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Abstract: This study investigates the influence of longitudinal through voids on vault lining. Firstly,
a loading test was carried out on a local void model, and the CDP model was used for numerical
verification. It was found that the damage to the lining caused by a longitudinal through void was
primarily located at the void boundary. On the basis of these findings, an overall model of the vault’s
through void was established using the CDP model. The effects of the void on the circumferential
stress, vertical deformation, axial force, and bending moment of the lining surface were analyzed, and
the damage characteristics of the vault’s through void lining were studied. The results indicated that
the through void of the vault caused circumferential tensile stress on the lining surface of the void
boundary, while the compressive stress of the vault increased significantly, resulting in a relatively
uplifted vault. Furthermore, the axial force within the void range decreased, and the local positive
bending moment at the void boundary increased significantly. The impact of the void increased
gradually with the height of the void. If the height of the longitudinal through void is large, the inner
surface of the lining at the void boundary will crack longitudinally, and the vault will be at risk of
falling blocks or even being crushed.

Keywords: tunnel lining; longitudinal through void; numerical investigation; steel plate strengthening

1. Introduction

China has built a large number of highway tunnels in the past decade. By the end of
2019, China had built 19,067 highway tunnels. The total length of highway tunnels has
reached 18966.6 km and is growing at a rate of 10% annually [1]. During the process of
tunnel construction, the lining may develop a variety of defects or diseases due to various
reasons [2–6]. One of the more common problems is voids on the vault [7].

The secondary lining is completed by pouring concrete onsite in the tunnel. The
concrete is poured layer by layer, from bottom to top. However, challenges such as trapped
gas within the formwork, limited concrete flowability, and excessive steel mesh density
can give rise to empty spaces within the lining, particularly in the vault section [8]. The
presence of voids causes a disconnection between the initial support and the secondary
lining, resulting in an inability to distribute stress effectively. This directly impacts the
stress conditions of the lining, preventing it from being uniformly loaded [9,10]. When
there are voids in the lining, the stress concentration occurs near the edge of the voids,
which increases the adverse tensile stress. If the void range is extensive and the void
runs longitudinally through the lining, it can significantly impact the safety of the lining
structure. If voids are not treated promptly, these voids may cause lining chipping, and
even structural failure [11,12].

Numerical simulation is an effective method for studying engineering problems [13,14].
Numerous studies have shown that voids can have a significant effect on the internal forces
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of the lining [15–18]. Ding et al. [19] carried a 1:5 scaled-down model test to study the effect
of voids on the lining. It was found that the void significantly reduced the bearing capacity
of the lining, as well as increased the local deformation, and significant lining cracking
showed at the void location. Zhang et al. [20] verified the effect of voids on lining in
Ding’s test [19] by building a numerical model of CDP. The results showed that the bearing
capacity of the lining decreased in an ‘s’-shaped curve with the increase in void. Through
elastic–plastic finite element analysis, Wang et al. [21] found that voids can cause significant
changes in the axial force and bending moment of the lining, and even lead to reversal of
the bending moment, resulting in cracks or even failure of the lining. He et al. [22] made a
void lining model on a 1:30 small scale, and they found that, when there is a void in the
vault, the arch shoulder and arch knee are most likely to have compression damage, while
the inner surface of the void lining is prone to cracking by tensile stress. Yasuda et al. [23]
analyzed the effects of voids on the lining from the perspective of analytical calculations,
and the results showed that voids could change the lining from being axial-force-dominated
to bending-moment-dominated, resulting in the generation of adverse tensile stresses.

Research indicates that the addition of strengthening structures to the inner surface of
the lining is an efficient solution to address the issue of vault voids. Currently, the tech-
niques for addressing voids in the lining can be categorized into three groups: applying a
high-strength fiber layer [24,25], affixing a steel plate [26–30], and constructing an umbrella
arch [31,32]. Adding steel plates has significant advantages in dealing with lining void
disease in operating tunnels. On the one hand, the strength of the steel plate is better than
that of a fiber layer. On the other hand, it is faster and more convenient to install than an
umbrella arch. The construction process has less impact on traffic and is not restricted by
tunnel auxiliary facilities such as lights and fans.

In this research article, the impact of voids caused by insufficient thickness of the
secondary lining was analyzed mainly through numerical simulation. The simulation was
performed using the concrete damage plasticity (CDP) model by ABAQUS. Firstly, the local
lining model with vault voids was made for the loading test, and the failure characteristics
of the void lining were preliminarily analyzed. The corresponding CDP numerical model
was established to verify the accuracy and reliability of the CDP constitutive model in
simulating the void lining. Then, the whole lining model was established to study the
impact on the vault through voids in the lining. On this basis, steel plate strengthening
was used to treat the void model, verifying the effectiveness of steel plate strengthening in
treating lining void disease.

