was obtained, which showed
differences in the diameters of the muffs and dowels. It was also decided to use a rigid
“tie”-type connection between the muffs, butt, and face members [6]. This jointing method
is equivalent to gluing a muff into a particleboard socket.

The crosshead and support were set to be rigid bodies and modeled by R3D4—four-
node 3D bilinear rigid quadrilateral element. The contact interaction property was defined
in two aspects between sphere, crosshead, and support. First, the “hard” contact was
defined for all of the normal behavior, and a friction coefficient of 0.1 was used for tangential
behavior. At the reference point (RP-T), a vertical deflection equal to 10 mm was applied.
Measurements of the force and deflection were made every 0.05 s. Computations were
performed at the Poznań Supercomputing and Networking Center (PSNC).

3. Results and Discussion
3.1. Mounting Force Results of L-Type Corner Joints

One of the hypotheses of this study was that the auxetic dowels would require less
mounting force during the assembly operations and, therefore, would be easier to assemble
compared with the non-auxetic dowels. This hypothesis was based on the fact that the
diameter of auxetic dowels decreases under the mounting forces, which is an extraordinary
property related to the negative Poisson’s ratio. Accordingly, the mounting forces of the L-
type corner joint specimens were obtained from the tests and are presented in Figure 17. At
the same time, it was recognized that, due to the apparent differences between the results,
it was not necessary to perform a statistical analysis of the significance of the differences.
Therefore, only the mean values and coefficients of variation were presented in the figure.

Looking at the assembly forces used to assemble the L-type corner joint specimens,
the corner joints assembled with auxetic dowels had lower assembly forces than the corner
joints assembled with reference dowels for all groups. The corner joint specimens connected
with reference dowels required a mounting force of 990 N, while the corner joint specimens
connected with auxetic dowels (R3A, R3B, R4A, R4B, T3A, T3B, T4A, and T4B) could be
assembled with mounting forces of 469 N, 357 N, 650 N, 624 N, 379 N, 300 N, 618 N,
and 503 N, respectively. Accordingly, it can be said that the diameters of auxetic dowels
were reduced under the mounting forces, and therefore, they could be assembled with
lower mounting forces. In other words, the results of the corner joint mounting force tests
showed that the hypothesis of the study was accepted, and the required mounting force
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of the corner joints connected with the auxetic dowels was significantly lower than the
non-auxetic dowels.
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When the mounting forces were compared according to the dowel holes and inclusion
size, increasing the hole diameter significantly increased the required mounting forces,
while increasing the inclusion size slightly decreased the required mounting forces.

3.2. Experimental Results for the Strength and Stiffness of L-Type Corner Joints

In the tension and compression tests, a failure mode was observed for all groups
in the form of dowel breakage without particleboards for all groups. Both tension and
compression tests lasted approximately 60–90 s. It can be said that the type of failure
is completely dependent on the inclusion size and the diameter of the dowel hole. This
phenomenon can be explained by the fact that the inclusions and holes reduce the cross-
sectional area of the dowels. During the tests, the normal and shear stresses occurring in
the cross-sections of the dowels under tensile or compressive forces exceeded the stress
limits of the PA12 material (MOR = 25 MPa). As a result, the dowels broke before they
were pulled out of the muff. The actual pictures of the type of failure of corner joints with
auxetic dowels and the cross-sectional areas of all auxetic dowels are shown in Figure 18.
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In the tests, the corner joints connected to the dowels with triangular inclusions gave
very low load capacity results under both loading conditions. Particularly, under the
compressive loads, these corner joints broke before they could bear any load; i.e., under a
mass of joint arms. The characteristic relationships obtained during the tests between the
applied load and deflection and the relationship between the stiffness coefficient and the
load of the tested corner joints are shown in Figure 19.
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Figure 19. Characteristic relationship between the load and deflection (a) and the relationship between
the stiffness coefficient and load (b) of the tested joints. Characteristic ranges of joint stiffness were
shown by circles: (I)—linear stiffness range, (II)—plastic stiffness range, (III)—digressive stiffness
range, (IV)—semi-constant stiffness range, and points of the joint stiffness.

