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Abstract: Strengthening Mg alloys with rare earth elements has been a research focus for several
decades. To minimize the usage of rare earth elements while enhancing mechanical properties,
we adopted the strategy of alloying with multiple rare earth elements, namely Gd, Y, Nd, and
Sm. Additionally, to promote the precipitation of basal precipitate, Ag and Zn doping was also
induced. Thus, we designed a new cast Mg-2Gd-2Y-2Nd-2Sm-1Ag-1Zn-0.5Zr (wt.%) alloy. The
microstructure of the alloy and its relevance to mechanical properties in various heat treatment
conditions were investigated. After undergoing a heat treatment process, the alloy demonstrated
exceptional mechanical properties, with a yield strength of 228 MPa and an ultimate tensile strength
of 330 MPa achieved through peak-aging for 72 h at 200 ◦C. The excellent tensile properties are due
to the synergistic effect of basal γ” precipitate and prismatic β′ precipitate. In its as-cast state, its
primary mode of fracture is inter-granular, whereas in the solid-solution and peak-aging conditions,
the predominant mode of fracture is a mixture of trans-granular and inter-granular fractures.

Keywords: Mg alloy; multiple rare earth elements alloying; Ag and Zn doping; microstructure;
tensile properties

1. Introduction

Mg alloys with low weight have been prosperous for several decades in the industries
of aerospace, aircraft, automotives, etc., due to their high specific strength and fuel effi-
ciency [1–3]. Nevertheless, the limited strength of the material restricts its extensive usage
in high-end applications. To address this issue, considerable attention has been directed
towards enhancing the mechanical properties of Mg alloys [4–8]. Research has shown that
incorporating rare earth (RE) elements through alloying is a viable approach to strengthen
Mg alloys [9–11].

Mg–RE alloys have high mechanical properties, which are mainly achieved via heat
treatment (solution + aging, T6) to obtain a large number of nano-scale prismatic precipi-
tates (β” or β′) [12,13]. Among them, Mg-Gd alloy has become a research focus because
the precipitation strengthening effect of it is the most significant [14]. However, only when
the Gd content in a binary Mg-Gd alloy is beyond 15% can it show a good precipitation
strengthening effect, and the addition of excessive Gd leads to increased cost and density.
Most recently, research has indicated that the Mg-Gd-RE ternary alloy obtained by replacing
part of the Gd with an appropriate amount of RE would exhibit a better age-hardening
response. For example, precipitation strengthening has enabled Mg-8Gd-3Nd [15] and
Mg-7Gd-5Y [16] alloys to achieve ultimate tensile strengths (UTS) of up to 271 MPa and
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258 MPa, respectively, following peak-aging. Additionally, by alloying with double RE
elements, Y and Nd, properly instead of Gd, an ultra-high UTS of 293 MPa was achieved in
a Mg-8Gd-2Nd-1Y alloy after peak-aging treatment [17]. The decrease in the total amount
of RE is due to the fact that the addition of multiple RE elements can reduce their solubility
in Mg, thereby forming a supersaturated solid solution with less RE content [7,10]. Inspired
by this idea, we designed a multiple RE-strengthened, Mg-2Gd-2Y-2Nd-2Sm-based Mg–RE
alloy to obtain prismatic precipitates with less RE (8 wt.%) and thereby reduce the density
as well as the cost of the alloy.

In addition, the basal precipitate can be formed by adding non-RE alloying ele-
ments such as Ag and Zn to a Mg alloy [18–20]. For instance, Ag doping in Mg-Gd and
Mg-Gd-Y alloys can form fine and dense flake basal precipitates in an α-Mg matrix, and the
formation of these basal precipitates does not significantly affect the formation of prismatic
precipitates [21–23]. Moreover, it was reported that Ag doping would strengthen Mg-Nd
alloys significantly [24–26] and promote the age-hardening response of Mg-Gd [27–29]
and Mg-Y-Zn alloys [30]. If both prismatic and basal precipitate can be induced into the
matrix to form a closed structure so that the strengthening effects of each precipitate are
superimposed, it will be an effective strengthening strategy. Additionally, Zr is usually
used as a refiner for cast Mg alloys.