2. Local Experiment and Numerical Verification

To explore the damage mechanism of voids, a static loading experiment was performed
on the partially voided specimens of the vault. As shown in Figure 1, double hydraulic
actuators were used for loading, and I-beams that were matching the curvature of the
upper surface of the specimen were used for load distribution. The test revealed that the
majority of the damage was localized around the boundary of the void (Figure 2). In order
to verify these test results, a numerical model was established by the concrete damage
plasticity model (CDP). The numerical results verified the test results, and they also proved
the feasibility of the CDP simulation method in the study of void lining damage.

The aforementioned tests and numerical simulations indicate that the structural dam-
age caused by voids primarily concentrated at the void boundary. However, the limitations
of local specimens were evident: (1) the boundary of the local model was challenging to
define accurately; (2) it was difficult to match the loading entirely with the actual situation,
and loading symmetry was hard to guarantee; (3) partial support was prone to damage,
ultimately affecting the loading. These issues impact the accuracy of the research results.
To overcome these limitations, we established whole lining models with vault voids based
on the CDP constitutive model to study the effect of voiding at different heights.
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3. Numerical Model Setups
3.1. Geometry and FE Mesh

Figure 3 displays the dimensions of the tunnel lining. The initial support was 28 cm,
and the thickness of secondary lining H was 60 cm. The numerical model (Figure 4) was
80 m long, 80 m high, and 36 m thick, including three secondary lining pouring cycles. The
secondary lining of the middle mold was a voided lining, while the front and rear linings
were complete linings.

As shown in Figure 5, the model was simulated by the C3D8R solid element. The
initial support adopted two element layers, and the surface grid size was 15 cm × 14 cm.
The secondary lining adopted four element layers; the surface grid size was 30 cm × 15 cm
and the vault lining elements were densified within the 110◦ central angle. A sensitivity
analysis was conducted on the lining units in the densified region. Four different sizes
of lining surface units were considered: 10 cm × 15 cm, 15 cm × 15 cm, 30 cm × 15 cm,
and 50 cm × 15 cm. The results revealed challenges in achieving convergence with a unit
size of 10 cm × 15 cm, while a significant deviation in the computed results was observed
with a unit size of 50 cm × 15 cm. To ensure both convergence and accuracy, a grid size of
15 cm × 15 cm was ultimately chosen for simulating the lining. The lining element nodes
were aligned with the surrounding rock element nodes to make the calculation results
more accurate.
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Figure 5. Element scheme.

There were five working conditions in this study, including one standard lining model
and four kinds of void lining models. The heights of the lining void were set as H/4,
H/2, 5H/8, and 3H/4, respectively. The detailed information of each working condition is
shown in Table 1.
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Table 1. Detailed information of the specimens.

Type Code Name Void Depth h

Standard lining V0 N/A

Void lining

V(1/4) H/4

V(1/2) H/2

V(5/8) 5H/8

V(3/4) 3H/4

3.2. Material

The initial support adopted C25 concrete, and the secondary lining was made of C30
concrete. The elastic modulus was 3 × 104 MPa. The Poisson’s ratio was 0.2, and the
density was 2850 kg/m3. The detailed material parameters are shown in Table 2. The CDP
model was used to simulate the upper half of the void lining, while the remainder of the
lining was made of elastic material.

Table 2. Detailed information of the material parameters.

Density (kg·m−3) Elastic Modulus
(GPa) Poisson’s Ratio Internal Friction

Angle (◦)
Cohesion

(kPa)

Surrounding rock 2400 1.5 0.3 30 700
Initial support 2400 28 0.2

Secondary lining 2850 30 0.2

The concrete damage plasticity (CDP) method is a constitutive model used to simulate
the behavior of concrete under both plastic deformation and damage accumulation. It
combines the concepts of plasticity and damage mechanics to capture the complex response
of concrete under various loading conditions. The CDP method considers the evolution of
plastic strains, damage variables, and their mutual interactions, providing a comprehensive
framework to predict the structural response and failure of concrete structures. As shown
in Figure 6, the plastic damage parameters used in this article were calculated using the
following method: firstly, the stress–strain curve of concrete according to the Code for
the Design of Concrete Structures (GB 50010-2010, 2015 Revised Edition) was obtained,
and then the damage factor based on the parameter values in the stress–strain curve was
calculated. The damage factor was calculated using the Najar damage theory [33].
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3.3. Loading and Boundary Conditions

The bottom surface of the model was fixed, and the normal displacement was limited
around it. The load depth was 100 m in total and consisted of two parts; one part was
buried at a depth of 40 m above the lining, and the other part had a uniform surface load of
1.44 MPa applied on the top surface, which was equivalent to a depth of 60 m.