Characteristic ranges of joint stiffness could be given as follows; (I)—linear stiffness
range, (II)—plastic stiffness range, (III)—digressive stiffness range, (IV)—semi-constant
stiffness range, and points of the joint stiffness: Ke—stiffness for the proportional range,
Km—stiffness for the plastic range, maximum stiffness, Kc—the beginning of the semi-
constant stiffness. The results of the load-deflection relationship and the values of the
load-bearing capacity obtained from the corner joints in the tension and compression tests
are shown in Figure 20.
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According to the load-deflection relationships, in general, the corner joints connected
with RF dowels are characterized by a large angle of curves to the horizontal axis until
the failure loads for both tests. For the joints connected with auxetic dowels, the obtained
smaller angle of curves with respect to the horizontal axis indicates the lower strength
and stiffness of these corner joints compared to the joints connected with RF dowels.
Figure 20a,b shows that the corner joints connected with auxetic dowels with rectangular
inclusions showed similar behavior to each other and to the corner joints connected to
RF dowels, but the corner joints connected to dowels with triangular inclusions showed
different behavior under both loads. It can also be observed in Figure 20a,b that curves
for the corner joints under both compression and tension loadings are smooth with no
rapid changes in the load values. In the case of the corner joints connected with rectangular
dowels, the maximum load capacity values are achieved up to approximately 3–4 mm
of deflection under tension, except for R4A (6 mm). After this point, the load capacity
values of the corner joints become lower. Under compressive loading, for the corner joints
connected to the dowels with rectangular inclusions, the deflections at which the maximum
load was reached differed according to the dowel groups. It was about 2 mm for the R4A
dowels, 6 mm for the R3B dowels, and 4 mm for both the R3A and R4B dowels.

The basic parameter for the strength of corner joints is provided by the maximum load
at the failure of specimens under tension or compression tests. According to Figure 20c,d,
in general, corner joints connected with the auxetic dowels gave much lower load capacity
values than the corner joints connected with non-auxetic dowels under both tension and
compression loads. Among the corner joints connected with auxetic dowels; the joints
connected with the R3B and R4B dowels gave the highest results for both under tension
(28.08 N, 27.07 N) and compression (9.36 N, 9.27 N), respectively. It can be seen from
the results that the dowels with rectangular inclusions gave higher load capacities than
the dowels with triangular inclusions. The corner joints connected with auxetic dowels
with triangular inclusions (T3A, T3B, T4A, T4B) gave very low values of load-bearing
capacity (5.15 N, 4.34 N, 9.55 N, 3.41 N) in terms of tension, while they could not carry
any load in compression, but T3B dowels could. Acceptable results could not be obtained
from the dowels with triangular inclusions. In the case of the corner joints connected with
rectangular inclusions (R3A, R3B, R4A, R4B), it can be said that the average load-bearing
capacity values of corner joints increased as the inclusion size increased or as the dowel hole
diameter decreased both in tension (24.09 N, 28.01 N, 17.70 N, 27.07 N) and in compression
(7.48 N, 9.36 N, 5.14 N, 9.27 N). Under the tensile or compressive loads, the dowels were
subjected to considerable normal and shear stresses, and the cross-sectional areas of these
auxetic dowels could not support the normal and shear stresses. In addition, increasing the
diameter of the dowel hole significantly reduced the cross-sectional area, and these dowels
became even weaker. The fact that the failure mode observed in the tests of these couplings
was a dowel fracture confirmed this situation. The grouping data for the corner joints
tested under tension yielded a mean load capacity of 14.92 N, while the grouping data
for the corner joints tested under compression resulted in a mean load capacity of 6.76 N.
Therefore, in general, it can be concluded that the corner joints loaded under tension have
approximately two times greater load capacities than those loaded under compression.

