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Abstract: Among the various ceramic substrate materials, Si3N4 ceramics have demonstrated high
thermal conductivity, good thermal shock resistance, and excellent corrosion resistance. As a result,
they are well-suited for semiconductor substrates in high-power and harsh conditions encountered in
automobiles, high-speed rail, aerospace, and wind power. In this work, Si3N4 ceramics with various
ratios of α-Si3N4 and β-Si3N4 in raw powder form were prepared by spark plasma sintering (SPS)
at 1650 ◦C for 30 min under 30 MPa. When the content of β-Si3N4 was lower than 20%, with the
increase in β-Si3N4 content, the ceramic grain size changed gradually from 1.5 µm to 1 µm and finally
resulted in 2 µm mixed grains. However, As the content of β-Si3N4 seed crystal increased from 20%
to 50%, with the increase in β-Si3N4 content, the ceramic grain size changed gradually from 1 µm
and 2 µm to 1.5 µm. Therefore, when the content of β-Si3N4 in the raw powder is 20%, the sintered
ceramics exhibited a double-peak structure distribution and the best overall performance with a
density of 97.5%, fracture toughness of 12.1 MPa·m1/2, and a Vickers hardness of 14.5 GPa. The
results of this study are expected to provide a new way of studying the fracture toughness of silicon
nitride ceramic substrates.

Keywords: ceramic substrate; fracture toughness; silicon nitride; β-Si3N4 crystal seed

1. Introduction

The development of third-generation semiconductors has induced a huge demand
for ceramic substrates for power-integrated circuits [1–4]. Conventionally, Al2O3 has been
utilized as the substrate in power-integrated circuits due to its cost-effectiveness. However,
Al2O3 has a low toughness (3–5 MPa·m1/2) and thermal conductivity (18–24 W·m−1·K−1)
and cannot effectively satisfy the requirements of high-power demand in energy and other
emerging fields [5]. AlN is another ceramic substrate material that shows high thermal
conductivity (150–270 W·m−1·K−1), but it has the drawback of low fracture toughness
(typically 3–3.5 MPa·m1/2). When used in harsh working conditions of thermal shock and
impact, such as those encountered in automobiles and wind power, AlN substrates are
typically used in combination with plastic shock absorbers, which affects device minia-
turization [6]. Due to their high theoretical thermal conductivity (320 W·m−1·K−1) and
good fracture toughness (~10 MPa·m1/2) [7], Si3N4 ceramics have been regarded as the
most promising alternatives for Al2O3 and AlN. However, the performances of Si3N4
ceramics currently available are far from theoretical optimization, which has limited their
further applications.
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The performance of Si3N4 ceramics is affected by various factors, among which their
microstructure is a prominent factor [8,9]. The microstructure has been shown to di-
rectly influence the hardness and fracture toughness of Si3N4 [10–14]. At present, many
researchers increase the fracture toughness of silicon nitride ceramics by adding rein-
forcements [15–17]. Guo et al. [18] prepared silicon nitride ceramics with high fracture
toughness (9.7 MPa·m1/2) by taking Si3N4 as raw material and adding Lu2O3 as the re-
inforcing phase. However, adding the reinforcing phase cannot fundamentally solve the
problem of low fracture toughness and high cost of silicon nitride ceramics.

Since the microstructure of Si3N4 ceramics is generally complex and uncontrolled,
the effects of the phase composition of raw materials on the performances of Si3N4 have
been thoroughly investigated [19,20]. Becher et al. [21] prepared Si3N4 ceramics with high
fracture toughness (~10 MPa·m1/2) by sintering at 1850 ◦C under 1 MPa N2 atmosphere
for 6 h, with α-Si3N4 and 2 vol% β-Si3N4 as raw materials. In order to ascertain the effects
of β-Si3N4 seed crystal on the performances of Si3N4 ceramics, Peillon et al. [22] prepared
Si3N4 ceramics with 2 vol% and 5 vol% of β-Si3N4 seed crystal and found that Si3N4
ceramics with 5 vol% of β-Si3N4 exhibited improved fracture toughness (8.4 MPa·m1/2). In
their study, the fracture toughness increased by 30% as the sintering time increased by 3 h.
Lee et al. [23] reported the synthesis of nanoscale α-Si3N4 with grain size distributions with
two peaks when sintering was performed with the inclusion of β-Si3N4 (0%, 50%, 100%).
The addition of β-Si3N4 led to improved performance of Si3N4 ceramics, where the sample
with 50% of β-Si3N4 seed crystal exhibited the highest fracture toughness (7.9 MPa·m1/2).
However, there is a need to further investigate the optimization of the β-Si3N4 seed crystal
content since the high costs of nanoscale β-Si3N4 are not suitable for industrial applications.