4. Results
4.1. Circumferential Stress on the Lower Surface

Figure 7a,b show the circumferential stress on the lower surface of the lining when
there were no voids and a 3H/4-high void, respectively. The lining without the void was
in a state of compression as a whole, while the stress state of the void lining changed
significantly. Voids led to a tensile zone at the void boundary on the lower surface of the
lining, representing an adverse force state. It can be seen that the critical section was at the
position of 6 m in the longitudinal direction.

The circumferential stress of the critical sections under each working condition is
shown in Figure 8. From the figure, it is evident that the lining without the void was in a
state of compression, and it was relatively uniform. The compressive stress within the vault
section was 7.91 MPa. However, voids caused significant changes in the circumferential
stress. When the void height was H/4, the compressive stress at the void boundary
decreased to 4.22 MPa, and there was a trend toward tensile stress. The compressive stress
within the vault section was 15.47 MPa, which increased by 95.57% compared with the lining
without a void. When the void height was H/2, tensile stress occurred at the void boundary.
The circumferential span of the tensile stress was 119.46 cm, and the maximum tensile stress
was 1.277 MPa, but it did not reach the concrete tensile strength. The compressive stress of
the vault further increased to 20.56 MPa, which was an increase of 159.92% compared with
the lining without a void. When the void height was expanded to 5H/8, the maximum
circumferential tensile stress was 1.214 MPa, and the circumferential tensile stress span
expanded to 213.3 cm. The compressive stress of the vault further increased to 23.69 MPa,
which was an increase of 199.49% compared with the lining without a void. In contrast
with the H/2 void height, the maximum circumferential tensile stress of the void at 5H/8
did not improve much. This indicates that the compressive stress exceeded the compressive
strength here, and that the concrete stiffness degraded. Similarly, when the void height was
2 H/3, the maximum tensile stress at the void boundary was 1.62 MPa, and the range of the
tensile stress further increased to 444.18 cm. The compressive stress at the vault reduced
to 15.9 MPa, indicating that the vault stress exceeded the compressive strength, and the
stiffness degraded.
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4.2. Vertical Deformation

Figure 9a,b show the vertical deformation of the lower surface when there was no
void and when the void height was 3H/4, respectively. As depicted in the figure, the
influence of the void on the vertical deformation mainly concentrated in the void range,
which manifested as an upward uplift of the lining. Moreover, constrained by the adjacent
two mold linings, the void lining also showed characteristics of being high in the middle
and low on both sides in the longitudinal direction. The critical sections were at the position
of 6 m in the longitudinal and circumferential directions.
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To analyze the variations in the vertical deformation under different void heights, the
illustrations in Figure 10a,b demonstrate the vertical deformation of the critical sections.
The vault area was identified as the location from the circumferential perspective where
the presence of the void had the most significant impact on the vertical deformation. When
there was no void in the lining, the vertical deformation of the vault was −16.9 mm. When
there was a void with a height of H/4, the vertical deformation of the vault changed to
−15.3 mm, which was 1.6 mm higher than that of the non-void lining. As the height of
the void increased, there was a gradual rise in the relative uplift observed at the vault
position. When the void height was 3H/4, the vault bulge was the most obvious, and the
vertical deformation of the vault was only −0.39 mm, which was 16.51 mm higher than
that without a void. From the longitudinal view of the vault, the vertical deformation
showed the characteristics of being “high in the middle and low on both sides”. The vertical
deformation near the construction joint was hardly affected by the void, but the bulge in
the middle increased with the increase in the void.
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4.3. Axial Force

Figure 11 depicts the axial force variation curve of the upper half arch of the void
lining, with the negative value representing compression. On the whole, the voids led
to a decrease in axial force, and the decrease range increased as the height of the void
increased. The axial force in the void range was less than that in the nonvoid part, which
was more obvious when the void height was large. Figure 12a,b show the axial force at the
vault and at the void boundary, respectively. The figure illustrates a gradual decrease in
the axial force with an increase in void height. At the vault position, the axial force was
7.223 × 108 N with no void, and the axial force decreased by 8.56% and 23.3% when the
void heights were H/4 and H/2, respectively. When the void height increased to 5H/8 and
2H/3, the axial force at vault reduced by 32.23% and 48%, respectively, compared with that
without the void.
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4.4. Bending Moment

