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Abstract: The additive manufacturing of concrete, also known as 3D-printed concrete, is produced
layer by layer using a 3D printer. The three-dimensional printing of concrete offers several benefits
compared to conventional concrete construction, such as reduced labor costs and wastage of materials.
It can also be used to build complex structures with high precision and accuracy. However, optimizing
the mix design of 3D-printed concrete is challenging, involving numerous factors and extensive
hit-and-trail experimentation. This study addresses this issue by developing predictive models,
such as the Gaussian Process Regression model, Decision Tree Regression model, Support Vector
Machine model, and XGBoost Regression models. The input parameters were water (Kg/m3), cement
(Kg/m3), silica fume (Kg/m3), fly ash (Kg/m3), coarse aggregate (Kg/m3 & mm for diameter), fine
aggregate (Kg/m3 & mm for diameter), viscosity modifying agent (Kg/m3), fibers (Kg/m3), fiber
properties (mm for diameter and MPa for strength), print speed (mm/s), and nozzle area (mm2),
while target properties were the flexural and tensile strength of concrete (MPa data from 25 literature
studies were collected. The water/binder ratio used in the dataset ranged from 0.27 to 0.67. Different
types of sands and fibers have been used, with fibers having a maximum length of 23 mm. Based
upon the Coefficient of Determination (R2), Root Mean Square Error (RMSE), Mean Square Error
(MSE), and Mean Absolute Error (MAE) for casted and printed concrete, the SVM model performed
better than other models. All models’ cast and printed flexural strength values were also correlated.
The model’s performance has also been checked on six different mix proportions from the dataset to
show its accuracy. It is worth noting that the lack of ML-based predictive models for the flexural and
tensile properties of 3D-printed concrete in the literature makes this study a novel innovation in the
field. This model could reduce the computational and experimental effort required to formulate the
mixed design of printed concrete.

Keywords: 3D-printed concrete; machine learning; additive manufacturing; predictive models;
flexural strength; decision tree

1. Introduction

Concrete is undoubtedly the most prevalent construction material on earth [1–3]. With
its versatile applications [4–8], unmatched strength [9,10], and remarkable durability [11–13],
it has become an integral part of our daily life. From its multifaceted usage in towering
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skyscrapers [14] and iconic spans [15] to underwater roadways [16] and simple abodes, con-
crete has become an indispensable factor in shaping the future of humanity [17]. Concrete,
an essential construction industry element, is also a cornerstone for the country’s economic
development [18,19]. However, new research in civil engineering has transformed this
old building material into a powerful and modern construction tool for a sustainable and
eco-friendly future [20–35]. Recently a new way of approaching concrete construction has
been developed, which has paved the way for realizing digital construction [36–38]. This
type of additive manufacturing technology involves layer-by-layer stacking of concrete
material in a controlled manner to print the whole structure [39]. It can potentially revo-
lutionize the construction industry by reducing construction costs by 50 to 60% [40]. The
conventional way of construction relies upon labor for most of the work. Assembling form-
work, preparing, pouring, and demolding concrete is highly time-consuming, laborious,
and suspectable to errors [41–43]. Formwork accounts for 60% of total construction cost,
10% percent of formwork material, and 50% is labor used to design, install, and remove
temporary formwork construction [44]. A detailed distribution of the cost of conventional
construction is shown in Figure 1. Three-dimensional (3D) Concrete Printing (3DCP) has
the potential to eliminate the role of both formwork and labor, thus reducing the cost
of construction.

This technology has gained significant attention from researchers due to its potential
to offer sustainable solutions to building projects. It also provides greater design flexibility
as it can create a complex and modular shape with relatively less cost than traditional
construction [45].
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In terms of modular construction, Ana et al. proposed the replacement of conven-
tionally constructed columns with bespoke columns offering intricate and customizable
designs at a lesser cost [47]. Tsinghua University created a prefabricated bridge using 3DCP,
with its assembly as compression members. It was printed in prefabricated parts, which
were later assembled on-site [48]. Although 3DCP is a growing trend in the construction
sector, making a mix suitable for printing remains challenging. The interdependence of
machine properties and time-dependent properties of concrete mix makes it a challenging
task for optimum printability.

A critical aspect of 3D-printed concrete is selecting appropriate raw materials and mix
design that ensures pumpability, extrudability, and buildability to achieve a successful print-
ing process. It should be noted that these characteristics are essential for 3D printing and
go beyond the standard workability requirements mentioned in codes and guidelines [49].
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The mix design of 3D-printed concrete involves determining the optimal proportions of
different materials such as binders, aggregates, chemical admixtures, fibers, and additives
to achieve the specific properties required for the final usage. The mix design should also
consider the printing method, equipment used, and any design requirements for the final
product, such as shape, size, and surface finish. Proper mix design is crucial for successfully
producing 3D-printed concrete with the desired properties and characteristics [50].

The properties of the mix design of 3D-printed concrete include workability, rheology,
strength, durability, setting time, shrinkage, etc. [50–52]. The mixture must have suffi-
cient workability to facilitate precise extrusion, printing, or layering while maintaining
the product’s structural sound [53]. The consistency of the mixture must exhibit ideal
flow characteristics and viscosity to guarantee effortless extrusion and steadfast adhesion
to precede layers while preventing any potential distortion or sagging known as extrud-
ability [45]. The ideal mixture must exhibit compressive and flexural strength that fulfills
the structural demands of the end product [54]. It should be tough enough to withstand
environmental elements such as moisture, chemical exposure, and freeze-thaw cycles for
long-term durability [55]. A suitable setting time is critical to facilitate proper interlayer
bonding, prevent printing deformities, and avoid premature cracking [56]. Additionally,
the mixture must exhibit minimal shrinkage to avert cracking and distortion over time [57].
While 3D Concrete Printing (3DCP) has many advantages over conventional construction,
it also has some unique challenges. One of the potential challenges of 3D Concrete Printing
is the development of an innovative mix design to achieve an optimal balance between
hardened and fresh-state properties [49].

A higher yield stress is favorable for the buildability of concrete in 3D printing; it
is, however, essential to ensure that the extrudability of the mix is not compromised,
as this parameter is equally important in achieving successful printing [58]. When the
yield stress of the concrete is high, it may result in a discontinuous flow of the material
through the nozzle during the printing process. This can cause tearing defects in the
final printed layer [59]. The literature shows that the addition of cement content, nano
clay [60,61], fiber content [62–65], silica fume [66,67], and fly ash [68–71] increases the
yield strength of the concrete mix for printing purposes. Still, at the same time, they
decrease the extrudability of the printable mix. However, the addition of SCMs and cement
can increase mechanical strength. Similarly, adding a superplasticizer [60] and water
content [72] increases extrudability, but at the same time they decrease the yield stress and
mechanical strength of printable concrete. Using an accelerator or rapid-setting cement
can increase the buildability of the layer [73,74], but it ultimately affects the long term
strength of the concrete. In addition, adding an accelerator can cause pore formation in
the concrete. Incorporating fibers into the concrete mix formulated for 3D printing has
been found to positively affect its mechanical strength, as per the findings of Panda et al.
Nonetheless, this alteration may reduce the workability of the concrete, which can cause
complications during the extrusion process [75]. Khalil et al. explored the impact of a
viscosity-modifying admixture on the extrudability of limestone. They calcined clay-based
cementitious material for 3D concrete printing and found that using such additives can
improve printing speeds and surface quality [76], thus increasing the durability of printed
elements. The study by Sukontasukkul et al. examines the effect of a viscosity modifier
agent (VMA) on the layer deformation, viscosity, and open time of cement mortar for
3D printing applications. The research findings suggest that incorporating VMA into the
cement mortar mix can improve printability by increasing viscosity, extending open time,
reducing layer deformation, and enhancing the printed structures’ overall quality [77]. The
printing speed, nozzle size, and pressure can significantly impact the mechanical properties
of 3D-printed concrete filaments. Slow printing speeds can lead to better layer adhesion
and increased strength but may not be practical for larger structures due to longer printing
times [78]. A larger nozzle size can result in weaker bonding between layers and decreased
mechanical properties. In comparison, a smaller nozzle size can improve layer adhesion
and mechanical properties but may increase printing time. Pressure affects the flow rate
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and consistency of the printed material, which can impact the quality and mechanical
properties of the printed filament [79–81].