Spark plasma sintering (SPS) or plasma-activated sintering, is a novel rapid hot-
pressing sintering technique where particles are sintered using a pulse current, where
plasma is generated by particle discharge under pulse current. Owing to its unique heating
pattern, spark plasma can achieve rapid heating, which reduces the sintering time. Due
to this feature, samples can be prepared with ultra-fine grain sizes [24,25]. Liu et al. [26]
reported synthesis of Ybα-SiAlON with high density (3.42 g/cm3) and high fracture tough-
ness (6.2 MPa·m1/2) by spark plasma sintering (1600 ◦C, 2 MPa, 5 min) with 5 wt% of
Ybα-SiAlON as the seed crystal. Zamula et al. [27] prepared high-performance Si3N4 by
spark plasma sintering (1800 ◦C, 20 min), wherein a complete transition from α-Si3N4 to
β-Si3N4 was observed. The compactness of the prepared Si3N4 exceeded 98%, and its
fracture toughness reached ~5.7 MPa·m1/2.

In this study, Si3N4 was prepared by SPS of α-Si3N4 (1650 ◦C, 30 MPa, 30 min) using a
uniform-sized seed crystal of β-Si3N4 seed crystal. The microstructure of Si3N4 samples
with different contents of β-Si3N4 seed crystal was investigated along with its correlation
with hardness and fracture toughness. Insights obtained from this study can facilitate the
design and preparation of Si3N4 with improved stability and effectiveness for applications
in ceramic substrates.

2. Experimental
2.1. Materials

Mixtures of Si3N4 and sintering aid were used in this study. Two types of silicon nitride
powders, 1# (α-Si3N4-rich powder) and 2# (β-Si3N4-rich powder) were used in the exper-
iment. The powders had a nominal purity of over 90% and were purchased from Hebei
Badu Metal Materials Co., Ltd. (Shijiazhuang, China). Nanoscale Y2O3 (purity > 99.99%),
which served as the sintering aid, was purchased from Shanghai Yaoyi Alloy Materi-
als Co., Ltd. (Shanghai, China). Al2O3 (0.2–0.4 µm, purity > 99.99%) was purchased
from Hebei Yigui Welding Materials Co., Ltd. (Xingtai, China). PEG 400 (polyethy-
lene glycol, purity > 99.99%), PAA (polyacrylic acid, purity > 99.99%), and ammonium
citrate (purity > 99.99%) were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China).
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2.2. Method

A mixture comprising 20 g of 1# and 2# Si3N4 was introduced into a beaker as indicated
in Table 1. Subsequently, 360 µL of a solution containing PEG 400, ammonium citrate
(dispersant), and 600 µL of PAA (adhesive) were added. To facilitate the sintering process,
a total of 1.4 g of Y2O3 and 0.6 g of Al2O3 were introduced. The solution’s pH of 9.8 was
modified and subsequently introduced into a polyurethane ball milling tank, containing
zirconia grinding balls in a ball-to-powder weight ratio of 3:1. The wet-mixing process was
carried out using pure water as the medium, and ball milling for 24 h. The compositions
of various samples are provided in Table 1. Following ball milling, the slurry underwent
vacuum drying at 120 ◦C for 24 h. After that, an 80-mesh sieve was utilized to obtain the
Si3N4 composite precursor. The precursor was then subjected to pre-sintering at 800 ◦C for
2 h in a tube furnace, under an atmosphere of N2 (OTF- 1200X, Hefei Kejing Materials Co.,
Ltd., China). After pre-sintering, the product was again sieved through an 80-mesh sieve to
acquire Si3N4 composite particles. Finally, the as-prepared Si3N4 composite was inserted
into a graphite mold and subjected to Spark Plasma Sintering (SPS) at 1650 ◦C for 30 min
while being subjected to a pressure of 30 MPa (SPS-5T-5-III, Shanghai Huachen Technology
Co., Ltd., Shanghai, China). As shown in Figure 1.