Figure 13 shows the distribution of the bending moment along the circumferential
critical section, with the tension on the lower surface being positive. As can be seen from
the figure, the voids caused significant changes in the bending moment distribution, but
the influence was mainly concentrated in the 80◦ range on both sides of the vault. In the
absence of voids, the positive bending moment at the vault reached its maximum and
gradually diminished toward both sides. Once the void occurred, the bending moment at
the vault decreased rapidly and turned to the upper side tension. At the same time, the
bending moment at the void boundary also increased rapidly. Figure 14 depicts the bending
moment at the vault and void boundary. Only when there was no void was the bending
moment of the vault positive; that is, the lower part was in tension. When the lining was
voided, the bending moment at the vault became negative; that is, the lower part was
compressed and the upper part was tensioned, which also corresponded to the compression
damage on the lower surface of the vault. At the void boundary, the bending moments
were positive; that is, the lower surface was in tension. With the increase in the void height,
the bending moment gradually increased from 1.661 × 106 N·m to 5.887 × 106 N·m, which
also corresponded to the tensile damage on the lower surface of the void boundary.
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Figure 14. Bending moment at special positions: (a) vault; (b) void boundary.

4.5. Damage

Figure 15 shows the results from tensile damage of the lining under various void
heights. The lining without any voids had no obvious damage and is not listed. When
there was a void in the vault, the damage showed a certain law with the increase in void
height. When the void height was H/4 and H/2, the tensile damage of the secondary lining
concentrated at the void boundary of the upper surface, the damage degree was small,
and the length was short. When the void height increased to 5H/8, the damage on the
upper surface of the secondary lining disappeared, and obvious cracking damage began
to appear on the lower surface. It developed longitudinally along the void boundary, but
the range was small, and there was only one along the left and right boundaries. When
the void height continued to increase to 3H/4, the number of longitudinal cracks on the
lower surface increased significantly, and each void boundary increased to five cracks,
which indicated that the range of the tensile zone increased significantly, and the degree
of damage intensified. However, at the position close to the construction joint, the tensile
damage was limited due to the restraint of the front and rear lining.
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In terms of compression damage, as shown in Figure 16, when the height of the
void was H/4, noticeable compression damage was observed on the outer surface of both
sides of the void boundary, but the damage value was only 0.11, which is small. When
the void height was H/2, the damage degree at the void boundary of the outer surface
expanded to about 0.17, and damage began to occur at the midspan of the lower surface.
As the void height continued to increase, the compression damage state of the lining
changed significantly. Compressive damage on the inner surface primarily occurred under
conditions with larger voids. When the void height reached 5H/8, the central region of the
inner surface exhibited damaged areas, with a maximum damage value of 0.26. However,
when the void height reached 3H/4, the maximum damage value at the central position
of the inner surface increased to 0.84, indicating significant compressive damage in the
lining at the vault region. This suggests the potential risk of concrete spalling or even
structural collapse.
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5. Steel Plate Strengthening Model for Void Lining

Steel plate strengthening is a common method used to treat void defects of linings.
This strengthening approach involves utilizing chemical anchor bolts and epoxy adhesive
to stick the steel plate onto the inner surface of the void lining. The steel plate and the
lining work cooperatively to reduce the stress concentration due to voids, which limits
the development of lining damage. On the basis of the simulation of the void lining, a
simulation verification of steel plate strengthening was carried out under the working
condition of a void height of 3H/4. The mechanism of steel plate strengthening was
analyzed, which provided a basis for the design of a steel plate strengthening scheme.

5.1. Simulation of the Steel Plates Strengthening to Void Lining

Figure 17 shows the steel plate strengthening scheme of a tunnel. According to the
simulation of the void lining, the stress concentration caused by the void was near the void
boundary, and there was no large stress located far from the void boundary. Therefore,
the void and the vicinity of the void boundary were the main positions that were to
be strengthened.
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Figure 17. Steel plate strengthening site.

According to the simulated stress concentration area, Figure 18 illustrates the scheme
for steel plate strengthening. The steel plate was 10 m long, 1 m wide, and 1 cm thick. The
steel plate and the lining surface were bonded with epoxy adhesive and reinforced with
M24 chemical anchor bolts.
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Figure 18. Steel plate strengthening scheme.

The steel plate strengthening scheme was applied to the void 3H/4 lining to study
its strengthening effect. In the simulation model shown in Figure 19, the M24 chemical
anchor bolts were simulated by beam element, with a circular section and a diameter of
24 mm. The bolt elements were embedded into the interior of the lining elements through
embedded region constraints; the steel plate was simulated with a shell unit with the unit
thickness set to 10 mm. The steel adopted a bilinear constitutive law. The elastic modulus
was 210 GPa, and the yield stress was 235 Mpa. The contact between the steel plate and the
lining was set to cohesive contact. The normal strength was 30 Mpa, the shear strength was
20 Mpa, and the total plastic deformation was 0.008 mm.
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Figure 19. Model setup.

