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Pavement materials such as asphalt mixtures, granular aggregates and soils exhibit
complex material properties and engineering performance under external loading and envi-
ronmental conditions. For instance, the asphalt mixture shows highly nonlinear viscoelastic
and viscoplastic properties at high temperatures, and it presents fatigue cracking damage
and fracture properties at intermediate or low temperatures. The granular aggregate materi-
als show an obvious anisotropic and stress-dependent resilient modulus. Their permanent
deformation is fundamentally determined by stress levels, moisture and the number of
load cycles. Constitutive models based on mechanics theories have been the kernel of
performance prediction of pavement infrastructures and materials. They lay down a solid
foundation for material selection, design and pavement structural evaluation, and mainte-
nance decisions. Advances in mechanics modeling and the associated experimental testing
for pavement infrastructures and construction materials are emerging constantly, such as
nonlinear viscoelasticity, viscoplasticity, fracture and damage mechanics models. Mean-
while, various numerical modeling technologies are being developed and implemented to
solve the multiscale and multi-physical equations and models for the pavement structures
and materials. Examples include finite element, discrete element and micromechanics
or molecular dynamics simulations at different dimensions and scales. These are being
applied to both existing traditional pavement materials and novel or emerging materials
such as recycled, modified or alternative materials. All the aforementioned advances have
been leading to a large number of new studies and discoveries in the relevant areas.

This Special Issue provides a unique platform to collect and present these novel studies
and new discoveries in the areas of mechanics, numerical modeling and the experimen-
tal testing of pavement infrastructures and materials. It includes the studies of various
pavement materials such as asphalt concretes, granular materials, soils, recycled materials
and additives. In addition, different testing and modeling technologies including discrete
element modelling (DEM), computed tomography (CT) and molecular dynamics (MD)
simulation are included.

A review paper summarizes the fatigue models of cement concrete pavements based
on different testing scales [1]. Recommendations in terms of the data source, stress calcula-
tion method and regression analysis process were proposed for the improvement of current
fatigue models for the cement concrete pavements.

Four papers focus on the characterization of different asphalt binders (e.g., polymer-
modified, warm mix recycled and wax-modified binders) via experiments and molecular
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dynamics simulations [2–5]. The Dynamic Shear Rheometer (DSR)- and Bending Beam
Rheometer (BBR)-based rheological tests are the mainstream methods to evaluate the high-,
intermediate- and low-temperature performance of the asphalt binders. Fourier Transform
Infrared (FTIR) Spectroscopy is widely used in terms of the chemical characterization of the
functional groups in the asphalt binders. The Multiple Steep Creep and Recovery (MSCR)
test and Linear Amplitude Sweep (LAS) test are used to investigate the effects of lignin and
carbon fiber on the physical and mechanical properties’ changes in asphalt mastics [6].

Two papers focus on the evaluation of the asphalt pavement skid resistance. One
investigated the effect of sand accumulation on the skid resistance of asphalt pavements
using the British Pendulum Number (BPN) test on two types of asphalt mixtures [7].
Another one presented a finite element model of radial tire–asphalt pavement interaction
to investigate the pavement skid resistance under partial tire aquaplane conditions [8]. The
results showed that the vertical contact force between the tire and pavement is greatly
reduced because of the partial aquaplane state.

Three papers utilize digital image processing (DIP) technology for either the perfor-
mance test or meso-structure reconstruction of asphalt mixtures. The relationship between
the rutting damage and the air void change was investigated via a 2D image technology [9].
An adaptive image processing method for CT images of asphalt mixtures was proposed
to improve the accuracy of the meso-structure reconstruction of asphalt mixtures [10]. An
improved procedure of the meso-structure reconstruction of asphalt mixtures consider-
ing the similarity of aggregate phase geometry was proposed, and the results indicated
that the proposed approach can maintain the 3D spatial distribution features and contour
characteristics of asphalt mixtures’ mesostructured [11]. One paper used the hexagonal
close-packed (HCP) structure to establish the discrete model of asphalt mixtures for bet-
ter simulating the shear failure [12]. The embedded sensor packaging of the rollpave
pavements was optimized via experimental and numerical investigations [13]. This paper
improved the compatibility of the embedded sensors and road materials in a prefabricated
pavement structure, so the real-time in situ monitoring of the pavement response will be
more accurate.

Six papers used laboratory tests and numerical simulations to assess the performance
of different road materials and structures, including emulsified cold recycling asphalt
mixtures, self-healing asphalt binder, reactive powder concrete and bridge deck pavement.
The findings provide in-depth understandings in terms of various road materials key
performance [14–19].

An efficient approach to obtain the parameters of the Prony series was proposed
for the asphalt mixtures [20]. This method can simultaneously determine the retardation
and relaxation spectra, which is more effective than the current approach. A fractional
viscoelastic and damage constitutive relation of asphalt mixtures was proposed to charac-
terize the three-stage creep process [21]. The model prediction results agreed well with the
laboratory uniaxial compressive creep tests with different stress levels and temperatures.
An improved mechanistic–empirical creep model considering the stress dependence and
moisture sensitivity was proposed for the unsaturated soft and stabilized soils [22]. This
developed model can predict the soil creep deformation under arbitrary water content and
stress levels.
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