The conclusion drawn from the studies on 3D concrete printing is that the complex
printing process and the multiple factors affecting the mix design make it a challenging
and iterative task, requiring extensive experimentation and testing to achieve optimal
mix design. Therefore, to address this issue, advanced analytical techniques should be
used to develop a mix design for concrete printing, enabling a more efficient and accurate
approach towards formulating a mix with suitable rheological and mechanical properties
of printed concrete.

Machine learning is a sub-branch of artificial intelligence that revolves around de-
veloping statistical models and algorithms that empowers computers to adaptively learn
from antecedent data and evolve without hard coding [82,83]. The importance of using
ML-based modeling in civil engineering is advancing incrementally as civil engineering
projects and research evolve, becoming more complex and demanding more sophisticated
tools and techniques [84–87]. By creating various mathematical models, the actual behavior
of the material is captured, and accurate predictions of different properties, such as failure,
strength, durability, deformation, etc., can be obtained [88–91]. Computational models also
allow engineers to simulate different rheological behavior of concrete [92–96]. Engineers
and researchers can develop cost-effective and suitable mix designs in this way.

Similarly, 3D Concrete Printing has attracted research recently because of its potential
to revolutionize the construction industry. Much research is being conducted to formulate
an appropriate mix design less laboriously. ML modeling is a valuable tool for engineers
and professionals involved in 3D printing and design. It can be used to model the different
applications of ML in 3D printing, including process optimization, quality control, material
development, and design optimization [97]. It can also predict the mechanical properties
of printed elements. Jayasudha et al., 2022 employed ANN and Decision Tree Regression
to predict the tensile strength of printed elements [98]. Similar findings are obtained
in [99,100]. ML modeling can cater to various parameters related to the concrete mix design.
It provides an efficient way to optimize the mix design and achieve a given application’s
desired strength and durability. The model can be a reliable and accurate solution for the
3D concrete printing industry.

This study developed different Machine Learning Models, i.e., Gaussian Process
Regression, Decision Tree Regression, Support Vector Machine, and XGBoost Regression,
to predict the cast and printed anisotropic flexural strength and printed tensile strength
of concrete. Data from already studied literature is used. Input parameters include water,
cement, silica fume, fly ash, coarse aggregate, fine aggregate, viscosity modifying agent,
fibers, fiber properties, print speed, nozzle shape (nozzle area was used to cater to the nozzle
shape as there was no consistent data available on the shape), the cast and anisotropic
flexural strength of printed concrete, and the tensile strength of printed concrete. Various
statistical evaluations such as MSE, RMSE, R2, and MAE (MPA) were applied to assess the
accuracy of the models to find the most accurate model.

1.1. Objectives

This study aims to investigate the application of different machine learning models to
predict concrete’s cast and printed anisotropic flexural strength and printed tensile strength
at 28 days. The following are the main objectives of this research.

1. A model was developed to accurately predict concrete’s anisotropic flexural strength
and printed concrete’s tensile strength. Additionally, the sensitivity of the models will be
analyzed using various statistical approaches.

2. To analyze the most accurate model’s performance using random mix designs of
concrete from the dataset.
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1.2. Research Motivation and Significance

3D Concrete Printing is an advanced technology that enables efficient and sustainable
construction. Compared to conventional concrete construction, it has several potential
benefits. However, creating a concrete mixture with the proper mechanical and rheological
properties requires much experimentation and trial and error [54,101–107]. Thus, finding
a straightforward and less computational approach for developing a mixed design for
printable concrete would contribute to overcoming one of the most significant hurdles in
implementing this technology in the field. Different researchers have employed machine
learning techniques to predict concrete mix properties. A similar research approach has
been utilized to optimize the concrete mix design for printing through different machine
learning techniques such as Gaussian Process Regression, Decision Tree Regression, Support
Vector Machine, and XGBoost Regression.

Various input parameters, such as mix constituent, constituent properties, printer
properties, and cement, are taken as independent variables, and the cast and anisotropic
flexural strength of printed concrete (MPa) and tensile strength of printed concrete (MPa)
are taken as dependent variables. For testing the model, the independent variables were
used to calculate the values of the dependent variables. Predicted and original values were
compared to evaluate the model.

By examining multiple modeling techniques, this study contributes to developing
a novel, accurate, and efficient method for predicting the properties of newly printed
concrete structures. This, in turn, can help engineers and researchers optimize the printing
process and improve the strength of the final extruded layers. Furthermore, using advanced
machine learning algorithms in the optimization process can reduce the computational
cost, time, and effort required for accurate predictions, making it a valuable tool for the
automated construction industry.

2. Methodology

For modelling purposes, different approaches were considered, and their possibles
usage in terms of limited dataset was researched i.e., ANNs offers the potential to use
multiple hidden layers and non-linear functions to model the output. However, due to
the limited dataset samples available, ANNs were not chosen as they rely heavily on the
quantity of data samples present. The limited number of data samples would result in
overfitting of the ANN to the data present, instead of learning the underlying relations
and generalizing well [108]. One-dimensional CNNs are often used for regression tasks
when the dataset is time series or sequential, or when a high number of samples are present.
As our dataset is not based on time series, and the parameters are not inherently related,
this approach was not considered in our empirical analysis. Furthermore, the 1D CNN
approach requires thousands of samples for effective modelling, which were not available
in our dataset [109]. Autoencoders have the capability to learn a function that maps a
set of inputs to a set of outputs by compressing the input into a simplified, compressed
code and then reconstructing the input from this code. Autoencoders can be used for
regression tasks if the output of the second function is changed from the original input to
the target variable. However, due to the limited size of our dataset, autoencoders were not
chosen for regression analysis as they require high amounts of data to effectively model the
data [110,111].

Therefore, the current study analyzed the structure of a given dataset through sta-
tistical analysis. Based on this analysis, multiple regression models were shortlisted.
Experiments were conducted to conduct an empirical analysis, on which model would
optimally model the relations between the dependent and independent variables. One of
the key factors considered while selecting a model was the complexity and non-linearity
of the relations between the data. Thus, any model chosen must have the ability to form
such functions. Four machine learning algorithms, including Support Vector Regression
(SVR), Gaussian Process Regression (GPR), Decision Tree Regression (DTR), and XGBoost,
were chosen due to their ability to model non-linear mappings. Furthermore, the parame-
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ters available in the data mostly contained continuous nominal data, which made these
algorithms well-suited to the data.

Another factor that was considered was the limited availability of data. The number
of samples available in the data was the maximum available, so the models SVR, XGBoost,
and GPR were chosen. Although Decision Tree Regression requires more extensive data,
techniques such as pruning can address this issue. Additionally, the variance in the data
was not very high, so even the Decision Tree model was expected to perform well. Lastly,
all the models used in this study are flexible in the choice of parameters available. These
models offer a range of parameters that can be adjusted to yield optimal results per dataset.
Therefore, the models were adjusted based on the available data to achieve the best results.
The current study selected four machine learning algorithms well-suited to continuous
data that can model complex, non-linear relations between the dependent and independent
variables. The study also considered the limited data availability and the models’ flexibility
in parameter selection.

Figure 2 presents a general overview of the whole work methodology used in this
research. Two different hardened state properties of printed concrete were studied from
the available literature, and reliable datasets were generated. Printed concrete has bi-
directional flexural strength [50] (directions 1 and 2 used in the fundamental research are
as shown in Figure 3), implying it can resist bending moments in both longitudinal and
transverse directions and tensile strength is unidirectional (with testing as referred to in
the literature [112]) [113,114]. The limited availability of datasets can be attributed to the
emerging scrutiny of this technology. The datasets used in our research methodology can
be attributed to the complex nature of the technology, limited adoption, active research, lack
of standardization of testing, and privacy infringement. Similarly, this technology places
significant emphasis on developing appropriate mix designs. As a result, a vast array of
materials is utilized by researchers to investigate and determine optimal mix proportions.
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Figure 3. Anisotropic behavior of printed concrete in flexure. Directions are the same as those used
in the whole research.