The results of the stiffness-load relationship and the Ke, Km, and Kc values for the joints
during tension and compression tests are given in Figure 21. As seen from Figure 21a,b,
depending on the type of loading, the stiffness-load relationships differed in terms of
mechanical behavior properties. However, when individually analyzed for both types of
loading, the corner joints connected with auxetic dowels and RF dowels showed similar
mechanical behavior characteristics in terms of stiffness-load relationships. For tension
loads, the stiffness-load relationships were initially linear to a point, and then became
curvilinear relationships, and finally continued almost flat and parallel to the horizontal
axis. In the case of compression loads, the stiffness-load relationships were also initially
linear up to the maximum stiffness values, after which a sharp decrease was observed, and
finally continued almost parallel to the horizontal axis.



Materials 2023, 16, 4547 19 of 25
Materials 2023, 16, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 21. Relationship between stiffness and load (a,b) and 𝐾 , 𝐾 , and 𝐾  (c,d) for the joints 
under tension and compression (whiskers illustrated standard deviations). 

The stiffness of the corner joints was evaluated based on the changes in the stiffness 
coefficient 𝐾 (Nm/rad) as a function of the angle of rotation 𝜑 (rad) between the joint 
arms. According to Figure 21c,d, it can be clearly seen that the corner joints connected 
with the RF dowels gave much higher stiffness values than the corner joints connected 
with auxetic dowels under both tension and compression loads. The corner joints con-
nected with auxetic dowels were found to be quite flexible compared to the corner joints 
connected with RF dowels. Among the corner joints connected with auxetic dowels, the 
corner joints connected with the R3B and R4B dowels gave the highest results under ten-
sion (599 Nm/rad, 589 Nm/rad) as well as strength, while the corner joints connected with 
R3A dowels gave the highest stiffness values under compression (470 Nm/rad). The stiff-
ness values of the dowels with rectangular inclusions gave higher stiffness values than 
the dowels with triangular inclusions. In the case of the corner joints connected with the 
dowels with rectangular inclusions (R3A, R3B, R4A, R4B), it can be said that the mean 
stiffness values of corner joints increase as the inclusion size increases, or the dowel hole 
diameter decreases (460 Nm/rad, 599 Nm/rad, 376 Nm/rad, 589 Nm/rad) under tension 
loads. For compressive loads, the stiffness values obtained were 470 Nm/rad, 266 Nm/rad, 
313 Nm/rad, and 286 Nm/rad, respectively, for the corner joints connected with the dow-
els with rectangular inclusions. The corner joints connected with auxetic dowels with tri-
angular inclusions (T3B, T4A, T4B) gave very low stiffness values (231 Nm/rad, 306 
Nm/rad, 319 Nm/rad) in tension, except for the T3A dowel (451 Nm/rad); while they could 
not carry any load in compression, except for the T3B dowel (298 Nm/rad). Overall, it 
could be said that acceptable stiffness values could not be observed for the dowels with 
triangular inclusions. For the auxetic dowels, the stiffness values were very close between 
the corner joints connected with the R3A (460 Nm/rad) and T3A (451 Nm/rad) dowels and 
the corner joints connected with the T4A (306 Nm/rad) and T4B (319 Nm/rad) dowels un-
der tensile loading. Similarly, very close stiffness values were obtained from the corner 

(a) (b) 

(c) (d) 

Figure 21. Relationship between stiffness and load (a,b) and Ke, Km, and Kc (c,d) for the joints under
tension and compression (whiskers illustrated standard deviations).