5.2. Evaluation of Strengthening Effect

Figure 20 shows the comparison between the damage of the strengthened lining and
the unstrengthened model. It can be seen from the figure that, after steel plate strengthening
was applied, tensile damage at the void boundary was completely eliminated. These
findings indicate that implementing steel plate reinforcement could effectively mitigate
damage to the lining resulting from voids.
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Figure 20. Damage comparison of steel plate strengthening: (a) unstrengthened lining; (b) strength-
ened lining.

The internal force and deformation of the lining model strengthened with steel plates
are shown in Figure 21. The maximum circumferential stress on the inner surface of the
strengthened lining was 0.86 MPa, which was 47.24% lower compared to the unreinforced
lining. The range in positive stresses at the void boundary of the strengthened lining
significantly reduced from 2.22 m to 0.614 m, indicating that the tensile damage at this
location was effectively improved. The concrete at the vault was obviously compressed, and
the vault lining of the unstrengthened model yielded and showed compression damage;
however, there was no damage to the vault of the strengthened lining, and the concrete
was not plastic yielding. The vault’s vertical deformation in the strengthened lining was
reduced from 0.39 mm to 6.53 mm, and the deformation difference between the vault and
the void boundary reduced from 14.11 mm to 8.58 mm. The overall deformation of the
strengthened lining was more coordinated. These findings indicate that employing steel
plate strengthening can effectively mitigate uplift of the vault caused by the presence of
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voids. Due to the fact that the steel plate did not significantly change the cross-sectional
size, there was no significant difference in the bending moment between the strengthened
and unstrengthened linings. The maximum bending moment at the degassing boundary
was reduced from 6.94× 106 N·m to 6.48× 106 N·m, a reduction of only 6.63%. However,
the axial force of the void lining strengthened with steel plates decreased overall, with the
axial force at the vault decreasing from 3.75 × 107 N to 2.65 × 107 N.
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6. Conclusions

In this study, the damage characteristics of voids were explored through local model
tests, and the numerical model of a test block was established to verify the effectiveness
and reliability of the CDP constitutive model in simulating lining voids. On this basis, the
whole lining model that used the CDP constitutive model was established. The specific
conclusions are as follows:

1. The impact of the through void on the lining stress was mainly concentrated in
the lining of the void part and at the void boundary. This shows that the tensile
stress range and cracks of the vault through void were concentrated on the void
boundary, mainly along the longitudinal crack; moreover, the number of cracks
gradually increased with increasing void height. The damage caused by compressive
stress was mainly concentrated in the vault, which may carry the risk of falling blocks
or even crushing.

2. The influence of the through void on the vertical deformation of the lining was mainly
manifested in the relative bulge of the lining inside the void zone. With the progressive
increase in void height, the midspan bulge value increased gradually. The vertical
deformation change caused by the void mainly concentrated in the local range of 40◦

of the vault. Longitudinally, constrained by the front and rear linings, the vault bulge
was maximum at the middle of the lining, and gradually diminished toward both
sides; there was no bulge at the construction joint.
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3. Through voids led to decreasing lining axial force. A greater void height led to a
greater reduction in the axial force. At the vault, the axial force of the lining without
a void was 7.223 × 108 N, while the axial force of the 3H/4 void lining decreased to
3.753 × 108 N, which was a 48% reduction. At the same void height, the influence
of through void on the axial force mainly concentrated in the void range, and the
axial force of the lining in the void part was significantly lower than that in the
non-void part.

4. The influence of through void on the bending moment was large, mainly concentrated
in the range of 80◦ of the arch crown. When the void occurred, the positive bending
moment at the void boundary increased significantly, which led to greater tensile
stress on the lower surface. The vault bending moment became negative, indicating
that the lower surface of the vault was under compression.

5. The tensile stress on the lower surface of the steel plate strengthening void lining sig-
nificantly decreased in the reinforcement area. The maximum circumferential tensile
stress at the void boundary reduced from 1.63 MPa to 0.86 MPa, which was 47.24%
less than the unstrengthened void lining. The compressive yielding and damage of the
vault disappeared. The uncoordinated deformation at the vault was also improved,
and the deformation difference between the vault and the void boundary was reduced
from 14.11 mm to 8.58 mm, making the lining deformation more uniform.
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