2.1. Regression through Machine Learning Approaches

Over the past decade, machine learning has been used to model real-life problems
and successfully assist humanity in handling those [115–117]. State-of-the-art development
of concrete mixtures and their sophisticated applications have spawned a necessity to use
more precise and numerical models to predict their properties. Various researchers have
widely used empirical and statistical models in concrete technology [118]. The different
kinds of models used by various researchers in concrete research are summarized in
Table 1. Our research is focused on developing four different models to predict flexural
strength and tensile strength using Decision Tree Regression, Support Vector Machine
(SVM) Regressor, Gaussian Process Regressor, and Extreme Gradient Booster Regressor.
The detailed overview of machine learning models developed using these algorithms for
predicating the flexural and tensile strength can be seen in the Supplementary Materials.

2.1.1. Decision Tree Regressor

Decision Tree Regression is a type of machine learning algorithm that is widely used
to partition the input data into smaller subsets. These are widely used for modeling
data with the nonlinear or branched relationship between input features and targeted
variables. The relationship between input and targeted variables determines the decision
rule used to predict future outcomes [119,120]. The Decision Tree Regressor has been
used in concrete research to predict various properties of concrete. Karbassi et al., 2014
used this technique to make a quantitative damage prediction tool for regular reinforced
concrete [121]. Erdal 2013 used an ensemble of decision trees to predict the compressive
strength of concrete [122]. This technique has also been successfully employed to predict
carbonation depth in concrete by Taffese et al., 2015 [123].

Similarly, other work has also been reported in the literature to predict concrete proper-
ties [124–127]. Decision Tree Regressors can be a powerful technique in 3D concrete printing
because of their ability to model complex nonlinear relationships between input variables
and the target variable (e.g., compressive strength, flexural strength, and tensile strength
of the printed concrete). Three-dimensional concrete printing involves numerous process
variables that affect the extruded layers, including the composition of the concrete mixture,
nozzle diameter, printing speed, layer thickness, and curing conditions, so the Decision
Tree Regressor technique can be promising in accurately predicting final layer properties.
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2.1.2. Support Vector Machine Regressor

Support Vector Machine Regression is a highly supervised and classical machine-
learning regression modeling and analysis algorithm. It tries to fit the best possible line, thus
producing continuous output on new input data [128]. This highly supervised and classical
machine-learning algorithm technique relies on the statistical learning methodology to
generate, train, and optimize models [129]. Support Vector Machine (SVM) regression
involves mapping the input data x to a high-dimensional feature space through nonlinear
mapping, followed by linear regression in this space. The regression model is expressed as
y = f(x) + e, where x and y are input and output functions defined in the high-dimensional
feature space, and e is an independent random error. The regression function f(x) is
also defined in the feature space, allowing for nonlinear regression in the original input
space [130]. This approach enables SVM regression to accurately model complex non-
linear relationships between input and output variables. Because of the ability of support
vector machines to handle high-dimensional data, robustness to data noise, and higher
generalized performance have been widely used to analyze complex chemical spectra and
analysis of compounds [131]. This has been widely used in concrete research because of
its accurate insensitive loss function. Yan et al., 2010 showed that SVM performed well
and outperformed other models in predicting the elastic modulus of concrete that involves
elaborate testing under cyclic loading and strain measurement [132]. Sonebi et al., 2016
used radial basis function (RBF) and polynomial kernels to predict the fresh properties
of self-compacting concrete as a function of the content of mix components [133]. Abd
et al., 2017 found SVM to be a valuable tool for predicting the compressive strength of
lightweight foamed concrete with minimal mean square errors and standard deviation [134].
Conventional proportioning methods suffer from high costs, usage constraints, and an
inability to capture the intricate nonlinear relationships between concrete properties and
constituent components. SVM, as the alternative method, was found by Mohtasham
Moein et al., 2023 to be imperative to address these limitations and provide a more efficient
and effective way of proportioning concrete mixtures. Gupta 2007 utilized 190 dataset
points by experimental investigation in the laboratory and made an SVM model to predict
28 days of compressive strength of concrete with a correlation coefficient of 0.996 [135].

The 3D printing of concrete is a rapidly evolving technology that has the potential to
revolutionize the construction industry. However, the complex properties of 3D-printed
concrete present significant challenges in predicting the performance of the final struc-
ture. Support Vector Machines (SVM) have emerged as a powerful tool for predicting
the complex properties of 3D-printed concrete. SVM can handle large datasets with high-
dimensional inputs, making it suitable for modeling the intricate relationships between
the input parameters and the output properties of 3D-printed concrete. Moreover, SVM
can effectively handle the nonlinear relationships between the input and output variables,
which is standard in 3D printing processes.

Table 1. Different models used by various researchers to predict the properties of different types of
concrete along with performance criteria.

Authors Techniques Data Sources Performance
Metrics Predictions References

Chang et al., 2022

U-net convolutional neural network is
used to predict the cracking pattern in

printed concrete, then by taking the crack
pattern as input, Principal Component

Analysis (PCA) and CNN are used for the
prediction of stress crack width curves.

Binary Image of Air
Void Structure

through X CT and
Fracture Analysis of

printed concrete.

R squared
value of 0.8.

Predicted the
stress-crack curves of

printed concrete.
[136]

Charrier et al.,
2022

Artificial Neural Networking is employed
to predict dynamic yield stress and

mini-slump of concrete based on mix
proportions affecting the rheology of

concrete.

Experimental data
from mini-slump

cone test and
dynamic yield stress
through rheometer.

R squared
value of 0.93.

Predicted dynamic
yield stress and
mini-slump of

concrete.

[137]
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Table 1. Cont.

Authors Techniques Data Sources Performance
Metrics Predictions References

Izadgoshasb
et al., 2021

Multi-objective grasshopper optimization
algorithm (MOGOA) and artificial neural

network (ANN) are employed for the
prediction of the compressive strength of

printed concrete.

Experimental dataset
through literature.

The correlation
coefficient of

0.96.

Predicted
compressive strength
of printed concrete.

[138]

Czarnecki et al.,
2021

Artificial Neural Network (ANN),
Support Vector Machine, and random

forest algorithm are used to predict
interlayer bonding.

Conducted research
and measurements in

the literature.

The correlation
coefficient of

0.883.

Predicted interlayer
bonding/pull-off

adhesion of concrete
layers.

[139]

Zhang et al., 2019

Long Short-term Memory (LSTM)
network is used with Fused Deposition
Modelling (FDM) to predict the tensile

strength of printed concrete.

Data from
experimental runs.

The correlation
coefficient of

0.773.

Predicted tensile
strength of printed

concrete.
[140]

Bagheri et al.,
2020

Conditional inference tree (ctree) and
recursive partitioning (rpart) functions are
used to predict the compressive strength

of geopolymers.

Experimental data of
boron-based

geopolymer concrete
from literature

studies.

70%
cumulative
accuracy.

Predicted
compressive strength

of printed
geopolymer concrete.

[141]

Lao et al., 2021
Artificial Neural Networking is used to
predict the final geometry of concrete

filament.

Pretesting setup with
different nozzle

shapes and extruded
filaments.

Reduction of
38% in the

mean
arithmetic

roughness (Rt).

The predicted final
geometry of extruded

layer of printed
concrete.