Table 1. Compositions of different Si3N4 samples.

Sample Fraction of 1# Fraction of 2#

SN0 100% 0%
SN1 90% 10%
SN2 80% 20%
SN3 70% 30%
SN4 50% 50%
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Figure 1. Schematic diagram of experimental process.

2.3. Measurement

The sample density was measured by using the Archimedes method. The samples
were analyzed using a Bruker D8 X-ray diffractometer equipped with an energy dispersive
spectrometer (XRD, Karlsruhe, Germany) and a field-emission scanning electron micro-
scope (SEM, FEI-Nova Nano 450, Hillsboro, OR, USA) to ascertain their phase compositions
and fracture morphologies, respectively. The hardness of polished Si3N4 samples was tested
using a Vickers hardness meter (HVS-50, Shanghai Wanheng Precision Instrument Co.,
Ltd., Shanghai, China) under a pressure of 1000 N for 15 s. Each sample was exposed to
five replicates and the average value was taken as the final result. The fracture toughness of
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Si3N4 (KIC) was determined by using the Vickers hardness indentation method. The crack
lengths of the samples were also determined. The fracture toughness can be calculated by:

KIC = 0.075 × P × c
3
2 (1)

where KIC is the fracture toughness (kgf·m−3/2), P is the load (kgf), and c is the diagonal
length of the indentation crack (mm). 1 kgf·m−3/2 = 0.31 MPa·m1/2.

3. Results and Discussion
3.1. Phase Composition of Seed Crystal and Microstructure of Samples

XRD analyses were utilized for investigating the phase composition of the raw pow-
ders, as shown in Figure 2. The results indicate that both 1# and 2# samples were composed
of hexagonal α-Si3N4 (JCPDS No.74-0554, a = b = 7.765 nm, c = 5.622 nm, α = β = 120◦,
γ = 90◦) and hexagonal β-Si3N4 (JCPDS No.72-1308, a = b = 7.608 nm, c = 2.911 nm,
α = β = 120◦, γ = 90◦). No other phases were observed. Among them, the main phase of 1#
Si3N4 powder was α-Si3N4, while the main phase of 2# Si3N4 powder was β-Si3N4.
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Figure 3 shows SEM images of raw powder samples of α-rich Si3N4 and β-rich Si3N4.
Raw powder samples of α-rich Si3N4 comprised irregularly shaped particles that were
observed to aggregate (size = 0.5–1 µm), as shown in Figure 3a. Combined with the analysis
of XRD patterns (Figure 2), it can be concluded that the observed rod-like powder was
β-Si3N4. Raw powder samples of β-rich Si3N4 also comprised irregularly shaped particles
with aggregation (size = 0.5–1 µm), as shown in Figure 3b. Overall, the two powders
had consistent shapes and sizes, and the particles were found to be well dispersed with
negligible agglomeration.