Taking all of these factors into account, in this investigation, in order to develop
high performance Mg alloys, we designed a Mg-2Gd-2Y-2Nd-2Sm-1Ag-1Zn-0.5Zr alloy. By
alloying with multiple RE elements, the precipitation strengthening effect of the alloy with a
lower total RE was ensured. Though alloying with Zn and Ag, basal precipitate was induced
into the matrix, and it cooperated with the prismatic precipitate to obtain a closed structure
and enhance the precipitation strengthening effect. Furthermore, we investigated how
varying heat treatment conditions affected the microstructure and mechanical properties of
the alloy. This research lays a foundation for the advancement of high-performance Mg
alloys. The designed alloy is expected to be used in aerospace, automobile manufacturing,
and other fields where low weight and high strength are urgently needed.

2. Materials and Methods

The raw materials used include pure Mg, Zn, and Ag (purity > 99.9% at.%),
Mg-30Gd, Mg-30Y, Mg-20Sm, and Mg-30Nd master alloys. A steel crucible was used
during melting in a well-type resistance furnace (SG2, Harbin Chengyan Heat treatment
equipment Manufacturing Co., Ltd., Harbin, China), and the melting process was protected
by adding RJ2 covering agent. The melt was stirred, left to rest, slagged, and poured into
a preheated steel mold at 200 ◦C (mold cavity volume 90 × 10 × 60 mm3) and raised
to a melting temperature of 750 ◦C to obtain as-cast samples. The as-cast samples were
solute-treated at 510 ◦C for 12 h and then aged at 200 ◦C for different periods of time
ranging from 2 h to 132 h.

Phase composition was analyzed using an X-ray diffractometer (XRD) (X’Pert PRO,
PANalytical B.V., Almelo, The Netherlands) with Cu Kα. The scanning rate was 8◦/min,
and the scanning range was 10◦~90◦. The microstructure was characterized using an optical
microscope (OM) (XD30M, Beijing Instant Hengye Technology Co., Ltd., Beijing, China), a
scanning electron microscope (SEM) (Apreo C, Thermo Fisher Scientific Inc., St. Bend, OR,
USA) equipped with an energy-dispersive X-ray spectrometer (EDS), and a transmission
electron microscope (TEM) (JEM2100, JEOL, Beijing, China). The samples for OM and SEM
characterizations were first ground with silicon carbide papers until smooth and polished
with diamond polishing paste. The polished samples were then etched with picric acid
solution (35 mL ethanol, 10 mL deionized water, 4 mL acetic acid, and 5 g picric acid). The
TEM sample was prepared by grinding it to a thickness of ~50 µm, blanked into a small
wafer with a diameter of 3 mm, and then ion-milled with 5 kV of ion gun energy and at a
4◦ milling angle.

The room temperature tensile tests were conducted using a universal testing
machine (MTS E44, MTS Systems Co., Eden Prairie, MN, USA). The tensile rate
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was 1 mm/min. The dog-bone-shaped tensile specimens had a gauge dimension of
15 mm (l) ×3 mm (w) × 2 mm (t). The tensile fracture morphology was characterized via
SEM. To guarantee the precision of the tensile test, five samples were assessed, and the
final result was determined by calculating the average value.

The average grain size of the alloy was measured using the Nano Measurer 1.2.5
software according to the line interception method described in the ASTM E112-96
standards [31,32]. Using Photoshop 2018, the volume fractions of each phase were deter-
mined based on the measured area (in pixels) of the SEM images.