[142]

2.1.3. Gaussian Process Regressor

A non-probabilistic and non-parametric machine learning technique is often used for
regression analysis. It differs from Decision Tree Regression and SVM because it does not
assume a unique functional form to carry out the modeling of the dataset. Rather, it models
the distribution of the dataset directly. Gaussian Process Regressor (GPR) is a probabilistic
machine learning technique that uses Bayesian inference to make predictions based on
the observed data. Given a training set D = {(xi, yi) | i = 1, . . . , n}, GPR assumes that the
output variable y is a function of the input variable x, which can be modeled as a Gaussian
Process. The Gaussian Process is fully specified by a mean function (x) and a covariance
function K(x, x′), which are used to estimate the conditional probability distribution of the
output variable y given the input variable x [143]. The design matrix X is used to define
the input space of the Gaussian Process, and the vector of desired output y is used to train
the model. The primary assumption of GPR is that the output y is computed as y = f (x) + ε,
where f (x) is the unknown proper function and ε is the additive Gaussian noise with mean
zero and variance σ2. GPR assumes that (x) follows a Gaussian Process, and therefore
the predicted output y∗ for a new input x∗ is also a Gaussian distribution [144]. Various
researchers have used this technique to predict concrete properties. Dutta et al., 2018
predicted the compressive strength of concrete using GPR. According to Słoński’s findings
in 2011, the benchmark dataset revealed that Bayesian neural networks and Gaussian
processes have comparable prediction accuracy and outperform the linear regression
model [145]. In the study by Omidinasab et al. (2022), the comparative performance of
different models in predicting the shear strength of reinforced concrete was analyzed. The
results showed that the Gaussian process regression model outperformed the other models,
with an R2 coefficient of 0.91 and the lowest error [146]. According to the findings of
Kovačević et al., 2021, the Gaussian Process Regression (GPR) model with significantly
lower complexity had accuracy criterion values comparable to those of the most accurate
model. In addition, it was demonstrated that feature reduction could be easily incorporated
into GPR using Automatic Relevance Determination (ARD), resulting in models that exhibit
better performance and lower complexity [147].
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Gaussian Process Regression (GPR) can be beneficial in predicting the properties of
printed concrete because it is a robust machine learning algorithm that can effectively
capture the complex and non-linear relationships between the input and output param-
eters. GPR models can provide accurate predictions, even with limited data and noisy
measurements, which makes them a valuable tool for predicting the properties of printed
concrete, i.e., flexural, tensile, and compressive strength, etc.

2.1.4. Extreme Gradient Booster Regressor (XG-Booster)

Extreme Gradient Booster Regression is a robust machine-learning algorithm that
is used for regression tasks. XGBoost Regression is an ensemble method that utilizes
the strength of multiple decision trees to make accurate predictions [148]. Due to its
superior performance, XGBoost is widely recognized as a highly effective machine-learning
algorithm capable of handling large datasets with remarkable speed and precision. Its
ability to handle complex relationships between input and output variables makes it a
popular choice for various applications [149]. The XGBoost algorithm is known for its ability
to handle sparse data and implement distributed and parallel computing flexibly, making it
a popular choice for solving machine learning and data mining problems. With its powerful
computing capabilities, XGBoost has emerged as a promising tool for various applications
in the field of data sciences [150] The Nguyen et al. (2021) study employs four predictive
algorithms to predict high-performance concrete’s compressive and tensile strengths. The
models, including Support Vector Regression (SVR), Multilayer Perceptron (MLP), Gradient
Boosting Regressor (GBR), and Extreme Gradient Boosting (XGBoost), are trained using a
hyperparameter tuning process based on a random search. The missing data is handled
by filling it with the mean of the available data to maximize information utilization in the
training process. The results showed that the GBR and XGBoost models outperform the SVR
and MLP models in terms of both prediction accuracy and computational efficiency [151].

XGBoost is a robust machine learning algorithm that has the competency to handle
larger datasets and complex features, which means it can be an efficient tool in handling
the properties of printed concrete. By leveraging machine learning models such as Extreme
Gradient Booster Regressor (XGBoost), engineers and researchers can accurately predict
the properties of newly printed concrete structures. This allows for optimizing the printing
process, as engineers can adjust various parameters and settings based on the predicted
properties to achieve desired performance characteristics. This can result in significant cost
reduction and enhanced performance for 3D Concrete Printing in the construction industry.

2.2. Overview of Dataset

This study comprehensively analyzed 77 mix designs to generate a model for flexural
strength [44,107,152–167]. Additionally, 49 mix designs were examined to develop a model
for tensile strength [117–122,129,132–135]. The data collected from these mix designs were
used to train and test the models to predict novel mix designs’ flexural and tensile strengths
accurately. The dataset incorporates water, ordinary Portland cement, silica fume, fly ash,
nano clay, Viscosity Modifying Agent (VMA), and coarse aggregate quantified with a
maximum size of 10 mm fine aggregate, classified based on a maximum size of 0.9 mm and
type of sand used. The mix design chosen for inclusion in the dataset is fiber reinforced.
The quantity, type, tensile strength, Young’s modulus, length, and fiber diameter have
been accurately quantified. In the context of the mechanical properties of the printer, the
linear printing speed of the nozzle and nozzle correctional area have been included in the
dataset to provide valuable insights into the printing process and the generalized effect of
the mechanical aspect of printing technology. Figures 4 and 5 shows pie chart distributions
of the sand fibers used in the dataset.
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2.3. Details of Dataset
2.3.1. Cement

Cement can have both positive and negative effects on the properties of concrete.
Higher cement dosage can increase early age strength but also cause higher heat of hydra-
tion and autogenous and drying shrinkage cracks [168–171].

2.3.2. Fibers

Adding fibers to 3D Printing Concrete (3DPC) mixtures can improve the mechanical
and physical properties of the printed parts. The fiber reinforcement can increase the tensile
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and flexural strength, toughness, and crack resistance of 3DPC. However, the choice of fiber
type, content, and distribution must be carefully considered to avoid potential adverse
effects on printability and workability [112,170].

2.3.3. Fine Aggregate

Fine aggregate is crucial in 3D Printing Concrete mixtures to ensure strength and stabil-
ity. However, the particle size and shape of the fine aggregate impact rheological properties
and printability, with smoother and more spherical particles improving flowability and
lowering the viscosity [105,172]. A higher percentage of sand can stiffen the material and
negatively affect extrudability and printability, highlighting the need to carefully optimize
sand content and properties [169].

2.3.4. Coarse Aggregate

Coarse aggregate can positively impact 3D Printing Concrete by enhancing its me-
chanical properties, reducing shrinkage, and decreasing costs. However, the aggregate’s
size and shape can affect the mix’s workability and extrudability, and larger particles
may cause clogging in the printing nozzle [173]. Therefore, carefully selecting and op-
timizing the aggregate size and shape are crucial to ensure optimal performance in 3D
Printing Concrete.

2.3.5. Fly Ash

Fly ash, a by-product of coal-fired power plants, can partially replace cement in 3D
Printing Concrete (3DPC) mixtures. Fly ash can improve the workability, printability,
and mechanical properties of 3DPC while reducing the environmental impact of concrete
production [174].

2.3.6. Silica Fume

Silica fume can be used as an additive in 3D Printing Concrete mixtures to improve
its properties, such as increasing compressive strength, reducing drying shrinkage, and
improving durability. It can also reduce the heat of hydration and mitigate the risk of
thermal cracking. However, its use may require adjustments to the mix design and printing
parameters [67,175].

2.3.7. Superplasticizer

Superplasticizers can be used in 3D Printing Concrete to improve workability, increase
flowability, and reduce viscosity, resulting in better extrudability and printing performance.
They can also improve the strength and durability of the final product by reducing the water-
to-cement ratio and increasing the compactness of the concrete matrix. However, excessive
use of superplasticizers can cause segregation and bleeding, reducing homogeneity and
structural integrity [176,177]. Proper dosage and selection of superplasticizers are therefore
critical for achieving the desired properties in 3D Printing Concrete.

2.3.8. Accelerator

Accelerators are chemical additives used in 3D Printing Concrete mixtures to adjust
working performance and achieve desired properties, such as increasing early age strength
and decreasing setting time value. However, excessive use of accelerators can cause a rapid
increase in the heat of hydration, leading to thermal cracks [73,74].

2.4. Statistical Analysis of Data

Statistical insight was obtained to understand and interpret datasets—the output of X
train. describe () provided a helpful starting point for exploring and understanding the
training data and helped select appropriate data preprocessing techniques and machine
learning models. The range, mean, and standard deviation for the features of the dataset
for flexural and tensile strength are shown below in Table 2.
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Table 2. Statistical analysis of data shown by the range, mean, and standard deviation for the features
of the dataset for flexural and tensile strength of the dataset.