3.2. Effects of Seed Crystal Composition on Phase Composition and Microstructure of
Ceramic Samples

XRD patterns of samples with different contents of β-Si3N4 seed crystal (SN0~SN4)
prepared by SPS at 1100 ◦C exhibited characteristic peaks corresponding to hexagonal
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α-Si3N4 (JCPDS No.74-0554, a = b = 7.765 nm, c = 5.622 nm, α = β = 120◦, γ = 90◦) and
hexagonal β-Si3N4 (JCPDS No.72-1308, a = b = 7.608 nm, c = 2.911 nm, α = β = 120◦,
γ = 90◦), as shown in Figure 4.
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Figure 5 illustrates the grain size changes in SN0~SN4 ceramic samples prepared by
SPS at 1100 ◦C. In the cases with few amounts of β-Si3N4 seeds, e.g., sample SN0 (Figure 5a),
the grain size is relatively small; in the cases with a few amounts of β-Si3N4, e.g., sample
SN1~SN3 (Figure 5b–d), some grains become smaller while the other grains grew, the grain
size variation in SN4 samples is small.
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XRD patterns of samples with different contents of β-Si3N4 seed crystal (SN0~SN4)
prepared by SPS at 1650 ◦C exhibited characteristic peaks corresponding to hexagonal
β-Si3N4 (JCPDS No.72-1308) and hexagonal Y4SiAlO8N (JCPDS No.48-1630), as shown in
Figure 6. No characteristic peaks of Al2O3 and Y2O3 sintering aids were detected. Complete
phase transition of α-Si3N4 into β-Si3N4 and transition of Al2O3 and Y2O3 into Y4SiAlO8N
solid solution were observed in the composite powder. Since the bond lengths of Si-N
and Al-O were 0.174 nm and 0.175 nm, respectively, it is speculated that the Al-O bond
may replace the Si-N bond during the sintering process. This resulted in the generation
of Y4SiAlO8N solid solution via reaction with Y2O3, suggesting that Y, Al, and O were all
present in the lattice structure of β-Si3N4 giving rise to an interfacial phase. This speculation
is consistent with the observations from earlier reports [28,29].
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The grain size distribution of Si3N4 significantly impacts its fracture toughness.
Figure 7 illustrates the fracture morphologies of SN0-SN4 samples prepared by SPS at
1650 ◦C. As can be observed in Figure 7a, the SN0 sample comprised matrix grains (with
~1.4 µm granular grains), large grains (rod-like grains with a length of about 2 µm, width
of about 1 µm), and abundant pores (~2 µm), a uniform distribution of large and small
grains was observed. The SN1 sample comprised matrix grains (~1.3 µm granular grains),
large grains (rod-like grains with a length of about 2 µm, width of about 1 µm), and a
small number of pores (~1 µm), as shown in Figure 7b, the size distribution exhibited two
peaks, where again the large and small grains were uniformly distributed. The SN2 sample
comprised matrix grains (with ~1.3 µm granular grains and a small amount of rod-like
grains with a length of about 2.2 µm, width of about 1 µm), large grains (rod-like grains
with a length of about 6 µm, width of about 2.3 µm), and a small number of pores (~1 µm),
as shown in Figure 7c, the size distribution exhibited two peaks, herein, the large and small
grains were uniformly distributed in an interlocked structure. The SN3 sample comprised
matrix grains (with ~1.3 µm granular grains and a small amount of rod-like grains with
a length of about 1 µm, width of about 0.5 µm), large grains (rod-like grains (length of
about 8 µm, width of about 2.2 µm)), and a small number of pores (~1 µm), as shown in
Figure 7d, similar to the case of SN2, large and small grains were uniformly distributed in
an interlocked structure. The SN4 sample comprised matrix grains (with granular grains
(~1 µm) and rod-like grains with a length of about 1 µm, width of about 0.5 µm), large
grains (with granular grains (~1.5 µm) and rod-like grains with a length of about 1.5 µm,
width of about 0.5 µm), and a small number of pores (~1 µm), as shown in Figure 5e, similar
to the other samples, the large and small grains were uniformly distributed. Additionally,
sample failure was dominated by intergranular fracture.

With the increase in β-Si3N4 seed content, the grain distribution gradually changed
from a single peak distribution (Figure 7a) to a bimodal distribution (Figure 7c). When
excess β-Si3N4 seeds were introduced, the grain distribution changed from a bimodal
distribution (Figure 7c) back to a unimodal distribution (Figure 7e).

The elemental composition of the SN0–SN4 samples was verified through the utiliza-
tion of an EDX analysis, as shown in Table 2. The Table demonstrates a uniform distribution
of Si, N, Al, Y, and O elements within the silicon nitride matrix. The proportion of each
element in SN0~SN4 ceramic samples is similar.
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Table 2. SEM-EDX relative content of various elements in silicon nitride ceramics prepared by SPS
at 1650 ◦C.

Sample Si (%) N (%) O (%) Y (%) Al (%)

SN0 46.3 43.7 6.6 1.9 1.5
SN1 47.2 43.8 6.2 1.7 1.1
SN2 46.1 43.8 6.7 1.8 1.6
SN3 46.7 43.5 6.4 2 1.4
SN4 46.9 43.2 6.6 1.7 1.6

3.3. Effect of β-Si3N4 Seed on the Sintering and Grain Growth of Silicon Nitride Ceramics

During the liquid phase sintering process, α-Si3N4 in the original powder gradually
dissolves into the liquid phase aid and diffuses. Its reprecipitation mainly occurs in two
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ways. The first is through uniform nucleation and growth, where small-sized β-Si3N4
particles are formed. The second involves non-uniform nucleation and growth in the
high-energy crystal plane (rod-shaped axis) of β-Si3N4 seeds, which causes the β-Si3N4
seeds to grow into rod-shaped crystals.