3. Results and Analysis
3.1. Microstructure of As-Cast Alloy

The microstructure of the as-cast alloy sample is illustrated in Figure 1, exhibiting
a relatively homogeneous structure composed mainly of an α-Mg matrix and a reticular
eutectic phase. The average grain size of the alloy was 40 ± 3 µm, its distribution is shown
in Figure 1c, and the content of the reticular eutectic phase was about 6.8%, which was
mainly distributed along the grain boundary. Additionally, granular phases with a diameter
of about 0.5 µm could be found in the grains. The EDS mapping of the as-cast alloy is
presented in Figure 2. As can be seen from the figure, the eutectic compound was enriched
with RE elements and also contained some Ag and Zn elements. The EDS results for each
phase are presented in Table 1, which indicates that the granular phase corresponded to Zr
nuclear, which served as heterogeneous nuclei for the α-Mg matrix during solidification.
The XRD patterns presented in Figure 3 offer insights into the phase composition of the
as-cast alloy. Except for the Mg matrix, only peaks corresponding to the Mg3RE phase
could be detected, which indicates that the reticular phase was a Mg3RE-type phase. The
Zr nuclear usually cannot be detected via XRD due to its low volume fraction.
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Table 1. EDS analysis results of second phase in as-cast alloy (at.%).

Phase Mg Gd Y Sm Nd Zn Ag Zr

Reticular 91.86 1.15 1.69 0.79 1.94 1.41 1.16 --
Granular 90.61 -- -- -- -- -- -- 9.39
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3.2. Solution Treatment

In order to specify the temperature for solution treatment, the DSC test was conducted,
and the resulting curve is shown in Figure 4. There are two endothermic peaks in the DSC
curve, which are located at 518 ◦C and 628 ◦C, respectively. The peak at 518 ◦C corresponds
to the temperature at which the reticular phase dissolved. Therefore, the temperature
for solution treatment was determined to be 510 ◦C to prevent overheating. Figure 5
illustrates the microstructure of the alloy after undergoing solution treatment. Compared
with the as-cast alloy, the average grain size of the solution-treated alloy increased slightly to
43 ± 3 µm. Additionally, a small amount of the second phase was still retained at the
grain boundary, and the fraction was about 2.1%. As presented in Table 2, the EDS results
indicate that the undissolved phase mainly contained Mg, RE (Gd, Y, Nd, and Sm), Ag, and
Zn elements, which is similar to the reticular phase in the as-cast alloy. However, as shown
in the XRD pattern (Figure 2), the diffraction peaks corresponding to undissolved phases
are clearly different from the Mg3RE phase. By comparison, the corresponding phase
of the extra diffraction peak may be a Mg41Nd5-type phase. In addition, after solution
treatment, a small amount of aggregated acicular phase precipitated in the grains. The EDS
analysis (Table 2) shows that this phase was enriched in Zn and Zr elements, indicating the
presence of a Zn-Zr phase, which is common in solid-solution Mg–RE alloys with high Zn
content [33]. The undissolved phase was characterized via TEM, as illustrated in Figure 6,
and the corresponding selected area election diffraction (SAED) pattern taken along [100]
its axis is presented in the inset. The results revealed that the undissolved phase was
the Mg41Nd5-type phase, which was characterized by a tetragonal structure with lattice
parameters of a = 15.01 Å and c = 10.21 Å. The reason for the phase evolution is that the
solubility of Nd element in Mg is the lowest [34]; in addition, the radii of Nd atoms are
larger than those of other RE elements; thus, the diffusion rate in the solid-solution process
was lower than that of other RE elements [35]. Therefore, during the solid-solution process,
the volume of Nd dissolved into the matrix was the least among the RE elements, and thus,
it undissolved compounds dominated by Nd were formed.
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Table 2. EDS analysis results of second phase in the solid-solution alloy (at.%).