Parameters Units
Range Mean Standard Deviation

Flexural Data Tensile Data Flexural Data Tensile Data Flexural Data Tensile Data

Cement Kg/m3 207.61–2000 207.61–2000 581.83 674.87 361.57 438.79
Water Kg/m3 130.9–760 135–760 263.85 327.32 155.58 176.37

Silica Fume Kg/m3 0–293 0–280 82.09 55.94 97.94 91.51
Fly ash Kg/m3 0–1380 0–1380 272.84 321.27 345.58 446.78
HRWA Kg/m3 0–36 0–36 6.39 5.68 7.53 8.79

Accelerator Kg/m3 0–146.4 0–146.4 4.5 2.99 19.84 20.91
Nano Clay Kg/m3 0–5.89 0–5.89 0.6 0.51 1.58 1.51

VMA Kg/m3 0–38.64 0–31.74 2.39 3.78 6.15 10.41
Coarse Aggregate Amount Kg/m3 0–1566.3 0–1566.3 189.72 241.16 392.25 494.08

Coarse Aggregate Size mm 0–10 0–10 1.75 1.62 2.84 3.37
Fine Aggregate Kg/m3 195.7–3420 195.7–3420 838.48 836.09 593.23 721.23

Fine Aggregate Size mm 0.176–3 0.2–3 0.45 0.53 0.2 0.42
Tensile Strength of Fibers MPa 300–3000 300–3000 1775.8 1564.4 997.5 1087.31

Young’s Modulus of Fibers GPa 3–200 3–300 68.48 71.42 67.94 61.48
Amount of Fibers Kg/m3 1–157 1.96–157 23.44 13.57 38.64 15.28
Length of Fibers mm 6–23 6–23 10.47 10.35 4.66 5.36

Diameter of Fibers µm 11.2–200 11.2–300 47.3 31.59 56.05 38.5
Print Speed mm/s 10–450 10–120 94.22 63.72 109.68 31.55
Nozzle Area mm2 50.25–1259 78.54–1256 546.58 580.16 365.87 351.18

Relative frequency graphs showing the percentage occurrence of different features in
the dataset are shown below in Figures 6 and 7 for flexural and tensile strength of printed
concrete. By analyzing these graphs, the visual distribution and relative frequency of each
feature can be observed.
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2.4.1. Data Cleaning

In this step, the datasets for both properties were analyzed for identification, correction,
and removal of inconsistencies. The mean value was calculated and filled in place for the
missing datasets for Print Speed, Max Size, and Nozzle Area.

2.4.2. Data Normalization

To improve the accuracy of the models, the datasets in both models were subjected to
data normalization. In this process, the numerical features of our dataset were scaled using
Min–Max scaling. For data normalization, Equation (1) was used.

x∗ =
x− xmin

xmin − xmax
(1)

Here, x* is the normalized value of the parameter, x is the original value, x(min) is the
lowest value of that parameter, and x(max) is the highest value of the parameter.

From the dataset, various parameters, such as water content (Kg/m3), cement con-
tent (Kg/m3), silica fume content (Kg/m3), fly ash content (Kg/m3), coarse aggregate
(Kg/m3 & mm diameter), fine aggregate (Kg/m3 & mm diameter), viscosity modifier
(Kg/m3), fibers (Kg/m3), fiber properties (mm diameter and MPa strength), print speed
(mm/sec), and nozzle area (mm2) are taken as independent variables. The cast and
anisotropic flexural strength of printed concrete (MPa) and the tensile strength of printed
concrete (MPa) are dependent variables. For testing each model, the independent variables
were used to calculate the values of the dependent variables. To evaluate each model, the
original and predicted values were compared.



Materials 2023, 16, 4149 15 of 32

2.5. Evaluation Criteria

Two distinct sets of evaluation criteria have been established in evaluating the accuracy
of the regression models. In a recent study, mixtures were assessed based on their flexural
strength, when cast and printed in both directions 1 and 2, and their tensile strength. The
study utilized 57 mix designs for training the model for flexural strength, which was
subsequently evaluated on 20 additional mix designs in a 3:1 ratio. To evaluate tensile
strength, 35 mix designs were used to train the model, and 14 were used for testing.

2.5.1. Mean Square Error

The regression model evaluation is performed by measuring the average squared
magnitude of errors generated by the models. A higher value of Mean Squared Error (MSE)
indicates that the model’s predictions are, on average, less accurate, with a larger average
squared magnitude of errors between the predicted values and the actual values of the
target variable.

MSE =
1
n∑n

i=1

(
Ypre −Yactual

)2
(2)

2.5.2. Coefficient of Determination: (R-Squared/R2)

Regressions models were also evaluated based on the statistical measure of the portion
of variations in the dependent variable predicted from the independent variable(s) through
regression models. The values of R2 should lie between 0 and 1. A value of 1 indicates
that all of the variations in the dependent variable can be explained by the independent
variable(s). In contrast, a value of 0 indicates that none of the variations in the dependent
variable can be explained by the independent variable(s). A value between 0 and 1 indicates
the proportion of the variance in the dependent variable that can be explained by the
independent variable(s). The formula to calculate the R2 value in terms of the predicted
value Ypre and the actual value Yact is as stated below:

R2 =

n
∑

i=1
(Ypre −Ypre)

n
∑

i=1
(Yactual −Yactual)

(3)

2.5.3. Mean Absolute Error: (MAE)

MAE stands for Mean Absolute Error, a commonly used metric in regression analysis
to measure the accuracy of a regression model’s predictions. MAE calculates the average
difference between the predicted and actual values of the dependent variable. The absolute
value ensures that the errors are positive and ignores the direction of the error.

A lower MAE value indicates that the model’s predictions are more accurate, while a
higher MAE value suggests that the model’s predictions are less accurate. MAE is useful
for comparing the performance of different regression models and selecting the one with
the lowest MAE value.

MAE =
∑n

i=1|yi − xi|
n

(4)

where yi is the predicted value, xi is the actual value, and n is the total number of datasets.

2.5.4. Root Mean Square Error: (RMSE)

Root Mean Square Error (RMSE) is a commonly used metric to measure the difference
between predicted and actual values in statistical analysis and machine learning. It is
the square root of the average squared differences between predicted and actual values.
RMSE measures the accuracy of a model’s predictions, with lower values indicating better
accuracy. It is a helpful metric for evaluating regression models and is commonly used in
economics, engineering, and physics.
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The formula to calculate Root Mean Square Error is as follows:

MSE =

√
1
n∑n

i=1

(
Ypre −Yactual

)2
(5)

From the sensitivity analysis, it can be seen that the influence of data with larger
values is not present in the models. From Table 2, it can be seen that cement, water, fly ash,
and coarse aggregate amounts are larger compared to other parameters. From sensitivity
analysis, it can be seen that the flexural strength is most sensitive to the amount of fibers
(Kg/m3) and tensile strength is most sensitive to the tensile strength of fibers (MPa).

2.6. Hyperparameter Tuning

Hyperparameter tuning is finding the best combination of hyperparameters for a
machine-learning algorithm to achieve the best performance. The settings that affect the
behavior and performance of an algorithm cannot be learned from data. Hyperparameter
tuning involves exploring different values for these hyperparameters and selecting the op-
timal values based on evaluating the model’s performance on a validation set. Optimizing
hyperparameters can significantly enhance a model’s accuracy and ability to generalize.
It is an important stage in building machine learning models and is imperative to attain
cutting-edge outcomes.

In this step, optimal values of hyperparameters were found to achieve the best possible
performance of the linear regression model, shown in Tables 3 and 4. For the case of multiple
training, the optimal values are bolded.

Table 3. Hyperparameters for the modeling of the tensile strength dataset.