The influence of crystal seed phase composition on the microstructure of ceramics is
shown in Figure 7. As shown in Figure 8a, when 0% β-Si3N4 crystal seeds are introduced,
α-Si3N4 mainly transforms into β-Si3N4 following a uniform nucleation growth mode,
which results in the formation of uniform grains with fine grain size (Figure 7a).
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Figure 8. Representative figure of sintering mechanism of silicon nitride ceramics: (a) 0% of β-Si3N4

seed crystal; (b) 20% of β-Si3N4 seed crystal; (c) 50% of β-Si3N4 seed crystal. (“early stage” refers to
the original powder before sintering; “medium term” refers to the microstructure change of silicon
nitride ceramics sintered at 1100 ◦C; “later period” refers to the microstructure change of silicon
nitride ceramics sintered at 1650 ◦C).

As shown in Figure 8b, when an appropriate amount (20%) of β-Si3N4 seeds is in-
troduced, during the dissolution precipitation process, α-Si3N4 exhibits both uniform
nucleation and growth as well as non-uniform nucleation. According to the Ostwald ripen-
ing theory [30,31], β-Si3N4 particles in close contact with α-Si3N4 precipitate on the surface
of the original β-Si3N4 seeds, leading to the formation of large grains. At the same time,
a portion of α-Si3N4 precipitates and grows uniformly, forming an interlocking structure
with the generated large extension grains (Figure 7c).

As shown in Figure 8c, when an excess amount (50%) of β-Si3N4 crystal seeds is
introduced, non-uniform nucleation of β-Si3N4 occurs during the dissolution precipitation
process. Due to the introduction of excessive β-Si3N4 crystal seeds into the original powder,
the β-Si3N4 crystal seeds come into contact with each other, resulting in a decrease in α-
Si3N4 on the surface of the β-Si3N4 crystal seeds. The large particles formed by precipitation
on the surface of the β-Si3N4 crystal seeds are reduced, which is similar in size to the β-
Si3N4 particles formed by uniform nucleation and growth, resulting in a more uniform size
of grain growth (Figure 7e).
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3.4. Effects of Seed Crystal Composition on Sample Performances

Figure 9 shows the trends of relative density of SN0~SN4 prepared by SPS at 1650 ◦C.
As the content of β-Si3N4 seed crystal increased from 0% to 20%, the relative density of
Si3N4 samples increased from 96.7% to 97.9%. This was suggestive of the fact that grain size
distribution with two peaks favors high compactness of ceramics (see fracture morphology,
Figure 7). As the content of β-Si3N4 seed crystal increased from 20% to 50%, the relative
density of Si3N4 samples decreased from 97.9% to 96.5%, which may be attributed to the
degrading grain size distribution with two peaks (see fracture morphology, Figure 7).
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Figure 9. Effects of content of β-Si3N4 seed crystal on relative density of Si3N4 prepared by SPS at
1650 ◦C.

Figure 10 shows the Vickers hardness of SN0–SN4 samples prepared by SPS at 1650 ◦C.
As the content of β-Si3N4 seed crystal was increased from 0% to 20%, the Vickers hardness
of Si3N4 samples increased from 13.8 GPa to 14.5 GPa, emphasizing the significance of
two peaks in the grain size distribution (see fracture morphology, Figure 7). When the
content of β-Si3N4 seed crystal was increased from 20% to 50%, the Vickers hardness of
Si3N4 samples decreased from 14.5 GPa to 13.4 GPa, which was attributed to degradation
in the grain size distribution with two peaks and grain interlocking structure (see fracture
morphology, Figure 7). Hence, it can be concluded that the two peaks observed in the grain
size distribution have a major influence on the mechanical properties of the samples (see
fracture morphology, Figure 4). Among all the samples tested, the SN2 sample exhibited
the highest Vickers hardness (14.5 GPa).

Figure 11 shows the fracture toughness of SN0–SN4 samples prepared by SPS at
1650 ◦C. As the content of β-Si3N4 seed crystal was increased from 0% to 20%, the fracture
toughness of Si3N4 samples increased from 9.2 MPa·m1/2 to 12.1 MPa·m1/2. This was
ascribed to the emergence of intergranular fracture (see fracture morphology, Figure 7).
As the content of β-Si3N4 seed crystal was increased from 20% to 50%, the fracture
toughness of Si3N4 samples decreased from 12.1 MPa·m1/2 to 9.5 MPa·m1/2 (see frac-
ture morphology, Figure 7). The decrease in Vickers hardness may be related to the
degradation in the grain size distribution with two peaks and grain interlocking structure.
Among all samples examined, the SN2 sample exhibited the highest fracture toughness
(12.1 MPa·m1/2). This was attributed to its unique grain size distribution with two peaks
and grain interlocking structure.
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at 1650 ◦C.