Phase Mg Gd Y Sm Nd Zn Ag Zr

Undissolved 86.53 1.17 0.98 2.21 5.73 1.85 1.55 --
Zr-Zn 53.5 -- -- -- -- 18.5 -- 28.0
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3.3. Age Hardening Behavior and Precipitate

Considering the precipitation strengthening effect and the time to reach peak aging,
we chose 200 ◦C as the aging temperature. Figure 7 exhibits the age-hardening curve of
the alloy at a temperature of 200 ◦C. It can be seen from the figure that the alloy had an
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exceptional age-hardening effect. The hardness of the alloy after solid-solution treatment
was 80 HV; its peak hardness, 118 HV, was achieved after aging for 72 h, and the hardness
decreased slowly after peak aging. The results show that the Mg–RE alloy with multiple
RE elements in this study had a good age-hardening effect. The peak hardness increased
by ~50% of that of the solution-treated alloy. In addition, the incorporation of Ag and Zn
has been found to improve aging kinetics and peak hardness significantly in comparison to
other Mg–RE-based alloys that do not contain Ag and Zn [36,37].
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To investigate precipitation behavior during aging, the microstructure of the alloy
in peak-aging condition was characterized using TEM. Figure 8 shows the TEM images
taken along the [1120]Mg zone axis to characterize the precipitate in the peak-aged alloy. As
shown in Figure 8a, a large amount of fine precipitates was precipitated along the (0002)Mg
plane in the matrix. The length of the precipitated phase was 20~40 nm, and the thickness
was less than 1 nm. In the corresponding SAED inset in Figure 8a, diffusion streaks parallel
to the [0001]Mg direction at the (0000)Mg and {0110}Mg positions (marked by arrows) can
be detected, which are a typical feature of basal γ” precipitates [23,38]. Additionally, extra
weak diffraction spots at 1/4(0110)Mg, 2/4(0110)Mg, and 3/4(0110)Mg were also detectable
in the SAED pattern. These weak diffraction spots are a typical feature of the formation
of the β′ phase [39]. The β′ precipitate and α-Mg matrix had an orientation relationship
of (001)β′//(0001)Mg, [100]β′//[1120]Mg [40]. The HRTEM image, as shown in Figure 8b,
further confirms the existence of β′ and γ” precipitates in the alloy after peak-aging. In
addition, the precipitates were perpendicular with each other to form a closed structure, as
expected.
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3.4. Relevance between Tensile Properties and Mechanical Properties

Figure 9 displays the tensile properties of alloy in as-cast, solution, and peak-aging
conditions. UTS increased by 5.4%, reaching 215 ± 6 MPa, and elongation significantly
increased by 133.3%, reaching 14.0 ± 1.1%, as the as-cast alloy was solution-treated. Addi-
tionally, in the solution-state alloy, a slight increase in the yield strength (YS) of the alloy
occurred, increasing to 144 ± 3 MPa. After aging at 200 ◦C for 72 h, the strength of the
peak-aged alloy increased significantly as elongation decreased. The UTS, YS, and fracture
elongation were 330 ± 5 MPa, 228 ± 5 MPa, and 6.0 ± 0.9%, respectively. The room temper-
ature tensile properties of casting Mg-Gd-based alloys are listed in Table 3 for comparison.
It can be seen that the alloy had good strength while maintaining a certain elongation. The
mechanical properties of the alloy are closely related to its microstructure. For the as-cast
alloy, there was a large amount of reticular eutectic Mg3RE phase, which is hard, brittle,
and not coherent with the α-Mg matrix [41]. It is easy for stress to concentrate in the coarse
reticular phase during deformation and reduce the alloy’s mechanical properties; thus, the
as-cast alloy showed reduced strength and poor plasticity. After solid-solution treatment,
the coarse reticular phase at the grain boundary dissolved into the matrix. Although there
was a small amount of undissolved second phase, the fraction was obviously reduced, and
the morphology changed to a more granular shape compared to the as-cast alloy (Figure 5b).
As a result, after solution treatment, the stress concentration was mitigated, leading to a
notable improvement in the alloy’s mechanical properties, particularly in the plasticity of
the alloy. The significant improvement in the mechanical properties of the alloy in peak-
aging conditions can be attributed to the synergistic effect of prismatic β′ precipitates and
basal γ” precipitates. Through adopting the strategy of alloying with multiple RE elements
instead of Gd alone, a better strengthening effect was achieved with lower amounts of
RE elements, generating a large amount of prismatic β′ precipitates. Additionally, the
introduction of Ag and Zn promoted the formation of basal γ” precipitates. The precipitates
perpendicular to each other formed a closed structure, which has an excellent blocking
effect on dislocation movement [23,42] and thereby strengthened the mechanical properties
of the alloy significantly. The plasticity remained unchanged after peak aging compared to
the as-cast alloy.
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3.5. Fracture Mechanism