Tensile Strength

Model Hyperparameter

Test

Direction 1

R2_Score RMSE
(MPa)

MSE
(MPa)

MAE
(MPa)

Decision Tree
Regressor

Default parameters:
criterion = ‘squared_error’,

splitter = ‘best’,
max_depth = None,

min_samples_split = 2,
min_samples_leaf = 1

0.7217 1.0904 1.1889 0.5857

XGBoost
Regressor

Default parameters:
loss = ‘squared_error’,

learning_rate = 0.1,
n_estimators = 100,

subsample = 1.0,
criterion = ‘friedman_mse’,

min_samples_split = 2

0.6757 1.1771 1.3856 0.6255

Gaussian
Process

Regressor
Default parameters/NA −0.8156 2.7853 7.7583 1.7688

SVM Regressor

Parameters:
Kernel = “linear” 0.8893 0.6877 0.4729 0.5168

Kernel = “rbf” 0.7363 1.0614 1.1265 0.7923

Kernel = “sigmoid” 0.4781 1.4933 2.2299 1.0734

Kernel = “poly”

degree = 2 0.8697 0.7461 0.5567 0.5619

degree = 3 0.8705 0.7436 0.5529 0.5294

degree = 4 0.8726 0.7377 0.5443 0.5230

degree = 5 0.8454 0.8126 0.6603 0.6108

degree = 7 0.5856 1.3306 1.7705 0.9655



Materials 2023, 16, 4149 17 of 32

Table 4. Hyperparameters for the modeling of flexural strength.

Flexural Strength

Model Hyperparameter

Test

Casted Direction 1 Direction 2

R2_Score RMSE
(MPa)

MSE
(MPa)

MAE
(MPa) R2 RMSE

(MPa)
MSE

(MPa)
MAE
(MPa) R2 RMSE

(MPa)
MSE

(MPa)
MAE
(MPa)

Decision Tree
Regressor

Default parameters:
criterion = ‘squared_error’,

splitter = ‘best’,
max_depth = None,

min_samples_split = 2,
min_samples_leaf = 1

0.7107 4.0378 16.3038 2.1685 0.7253 4.2234 17.8378 2.1450 0.7166 3.6106 13.0370 1.9234

XGBoost
Regressor

Default parameters:
loss = ‘squared_error’,

learning_rate = 0.1,
n_estimators = 100,

subsample = 1.0,
criterion = ‘friedman_mse’,

min_samples_split = 2

0.7826 3.4995 12.2471 1.9138 0.8571 3.0464 9.2805 1.6562 0.8237 2.8478 8.1100 1.6802

Gaussian
Process

Regressor
Default parameters/NA 0.8586 2.8223 7.9658 1.7799 0.8997 2.5521 6.5136 1.6653 0.8919 2.2298 4.9724 1.5179

SVM
Regressor

Parameters:
Kernel = “linear” 0.8389 3.0131 9.0789 2.2241 0.8302 3.3203 11.0248 2.3213 0.8588 2.5482 6.4936 1.8319

Kernel = “rbf” 0.3747 5.9361 35.2376 3.4569 0.3441 6.5263 42.5938 3.7748 0.4109 5.2057 27.0992 3.1575

Kernel = “sigmoid” 0.2753 6.3902 40.8355 3.8144 0.2507 6.9757 48.6608 4.2864 0.2992 5.6780 32.2397 3.5497

Kernel = “poly”

degree = 2 0.8015 3.3440 11.1820 2.3023 0.7940 3.6570 13.3741 2.4048 0.8556 2.5772 6.6422 1.8418

degree = 3 0.8798 2.6020 6.7705 1.8348 0.8681 2.9266 8.5651 1.9164 0.8650 2.4914 6.2070 1.7467

degree = 4 0.8947 2.4357 5.9326 1.5969 0.8824 2.7630 7.6342 1.7180 0.8705 2.4408 5.9577 1.6728

degree = 5 0.9009 2.3629 5.5837 1.5843 0.8936 2.6284 6.9089 1.6899 0.8785 2.3643 5.5900 1.6301

degree = 7 0.8597 2.8119 7.9068 1.8643 0.8621 2.9921 8.9529 2.0122 0.8713 2.4331 5.9202 1.7106

3. Results and Discussion

Based on the hyperparameters in the table, the models were trained and evaluated for
the two sections below.

3.1. Predicted Results and Discussions

Using datasets for both, flexural and tensile models were trained for all techniques
and their accuracy was quantified in terms of Mean Square Error and Coefficient of Deter-
mination. The closing value of the Mean Square Error to zero means that the accuracy of
the employed model is better. The value of the coefficient of correlation is from 0 to 1. A
value of 1 for R2 means that the model perfectly predicted the target variable and a value of
zero indicates the model does not explain the variance in the dataset. In general, a higher
R2 value indicates that the model is better at explaining the variation in the target variable.
The obtained performance results exhibit a high level of excellence and are deemed suitable
for predictive purposes, surpassing the results of previous research studies. The figures
below provide a graphical representation of the detailed comparison between the actual
and predicted outcomes.

3.1.1. Decision Tree Regressor

For the case of Decision Tree Regression, the default parameters criterion = ‘squared_error’,
splitter = ‘best’, max_depth = None, min_samples_split = 2, and min_samples_leaf = 1 were
applied for the decision tree model, which was used to evaluate the flexural strength and
tensile strength of mix designs in the study. For the flexural strength evaluation, the model
was trained on an input dataset, using the default squared_error criterion to measure the
quality of the splits in the decision tree. The best splitter strategy was used to choose the
best split among all possible splits, and the default max_depth parameter allowed the tree
to expand until all leaves were pure or until all leaves contain less than min_samples_split
samples, which is set to 2 by default. The min_samples_leaf parameter was also set to the
default value of 1, which sets the minimum number of samples required to be at a leaf
node. The same strategy was applied to the tensile strength modeling. The trained values
and tested values with 10% error lines for data scattering are shown below in Figure 8.
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3.1.2. Support Vector Machine

The SVM model was used to predict the flexural and tensile strength of mixtures based
on their composition. The kernel function was used, which determines the shape of the
decision boundary used to separate the different classes in the regression problem. The
three kernel functions used are the linear, Radial Basis Function (RBF), and sigmoid kernels.

The models were trained and evaluated on five levels of degree in modeling. The
degree of the polynomial kernel determines the complexity of the decision boundary, with
higher degrees allowing for more complex decision boundaries. The degrees used were 2,
3, 4, 5, and 7. The optimum degree for the polynomial kernel function was found in terms
of the evaluation criterion established. The trained values and tested values with 10% error
lines for data scattering are shown below in Figure 9.

3.1.3. Gaussian Process Regressor

The models were trained and tested in Gaussian Process Regressor for the given
dataset. The trained values and tested values with 10% error lines for data scattering are
shown below in Figure 10.
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3.1.4. XGBOOST Regressor

The gradient boosting regression model was developed in scikit-learn python library.
This model was used to predict the flexural and tensile strength of mixtures based on
their composition. The model was optimized during training using the mean squared
error loss function, with a learning rate of 0.1. The model consists of 100 trees, with
each tree fitting on a subset of the data defined by the subsample parameter, which has
a default value of 1.0. The quality of each split in the decision tree was evaluated using
the Friedman mean squared error criterion, which has a default value of ‘friedman_mse’.
The min_samples_split parameter was used to control the minimum number of samples
required to split an internal node, with a default value of 2. To assess the accuracy of the
trained model, a subset of the available data was used for testing, with the remaining data
used for training. In this context, the flexural strength model was trained and evaluated on
datasets, and the tensile strength model was also trained. The trained values and tested
values with 10% error lines for data scattering are shown below in Figure 11.

The research compares different types of machine learning algorithms and their differ-
ence between predicted results and actual values. The table in the hyperparameter tuning
section assesses the effect of changing hyperparameters on the results of the model and
contrasts between the R2 and RMSE of different algorithms.

The best results were generated with the SVM algorithm, i.e., R2 and RMSE. Different
hyperparameters for SVM were used for empirical analysis to fine-tune the results. Among
that, the best results for tensile were on a linear kernel (R2 of 0.8454), MAE of 0.6108, MSE of
0.6603 MPa, and RMSE of 0.8126, while for flexural they were with a poly kernel of degree
5 (R2 of 0.9009, 0.8936, and 0.8785); MAE of 1.5843, 1.689, and 1.6301; MSE of 5.5837 MPa,
6.9089 MPa, and 5.59 MPa; and RMSE of 2.3629 MPa, 2.6284 MPa, and 2.3643 MPa on
Casted, Direction 1, and Direction 2, respectively. SVM can handle high-dimensionality
data and model the complex non-linear relationships among it.

