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Abstract: The purpose of this paper is to present a new approach for the modelling of post-tensioned
beams with calibration of the FE model to experimental results until the load capacity and post-
critical state are reached. Two post-tensioned beams with different nonlinear tendon layouts were
analysed. Material testing for concrete, reinforcing steel and prestressing steel was performed
prior to the experimental testing of the beams. The Hypermesh program was used to define the
geometry of the spatial arrangement of the finite elements of the beams. The Abaqus/Explicit solver
was used for numerical analysis. The concrete damage plasticity model was used to describe the
behaviour of concrete with different laws of elastic–plastic stress–strain evolution for compression
and tension. Elastic-hardening plastic constitutive models were used to describe the behaviour of
steel components. An effective approach to modelling the load was developed, supported by the use
of Rayleigh mass damping in an explicit procedure. The presented model approach ensures good
agreement between numerical and experimental results. The crack patterns obtained in concrete
reflect the actual behaviour of structural elements at every loading stage. Random imperfections
found during experimental studies on the results of numerical analyses were also discussed.

Keywords: post-tensioned beams; experimental investigations; finite element method analysis;
concrete damage analysis

1. Introduction

Prestressed elements are successfully used worldwide to obtain longer spans, higher
load capacities and to reduce the dead weight of structures. However, the most important
factor for assessing the safety of structures is to understand the behaviour of materials and
their properties, especially in accidental situations. The results of the behaviour analysis of
structural elements can be obtained during experimental studies or predicted in advanced
modelling using the finite element method (FEM). Even the most detailed numerical
modelling cannot be treated as a relevant result. It should be calibrated with experimental
tests prepared for structural element geometry, material properties and loading conditions.

Prestressed structures have been studied by many researchers, and their approaches
to verifying the behaviour of structural elements are different and apply to different types
of elements.

There are several published works aimed at verifying the behaviour of structural
elements under the action of prestressing force on the basis of experimental studies. Noble
et al. [1] studied the behaviour of post-tensioned beams in static and dynamic impact tests.
Limongelli et al. [2] conducted tests on prestressed concrete beams with different tendon
arrangement to verify intelligent systems for the prevention of structural hazards due to
aging effects. Ng Koon and Tan Hwee [3] have analysed the influence of the span to depth
ratio on the flexural behaviour of externally prestressed beams. Six et al. [4] tested the
bending behaviour of three-span unbonded post-tensioned elements at a span to depth ratio
of 45. Rawi et al. [5] have compared the behaviour of prestressed slabs with traditionally
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reinforced concrete slabs under low-velocity impacts. Kim et al. [6] conducted tests on
full-size specimens of PSC bridge girders to obtain friction characteristics of post-tensioning
tendons. Szydłowski and Łabuzek [7] analysed shrinkage, creep and prestressing losses
in post-tensioned concrete beams as a result of using a lightweight aggregate obtained by
sintering fly ash.

Some of the work was aimed at confirming that the new theoretical approaches lead to
a good agreement between the results of analytical and experimental studies. Fu et al. [8]
developed a method for assessing the stiffness of existing cracked post-tensioned concrete
beams with unbonded tendons. Kim and Lee [9] developed a method of nonlinear analysis
for continuous post-tensioned elements, and then compared the obtained results with the
results of experimental tests.

Several authors have calibrated the FEM results using experimental investigations or
empirical formulations. There are various modelling techniques to model prestressed con-
crete elements, either 2D or 3D. In the publications, reinforcing steel bars are often modelled
as truss elements (T3D2) embedded in the concrete material. Tendons are usually defined
as truss elements, 2-node beam elements (B31) or solid elements (C3D8). Approaches to
modelling stress–strain relationship for structural materials also differ. Some researchers do
not include tension stiffening for concrete in the analysis and some of them do not consider
the plastic hardening of steel.