Figure 10 depicts the fracture surface morphologies of the alloy in its as-cast, solid-
solution, and peak-aging conditions, which were analyzed to investigate the influence of
the precipitates on the alloy’s fracture behavior. In the fracture process, crack initiation
is mainly related to the type, shape, distribution, and fractions of the precipitates. In the
as-cast alloy, the eutectic phase was reticular and large in size, which easily produces
stress concentration; thus, in the process of plastic deformation, a crack easily sprouted in
the coarse eutectic phase (Figure 10b) and propagated at the grain boundary, resulting in
larger tearing edges (Figure 10a). Observably, the inter-granular fracture is the predominant
fracture mode in the as-cast condition. For the solution-treated alloy, the eutectic compound
was dissolved into the matrix. Although undissolved phase still existed, the volume fraction
of the second phase decreased, and the sharp corner of the phase at the grain boundary
was spheroidized, which relieved the stress concentration caused by the irregular and
coarse eutectic phase. The presence of tearing edges within the grain, as depicted in
Figure 10c, suggests that the solution-treated alloy exhibited higher plasticity compared to
the as-cast alloy. Moreover, the secondary crack can be observed in the undissolved phase
(Figure 10d), and the fracture mode transformed to a mixed fracture of inter-granular and
trans-granular. In the peak-aged alloy, prismatic β′ precipitate and basal γ” precipitate
were uniformly dispersed in the grains, which hinders plastic deformation in the grains,
thereby reducing the initiation of cracks in the grains and making the cleavage surface
in the grains smooth. The crack mainly appeared on the grain boundary, and with the
propagation of the crack, the intermetallic phase broke at the grain boundary, and the
fracture mode was a trans-granular and inter-granular mixed fracture.
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4. Conclusions

In this investigation, we designed a new Mg-2Gd-2Y-2Nd-2Sm-1Ag-1Zn-0.5Zr alloy,
and a detailed characterization and analysis were carried out to examine its microstructure
and its correlation with its mechanical properties. The following conclusions can be drawn
from the experimental results:

(1) The as-cast alloy possesses an average grain size of 40 ± 3 µm, predominantly com-
prising an α-Mg matrix and a reticular Mg3RE phase enriched with RE, Ag, and Zn.
After solid-solution treatment, the grain size increases slightly to 43 ± 3 µm, and the
undissolved second phase of the alloy mainly transforms to a granular Mg41Nd5-type
phase (a = 15.01 Å and c = 10.21 Å).

(2) The strategy of adopting multiple RE elements to alloy a Mg alloy instead of a
single RE element, as well as introducing Ag and Zn doping, is effective to obtain
remarkable aging hardening effects. The hardness increased from 80 HV in solid-
solution conditions to 118 HV after peak-aging for 72 h at 200 ◦C.

(3) After peak-aging for 72 h at 200 ◦C, the alloy exhibits outstanding tensile proper-
ties. The UTS, YS, and fracture elongation of the tested alloy were 330 ± 5 MPa,
228 ± 5 MPa, and 6.0 ± 0.9%, respectively. These excellent tensile properties are due
to the synergistic effect of basal γ” precipitate and prismatic β′ precipitate.

(4) The alloy exhibits varying fracture behavior depending on different heat treatment
conditions. In its as-cast state, the primary mode of fracture is inter-granular, whereas
in the solid-solution and peak-aging conditions, the predominant mode of fracture is
a mixture of trans-granular and inter-granular fractures.
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