The stiffness of the corner joints was evaluated based on the changes in the stiffness
coefficient K (Nm/rad) as a function of the angle of rotation ϕ (rad) between the joint
arms. According to Figure 21c,d, it can be clearly seen that the corner joints connected with
the RF dowels gave much higher stiffness values than the corner joints connected with
auxetic dowels under both tension and compression loads. The corner joints connected
with auxetic dowels were found to be quite flexible compared to the corner joints connected
with RF dowels. Among the corner joints connected with auxetic dowels, the corner
joints connected with the R3B and R4B dowels gave the highest results under tension
(599 Nm/rad, 589 Nm/rad) as well as strength, while the corner joints connected with R3A
dowels gave the highest stiffness values under compression (470 Nm/rad). The stiffness
values of the dowels with rectangular inclusions gave higher stiffness values than the
dowels with triangular inclusions. In the case of the corner joints connected with the
dowels with rectangular inclusions (R3A, R3B, R4A, R4B), it can be said that the mean
stiffness values of corner joints increase as the inclusion size increases, or the dowel hole
diameter decreases (460 Nm/rad, 599 Nm/rad, 376 Nm/rad, 589 Nm/rad) under tension
loads. For compressive loads, the stiffness values obtained were 470 Nm/rad, 266 Nm/rad,
313 Nm/rad, and 286 Nm/rad, respectively, for the corner joints connected with the
dowels with rectangular inclusions. The corner joints connected with auxetic dowels
with triangular inclusions (T3B, T4A, T4B) gave very low stiffness values (231 Nm/rad,
306 Nm/rad, 319 Nm/rad) in tension, except for the T3A dowel (451 Nm/rad); while they
could not carry any load in compression, except for the T3B dowel (298 Nm/rad). Overall,
it could be said that acceptable stiffness values could not be observed for the dowels
with triangular inclusions. For the auxetic dowels, the stiffness values were very close
between the corner joints connected with the R3A (460 Nm/rad) and T3A (451 Nm/rad)
dowels and the corner joints connected with the T4A (306 Nm/rad) and T4B (319 Nm/rad)
dowels under tensile loading. Similarly, very close stiffness values were obtained from
the corner joints connected with R4B (286 Nm/rad) and T4B (298 Nm/rad) dowels under
compressive loads.

3.3. Comparison of the Experimental Results, Numerical Analyses, and Theoretical Calculations

To provide a practical evaluation of how well the maximum loads and deflections
obtained from numerical analyses (FEM) agree with the observed maximum loads and
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deflection results from the actual tests, comparisons of the observed test results with the
FEM results are shown in Table 5. This table comparatively summarizes the maximum
failure loads and deflections experimentally and numerically obtained, and the stiffness
values with their coefficients of variations.

Table 5. Differences between the maximum failure loads and deflections for the results of experiments
and numerical analyses, and stiffness values for tension and compression tests.

Dowel Type
Experimental Results FEM Results Difference for

Loads
(%)

Difference for
Deflections

(%)
Load
(N)

Deflection
(mm)

Stiffness (K)
(Nm/rad)

Load
(N)

Deflection
(mm)

Tension

R3A 24.09 (9.42) 4.36 460 (11.45) 24.13 4.19 −0.17 4.01
R3B 28.01 (13.11) 4.00 599 (9.29) 28.14 4.30 −0.46 −7.53
R4A 17.70 (8.05) 6.10 376 (14.12) 17.79 6.10 −0.49 0.00
R4B 27.07 (9.20) 3.24 589 (17.00) 27.08 3.24 −0.06 0.00
T3A 5.15 (5.15) 3.61 451 (13.63) 5.15 3.60 0.00 0.28
T3B 4.34 (5.51) 3.03 231 (7.42) 3.8 3.11 12.34 −2.64
T4A 9.55 (3.65) 4.00 306 (24.9) 8.96 4.74 6.13 −18.50
T4B 3.41 (11.46) 3.36 319 (12.65) 2.28 3.72 33.15 −10.71
RF 72.35 (10.31) 7.23 1975 (10.43) 73.99 6.99 −2.27 3.32

Compression

R3A 7.48 (3.37) 3.96 470 (4.61) 7.54 3.69 −0.76 6.82
R3B 9.36 (0.60) 6.27 266 (10.07) 8.308 6.56 11.24 −4.63
R4A 5.14 (4.85) 2.06 313 (4.43) 5.45 2.10 −6.13 −1.94
R4B 9.27 (3.35) 5.90 286 (5.09) 8.72 4.69 5.88 20.51
T3A 0.00 0.00 0 1.97 0.10 NA NA
T3B 2.54 (4.45) 0.36 298 (17.35) 2.55 0.45 −0.39 −25.00
T4A 0.00 0.00 0 3.8 5.03 NA NA
T4B 0.00 0.00 0 1.49 2.83 NA NA
RF 31.74 (8.71) 11.66 722 (10.84) 28.57 8.74 9.98 25.04

Values in parentheses are the coefficients of variations (COV), NA: Not applicable.