The Decision Tree Regressor and XG-Boost Regressor can model relations between
discrete data or non-linear relations between attributes. However, both these algorithms
bear a high risk of overfitting. The Decision Tree Regressor and XGBoost regressor generate
optimal results on the training data; however, these fail to generalize and provide unsatis-
factory results on the test set. Both have low R2 scores and high RMSE values. For tensile,
the R2 for the Decision Tree Regressor is 0.72036 and 0.67230 for the XGBoost regressor,
and RMSE is 1.09311 MPa for the Decision Tree Regressor and 1.18332 for the XGBoost
regressor, which is worse than all experiments with SVM.
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For flexural, the Gaussian Process Regressor had results comparable to the best, with
R2 of 0.8265, 0.87778, and 0.8673 and RMSE of 3.1262 MPa, 2.8174 MPa, and 2.4701 MPa for
Casted, Direction 1, and Direction 2. In contrast, it had the worst results among all models
on the tensile dataset, with an R2 of −0.61268 and RMSE of 2.62509 MPa. This could be
because the Gaussian Process Regressor is non-parametric and learns essentially from data,
which was deficient for tensile but not flexural.

3.2. Sensitivity Evaluation

The most influential mix constituent on the cast and printed anisotropic flexural
and printed tensile strength of 3D-printed concrete was identified using sensitivity analy-
sis [178]. The process involved removing one input parameter at a time and calculating
the MAE and RMSE for each trial. The sensitivity of the input parameters was ranked,
and the mix constituent that had the most significant impact on the concrete’s strength
properties was determined. This approach helped to optimize the concrete’s properties for
3D printing purposes.

The results of the sensitivity analysis for flexural strength are presented in Table 5.
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Table 5. Sensitivity analysis of data used for modelling of most accurate regression technique deduced
from the research (SVM).

Serial
No

Removed
Parameter

RMSE
(MPa)

MAE
(MPa) Rank Removed

Parameter
RMSE
(MPa)

MAE
(MPa) Rank Removed

Parameter
RMSE
(MPa)

MAE
(MPa) Rank

Direction 1 Direction 2 Tensile

1 water 3.435388 1.707343 16 water 3.054693 1.611342 15 water 1.235907 0.542882 15
2 OPC 3.469017 1.720952 14 OPC 3.08612 1.6242 13 OPC 1.313908 0.58144 6
3 SF 3.679582 1.746922 8 SF 3.295288 1.651021 8 SF 1.372479 0.585067 5
4 FA 3.427675 1.724601 12 FA 3.043816 1.632707 9 FA 1.214197 0.527205 19
5 HRWA 3.49679 1.72722 11 HRWA 3.112101 1.632399 10 HRWA 1.279392 0.555373 12
6 Accelerator 3.429991 1.694391 17 Accelerator 3.051652 1.586162 18 Accelerator 1.242211 0.53891 17
7 Nano Clay 3.443021 1.744391 9 Nano Clay 3.031044 1.608555 16 Nano Clay 1.27908 0.586401 4
8 VMA 3.620481 1.789529 5 VMA 3.233733 1.701543 4 VMA 1.248234 0.550853 13

9 Coarse
Aggregate 3.419646 1.687259 19 Coarse

Aggregate 3.040884 1.590642 17 Coarse
Aggregate 1.227094 0.529152 18

10
Coarse

Aggregate
Size

3.420119 1.722704 13
Coarse

Aggregate
Size

3.043928 1.628047 11
Coarse

Aggregate
Size

1.300266 0.555383 11

11 Fine
aggregate 3.467813 1.719678 15 Fine

aggregate 3.089325 1.627822 12 Fine
aggregate 1.279348 0.561863 7

12
Fine

aggregate
Max size

3.529115 1.814253 3
Fine

aggregate
Max size

3.135855 1.678854 7
Fine

aggregate
Max size

1.286223 0.561064 8

13
Fiber

tensile
strength

3.578673 1.768906 7
Fiber

tensile
strength

3.151401 1.705591 3
Fiber

tensile
strength

1.471981 0.66846 1

14
Fiber

Young’s
modulus

3.783561 1.84142 2
Fiber

Young’s
modulus

3.330147 1.711165 2
Fiber

Young’s
modulus

1.611737 0.660326 2

15 Fiber
Amount 3.870431 1.901596 1 Fiber

Amount 3.327988 1.717442 1 Fiber
Amount 1.287742 0.555659 9

16 Fiber
Length 3.620481 1.789529 6 Fiber

Length 3.233733 1.701543 5 Fiber
Length 1.313256 0.592416 3

17 Fiber
Diameter 3.757303 1.796675 4 Fiber

Diameter 3.351271 1.701478 6 Fiber
Diameter 1.241695 0.539999 16

18 Print speed 3.445291 1.690833 18 Print speed 3.05888 1.585716 19 Print speed 1.199372 0.555412 10

19 Nozzle
area 3.495971 1.741203 10 Nozzle

area 3.101378 1.623677 14 Nozzle
area 1.220588 0.544233 14

20 Fibers 3.232545 1.559722 21 Fibers 2.898589 1.436404 21 Fibers 1.118979 0.510727 20
21 Sand type 3.322575 1.668542 20 Sand type 2.988024 1.514551 20 Sand type 1.102163 0.503668 21

3.3. Validation of Predictive Models

Although the model’s performance was outstanding when processing the compre-
hensive data used for training, it was imperative to evaluate its accuracy on entirely new
data that could be either part of the dataset or not. Consequently, six mix designs were
selected from the dataset to conduct the validation. These are shown in Tables 6 and 7
below. The prediction results are summarized in Figure 12 and indicate that the model’s
accuracy evaluation criteria were better. However, available literature indicates no prior
instance of this model being trained on 3D concrete printing. The findings demonstrate
that the model’s performance is still robust and dependable, even when tested on novel
data from the dataset.

Table 6. Mix composition of test mixes for tensile strength model with reported printed tensile
strength of concrete.

Tensile Strength Test Mix

Mix 1 2 3 4 5

Water (kg/m3) 289.7 256 329.8 177.12 135.19
Cement (kg/m3) 783 562 565.37 656 207.61

SF (kg/m3) 39.15 81.4 0 246 0
FA (kg/m3) 140.9 162 671.38 118 275.21

HRWA (kg/m3) 0.98 4.8 14.13 3 5.79
Nano Clay/Nano Clay 0 0 5.89 0 2.414

VMA (kg/m3) 0.49 2.41 1.18 0 0.48
Max Size (mm) 10 0 0 0 0
Amount Fine

Aggregate (kg/m3) 978.7 1144 471.14 455 275.21

Max Size (mm) 0.39 0.4 0.3 0.31 0.2
Sand Type River Sand Malmmesbury Silica Sand Silica Sand Silica Sand
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Table 6. Cont.

Tensile Strength Test Mix

Mix 1 2 3 4 5

Fiber PP PP PE PE PE
Tensile Strength MPa 300 300 300 2900 3000

Young’s Modulus
(GPA) 3 3 116 116 116

Amount (kg/m3) 1.96 22 40 10 14.55
Length (mm) 12 6 12 23 12

Diameter
(micrometer) 130 30 24 25 24

Print Speed mm/s 100 60 100 10 100
Nozzle Area mm2 1256 490.625 314 1000 314

Table 7. Mix composition of test mixes for flexural strength model with reported cast and printed
anisotropic flexural strength of concrete.