In the SN0 sample, due to the presence of small and equiaxed β-Si3N4 grains, the
crack deflection during fracturing was low, which resulted in low fracture toughness. In
the SN1 sample, the β-Si3N4 grains consisted of small and equiaxed rod-like grains, which
also led to low fracture toughness. However, for the SN2 sample, the grain size distribution
exhibited two peaks, where the large and small grains formed an interlocking structure.
This feature resulted in low porosity and imparted the sample with high relative density
(97.9%) and the highest Vickers hardness (14.5 GPa) among all the samples, as shown in
Figure 7. Herein, the heterogeneous precipitation of α-Si3N4 on the surface of β-Si3N4 seed
crystals led to the formation of large, rod-like grains, which activated grain bridging and
extrusion, and ultimately resulted in the self-toughening of Si3N4 samples. The fracture
toughness of the SN2 sample reached 12.1 MPa·m1/2, as shown in Figure 10. With excess
β-Si3N4 seed crystals (30–50%), the original β-Si3N4 seed crystals had consistent sizes with
β-Si3N4 particles generated by homogeneous phase transition of α-Si3N4, resulting in low
crack deflection during fracturing, which drastically reduced the fracture toughness.
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4. Conclusions

Si3N4 ceramics with different contents of β-Si3N4 seed crystal were prepared using the
spark plasma sintering method, and the correlation of the β-Si3N4 content with hardness
and fracture toughness was investigated. The grain growth in Si3N4 was found to be
controlled by the dissolution-precipitation process. All the as-prepared samples comprised
small particles (diameter about 1 µm) and large particles (about 2 µm). Additionally,
the large and small grains were observed to be uniformly distributed. Results showed
that a suitable content of (≤20%) β-Si3N4 seed crystal could induce the phase transition
from α-Si3N4 to rod-like β-Si3N4, which resulted in the grain size distribution exhibiting
two peaks. At this optimized β-Si3N4 seed crystal content of 20%, the best overall me-
chanical performance was achieved. At higher content of β-Si3N4 seed crystal (>50%), the
β-Si3N4 particles showed a tendency to be mutually constrained during sintering, with
uniform size distribution and lower performance. Among samples prepared by the spark
plasma sintering method (1650 ◦C, 30 MPa, 30 min), the sample with a β-Si3N4 seed crystal
content of 20% exhibited the best overall performance with a density of 97.9%, hardness of
14.5 GPa, and fracture toughness of 12.1 MPa·m1/2.

The optimized Si3N4 in this work (using 20% β-Si3N4 as seed crystal) presents the
highest toughness but the lowest hardness among previous works [32–35] as shown in
Table 3. This work may provide a potential application of ceramics substrate in high-
speed rail and new energy vehicles. Further verification of the actual use of silicon nitride
ceramics by researchers in the field of automotive development is needed.

Table 3. Comparison of fracture toughness with other silicon nitride ceramics.

Raw Material Preparation Method Relative
Density (%)

Hardness
(GPa)

Toughness
(MPa·m1/2) Reference

80% α-Si3N4 and 20% β-Si3N4 SPS, 1650 ◦C, 30 MPa, 30 min 97.9 14.5 12.1 this paper
α-Si3N4 HP, 1620 ◦C, 30 MPa, 3 h 92.1 12.5 6.02 [32]

90% α-Si3N4 and 10% SiC
ceramic composites HP, 1680 ◦C, 34 MPa, 4 h 97.9 16.4 8.2 [33]

70% α-Si3N4 and 30% ZrO2
ceramic composites SPS, 1600 ◦C, 30 MPa, 10 min 99 13.2 7.1 [34]

90% α-Si3N4 and 10% Ti(C, N)
ceramic composites SPS, 1700 ◦C, 50 MPa, 6 min 99.7 15.6 8.3 [35]

Note: SPS (spark plasma sintering); HP (Hot pressing sintering).
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