Table 5 shows that, with the exception of a few dowel groups, the experimental and
numerical values are in good agreement for both tension and compression tests. In general,
it can be seen that the load and deflection values of the corner joints connected to the
dowels with rectangular inclusions can be better predicted than the corner joints connected
to the dowels with triangular inclusions.

The numerical and experimental load-deflection relationships of corner joints con-
nected with RF and auxetic dowels under tension and compression loads are shown in
Figure 22 for each group. The comparisons shown are not for average values, but for
individual selected connections from each group. In this way, it was ensured that the
numerical model corresponds to a specific dowel and a specific muff. For this reason, the
strength values discussed will differ from the mean values.

In the case of the corner joints connected with RF dowels (Figure 22a,b), the numerical
(FEM) results presented very close mechanical behavior and strength values to the actual
test results of the corner joints according to the load-deflection relationships. In general,
for the auxetic dowel-connected corner joints, it can be said that the FEM results also gave
reasonable estimates for the mechanical behavior properties of the corner joints.

It can be seen from the results that for the corner joints connected to the dowels with
rectangular inclusions (Figure 22c), the differences between the FEM and actual test results
were very small for R3B and R4B dowels, while they were relatively larger for R3A and R4A
dowels under tension. Accordingly, it was observed that the reliability of the numerical
analyses decreased with the increase in the inclusion size for the dowels with rectangular
inclusions under tension. However, in the case of the compression tests (Figure 22d), as can
be seen, the FEM and actual test results are quite consistent for all types of auxetic dowels
with rectangular inclusions.
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Figure 22. Relationship between load and deflection for the corner joints connected with RF and
auxetic dowels under tension (a,c,e) and compression (b,d,f).

Regarding the corner joints connected with auxetic dowels with triangular inclusions
(T3A, T3B, T4B), very close mechanical behavior and strength values were obtained in
terms of the FEM and actual test results, except for the T4A dowels (Figure 22e) under
tension loads. In the actual compression tests (Figure 22f), the corner joints connected
with the auxetic dowels with triangular inclusions failed before they could carry the load,
but the T3B dowels did. Therefore, only FEM results were available for the corner joints
connected to these (T3A, T4A, T4B) dowels. However, for the corner joints connected
with T3B dowels, the FEM and actual test results were consistent in terms of mechanical
behavior and strength values.

The failure models and normal stress distribution in the auxetic dowels with rectangu-
lar and triangular inclusions, respectively, under tension and compression loads are shown
in Figure 23.
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inclusions under tension (T, a) and compression (C, b). Red triangles indicate the location of
maximum stresses.

According to the numerical analyses (Figure 23), it can be clearly seen that the max-
imum stresses are concentrated near the inclusions and increase for both rectangular
or triangular inclusions of the auxetic dowels during tensile and compressive loadings.
It should be noted that the above figure shows the fact that ABAQUS has removed all
damaged elements in the calculation. The highest stress values were obtained in dowels
with rectangular inclusions. As shown in Table 4 and Figure 18, this type of dowel is
characterized by a higher cross-sectional area and moment of inertia than dowels with
triangular inclusions. The maximum stresses were observed in dowels R3A (27.67 MPa),
R3B (27.67 MPa), R4A (24.35 MPa), and R4B (25.91 MPa), which carried the highest loads
in the tension tests (Figure 23a). In the compression test, the stresses were lower for R3A
(5.13 MPa), R3B (5.63 MPa), R4A (2.67 MPa), and R4B (4.27 MPa). This tendency is em-
phasized in numerous scientific works and mainly reflects the lower bending moments
in the case of compressed joints [15,39–41]. For dowels with triangular inclusions, the
mean normal stress also depends on the cross-sectional area and bending moments. Under
tension, (Figure 23b) normal stress was equal to T3A (7.35 MPa), T3BA (7.48 MPa), T4A
(9.04 MPa), and T4B (7.81 MPa), respectively. In the compression test, the stresses were
generally lower, about 1–2 MPa. Based on these results, it can be observed that the dowels
with rectangular inclusions yielded higher stresses than the dowels with triangular inclu-
sions, and all groups of auxetic dowels have higher stress values under tension than under
compression loads.