Flexure Strength Test Mix

Mix 1 2 3 4 5 6

Water (kg/m3) 244 285 210 240 156 154
Cement (kg/m3) 376 289 350 622 273 750

SF (kg/m3) 41.36 145 100 88.9 293 165
FA (kg/m3) 100 277 185 257 0 0

HRWA (kg/m3) 5.64 9 8 2.57 18 10
Nano Clay/Nano Clay 0 0 0 0 5 0

VMA (kg/m3) 0 0 4 0 0 1.08
Coarse Aggregate Amount

(kg/m3) 0 0 0 0 390 180

Size 0 0 0 0 4.75 4.75
Amount Fine Aggregate

(kg/m3) 732.6 1209 750 1066.75 878 924

Max Size (mm) 0.4 0.47 0.8 0.38 0.176 0.85
Sand Type Silica Sand Malmesbury Midas sand River Sand Silica Sand Quartz Sand

Fiber PVA Glass PP PP Steel Steel
Tensile Strength MPa 1600 450 300 3000 2500 2500

Young’s Modulus (GPA) 30 74 3.85 3 200 200
Amount (kg/m3) 7 13.5 12.7 1.2 157 39

Length (mm) 18 6 6 9 6 10
Diameter (micrometer) 39 40 30 23 200 0.12

Print Speed mm/s 110 150 0 450 30 15
Nozzle Area mm2 112.32 50.25 625 240 706.5 176.625

Casted 9 9 6.5 7.8 32.7 27.81
Direction 1 (MPa) 9.5 10 7 6.4 34 30.32
Direction 2 (MPa) 8.3 9 6.5 5.8 32.4 19.17
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4. Conclusions

ML-based predictive models for the flexural and tensile strength of 3D-printed concrete
do not exist in the literature. Therefore, this paper aimed to develop an accurate ML-based
predictive model for concrete’s cast and printed anisotropic flexural and printed tensile
properties. For this purpose, the data was collected from the literature and used to train,
validate, and test four different predictive models based on the ML techniques Decision
Tree Regression, Support Vector Machine (SVM) Regressor, Gaussian Process Regressor,
and Extreme Gradient Booster Regressor. The primary research outcomes are as follows:

Based on the collected data from the literature, the Support Vector Machine Regression-
based predictive model presents the highest degree of accuracy compared to the Decision
Tree Regressor, Gaussian Process Regressor, and Extreme Gradient Booster Regressor.

For the case of printing in Direction 1, the Coefficient of Relation (R2_score) for SVM
is 0.8936, while for DTR, GPR, and XGBOOS, it is 0.7253, 0.8997, and 0.8571, respectively.
Similarly, for printing in Direction 2, the Coefficient of Relation (R2_score) for SVM is
0.8785, while for DTR, GPR, and XGBOOS, it is 0.7166, 0.8919, and 0.8237, respectively. The
highest value of R2 of SVM compared to other techniques indicates better data fitting to the
regression model.

The values of R2 reported in this research are comparable to the findings by reporting
values of 0.84, 0.94, 0.945, and 0.92.

Although the dataset used in the study is limited in availability, the MAE, RMSE, and
MSE values also indicate a better performance of developed models, as indicated by the
test mix.

Similarly, as indicated in Tables 3 and 4, the lowest RMSE, MSE, and MAE value for
SVM indicated less deviation of predicted values from the actual values.

As indicated by the sensitivity analysis performed in Tables 3 and 4, the most in-
fluential parameter on casted and printed flexural strength of concrete is the number of
fibers (Kg/m3) in the mix design. For tensile strength, it is the tensile strength of fibers
(MPa) used in the mix design, although these are not the parameters with highest data in
the complete dataset. This shows that parameters with the largest data do not affect the
accuracy of the models.

Trail mixes from the dataset with variable compositions are used for evaluating the
models. The mean error for casted flexural strength is ±1.2 MPa, for printed flexural
strength in Direction 1 it is ±1.3 MPa, for printed flexural strength in Direction 2 it is
±1.2 MPa, and for printed tensile strength it is ±0.26 MPa.
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The least accurate predictive models for the tensile and flexural strength of 3D-printed
concrete are based on the Gaussian Process Regressor and Decision Tree Regressor, respectively.

The outcome of this research is an accurate predictive model that can be used to predict
the cast and printed anisotropic flexural strength and printed tensile strength of concrete.
Based on the evaluation criteria RMSE, MSE, R2, MAE, and Sensitivity Analysis, the Support
Vector Machine (SVM) Regression Model yields the most accurate result. The findings
provide a basis for using such techniques for practical implementation to overcome the
rigorous and challenging iterative task of mix design formulation of 3D-printed concrete.

In our study, one of the major challenges encountered was the small sample size,
which posed a risk of overfitting the model during training. We evaluated multiple regres-
sion methods such as the Decision Tree Regressor, Extreme Gradient Boosting Regressor,
Gaussian Process Regressor, and Support Vector Regressor (SVM Regressor). However,
we observed that the methods Decision Tree Regressor and Extreme Gradient Boosting
Regressor tended to overfit due to their reliance on the dataset, as they failed to learn the
underlying functions or distributions to generalize well. While GPR works by fitting a
Gaussian distribution to the data, it is prone to overfitting due to its flexibility in adjusting
parameters to fit closely to the data, particularly when the amount of data was limited. Fur-
thermore, GPR could capture noise in the data, which contributed to overfitting. However,
we found that the SVM Regressor performed better than other methods in our dataset due
to its ability to transform data into higher order planes through kernel transformations
and to find a function for the relationships between dependent and independent variables.
This allows the SVM Regressor to generalize well, even with limited sample size, as it
focuses on learning the underlying relationships rather than the data itself. Moreover, the
regularization term in the SVM regressor helps to lower the risk of overfitting. Additionally,
our dataset had a high number of parameters, which further enhanced the performance of
the SVM regressor, as it could create a higher-dimensional space to capture the relationships
between different parameters. Furthermore, unlike GPR, the SVM regressor was less prone
to outliers and noise in the data, as it relied more on support vectors, and outliers had less
weight in the overall model.

Therefore, we conclude that the SVM regressor is a more suitable method for regression
analysis when dealing with limited sample size, a high number of parameters, and the
presence of outliers and noise in the data.

In conclusion, the research has successfully developed a predictive model using
machine learning that can accurately estimate the flexural and tensile strength of 3D-
printed concrete. This model can be highly beneficial to the construction industry as it
enables the efficient selection of optimal ingredients without time-consuming laboratory
trials. Moreover, the model’s accurate predictions can lead to the improved structural
integrity of 3D-printed concrete structures, which is critical for ensuring the safety and
longevity of such constructions. Overall, the machine learning-based predictive model
developed in this study has the potential to revolutionize the construction industry by
enabling efficient and cost-effective production of 3D-printed concrete structures.

4.1. Limitation and Scope of the Study

Due to the limited available dataset, this research could not utilize the potential of
deep learning, in general, and neural networks, specifically. One of the limitations of
this study is the number of available datasets. Three-dimensional concrete printing is an
emerging construction technology worldwide, and it is currently being researched so that
the available dataset is limited and could be much better in the future. This technology
needs universal standardization of testing. Similarly, most printer designs are different, and
modeling is quite complex. Still, to overcome the issues of artificiality induced by fewer
datasets, the data points were carefully selected from 25 studies from the available literature.
Then, advanced machine-learning approaches, such as Gaussian Process Regression, Sup-
port Vector Machine Regression, Decision Tree Regression, and XGBoost Regression, were
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used. The model’s accuracy was evaluated based on the Coefficient of Correlation, Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Square Error (MSE).

4.2. Feasibility of Work and Potential Impact

Making a concrete mix with suitable rheological and mechanical properties is quite an
extensive and challenging task. Therefore, the approach researched in the paper provides a
feasible solution for an individual researcher or engineer to predict and achieve the optimal
mechanical parameters of printable concrete.

This research on concrete mix design using ML modeling to predict the mechanical
strength (flexural and tensile strength) of printable concrete can make the 3D concrete
printing of structures faster and less expensive. This is because it will reduce the need
for trial and error, leading to more accurate predictions of the mechanical strength of
the concrete.

4.3. Future Work

While this research yielded remarkable results, there exists potential for future work.
The current dataset needed to be more extensive in the number of samples available and
might experience the problem of overfitting. A new research dimension is to augment
the data through multiple techniques and compare the results on different deep learning
architectures. Neural networks can model complex non-linear relationships and learn the
patterns between data hidden and overlooked by traditional machine learning algorithms.
To counter this problem, a rudimentary approach is to collect more data samples, while an
advanced approach is to apply data augmentation techniques. Data augmentation tech-
niques such as Generative Adversarial Networks (GANs) for tabular data have produced
considerably realistic datasets that could be used for training and testing.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16114149/s1, contains the supplementary files showing
the generalized overview of the modelling procedure used in this research with DOI’s of the data
set used.
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