Trends in the results of numerical calculations also confirm the results of the analytical
analysis. Figure 24 shows the relationships between the theoretically calculated mean
normal stress values and the deflections of the corner joints. For dowels with rectangular
inclusions (Figure 24a), the maximum stresses in tension are 25.9 MPa (R3A), 24.6 MPa
(R3B), 19.9 MPa (R4A), and 25.2 MPa (R4B), and in compression (Figure 24b) they are
4.58 MPa (R3A), 4.88 MPa (R3B), 2.9 MPa (R4A), and 4.84 MPa (R4B), respectively. Com-
paring these values with the results of the corresponding numerical calculations for R3A,
R3B, R4A, and R4B, it can be seen that the numerical values are higher in tension by 6.4%,
11.1%, 18.3%, and 2.7%, and in compression by 10.7%, 13.3%, −8.6%, and −13.3% (minus
means a decreasing tendency). For dowels with triangular inclusions, only the tensile test
results were compared. The analytical value of normal stress was 7.8 MPa for T3A-type
dowels and 8.09 MPa (T3B), 13.05 MPa (T4A), and 4.1 MPa (T4B) for other dowels. A
comparison of these values with the results of corresponding numerical calculations shows
that numerical values are lower by 6.1%, 8.2%, 44.4%, and −47.5%, respectively (minus
means growing tendency).
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As a result of the comparisons, it was observed that there is consistency between the
mean stress values obtained as a result of theoretical calculations and the numerical analysis.
In addition, the good compatibility of the obtained results of the numerical calculations
with the experimental results confirms a sufficient correct calibration of the numeric model.
In addition, the compatibility of numerical calculations with analytical results also indicates
that the analytical model is sufficiently accurate.

4. Conclusions

The analysis of the test results showed that the mounting force for assembling the
corner joints connected with the auxetic dowels was significantly lower than that for the
corner joints connected with non-auxetic dowels. Thus, furniture users can assemble
furniture more easily and without using tools. However, based on the experimental and
numerical calculations, the strength and stiffness of the corner joints connected with the
reference dowels were significantly higher than those connected with the auxetic dowels.
Furthermore, theoretical and numerical analyses showed that the dowels used to connect
the corner joints were subjected to a considerable amount of normal and shear stresses
under both tension and compression loads. The failure modes of dowel fracture obtained
from the tests also confirmed this phenomenon. Therefore, from a research perspective,
new structures of dowels or tubes should be developed that will have higher cross-sections,
auxetic properties, and greater bending strength. However, an important observation is
that corner joints connected with the dowels with rectangular inclusions gave much better
results than the dowels with triangular inclusions. Acceptable results could not be obtained
from the dowels with triangular inclusions. For the corner joints connected to dowels
with rectangular inclusions, the strength and stiffness of the corner joints increased as the
size of the inclusions increased, or as the diameter of the dowel hole decreased. These
suggestions may inspire further research on the modification of rectangular inclusions. In
conclusion, it could be said that the auxetic dowels with rectangular inclusions should be
improved before being used as an alternative fastener for traditional furniture dowels in the
engineering design approach. Therefore, it is suggested that, in future studies, the auxetic
dowels should be produced with more robust materials and/or different 3D printing or
injection technologies should be tried for the production of the dowels.
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