Kang et al. [10] studied the behaviour of post-tensioned concrete elements with bonded
and unbonded tendons. Three-dimensional structural models were developed to compare
the results with experiments. The concrete material, tendon ducts and steel plates were
modelled with solid elements. Truss finite elements were used to model the reinforcing
steel. The interaction between the tendon and concrete was modelled with contact defini-
tion between surfaces. The concrete damage plasticity (CDP) model was used, but without
specifying the damage parameters. Hafezolghorani et al. [11] developed a simplified
concrete damage plasticity model and tested it in the FE model of a prestressed concrete
beam with a straight tendon modelled with solid elements. Concrete material was also
modelled as solid, but steel rebars were truss elements in 3D space. A nonlinear softening
path was introduced in the concrete model. Brenkus et al. [12] developed FE models of a
post-tensioned I-girder bridge construction with various types of fillers. Pre-tensioning and
post-tensioning tendons were modelled as truss elements, while the interaction of tendons
with the concrete was modelled with a virtual tendon. A nonlinear approach for tension
stiffening was adopted. Ellobody and Bailey [13] developed a nonlinear 3D FE model to
study the effects of changing the type of aggregate, load ratio and boundary conditions
on the behaviour of a post-tensioned concrete slab loaded at elevated temperatures. The
obtained results were verified by experimental trials. FEM models consisted of concrete,
straight unbonded tendons and anchorages modelled as solid elements. The CDP model
was used with concrete linear elastic behaviour limited to 0.33 fc and tensile failure stress of
0.1 fc. Lee et al. [14] investigated the effect of external post-tensioning of a steel bar system
using the CDP model to verify the concrete damage behaviour and then compared the
numerical results with experimental tests. Authors obtained good agreement between nu-
merical and experimental results in terms of the crack patterns, displacement and strength
of the post-tensioned beams. Strengthening members and concrete were modelled as shell
elements. Truss elements were used as internal reinforcement, and 2-node linear beam
elements were used as external bars. Embedding conditions for the steel rebar were used,
and surface contact between concrete and saddle pin was defined. Tensile failure stress
was assumed at 0.1 fc, with an ultimate tensile strain of 10 ft/Ec. The linear behaviour of
concrete in the softening phase was assumed. Huang et al. [15] verified two modelling
approaches to simulate unbonded conditions of post-tensioned slabs. The first consisted of
contact techniques reflecting the real physical state, and the second of a multiple-spring sys-
tem, which proved to be more flexible in modelling due to the convergence of the solution.
Bonded steel reinforcing bars were modelled with truss elements embedded in the concrete
material, and post-tensioned tendons were modelled with 2-node beam elements (B31). The
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CDP model was used for concrete, but without damage modelling during the unloading
process. The developed FE results were compared with experimental results. A good
agreement of moment to deflection responses and damage patterns between the numerical
spring system model and the experimental results of post-tensioned slab specimens were
obtained. Tran et al. [16] developed a 3D FEM model of precast dry-joined segmented
concrete girders internally prestressed with unbonded FRP tendons to verify flexural be-
haviour of the beams. The concrete material, tendons and anchorages were modelled using
solid elements, and the reinforcing steel bars using truss elements. The authors defined load
in the models by forcing the displacement. The compressive stress of 0.4 fc was assumed
as the elastic limit of concrete. Pham and Hong [17] studied the evolution of strains in
post-tensioned beams, with bonded or unbonded curved tendon systems, using the CDP
model for concrete. Numerical stability was achieved by introducing an artificial damping
factor and viscosity parameter. In the FEM beam models, both tendons and concrete have
been modelled as solid elements. Longitudinal steel reinforcing bars were also modelled
with solid elements, while the stirrups were created as truss members. The limit of the
linear elastic behaviour of concrete at the level of 0.4 fc and nonlinear softening in tension
were assumed. Wang et al. [18] analysed the ductility and resistance of prestressed concrete
beams reinforced with an internal H-steel section, using FEM models and load–deformation
curves. The multi-span system of tendons and stirrups was modelled using truss finite
elements. The H-steel section was modelled with shell finite elements (S4R) and concrete
material was defined as a solid finite element. The contact surfaces of H-steel section and
the tendons embedded in the concrete was modelled as the bonding condition. It was
assumed that the elastic limit of concrete is reached at 0.5 fc. Cornejo et al. [19] developed a
3D FEM model of post-tensioned concrete elements to study the reduction of prestressing
stress in tendons as a result of steel relaxation. Structural elements were modelled as a
composite material whose behaviour was described by the serial-parallel rule of mixtures
(S/P RoM). Stress relaxation was simulated using the generalized Maxwell visco-elastic
model. Various models have been developed where tendons are modelled as truss finite
elements embedded in the concrete material.

FEM models are also used to verify the local behaviour of different parts of a pre-
stressed structure in the event of their actual failure in order to investigate the cause of the
loss of load capacity.

Chrościelewski et al. [20] investigated the cause of concrete cracking during tensioning
in the areas of the anchorage head. A numerical model of a single section of the bridge
structure was developed. The concrete material was modelled as a solid finite element,
anchorages—as shell finite elements and steel reinforcing bars—as truss elements. For
concrete material, the CDP model with a linear softening path was used. Setiawan et al. [21]
analysed the behaviour of the anchorage zone of the existing bridge section during the
tensioning process. The FEM model has also been developed with concrete and anchorage
plates modelled as solid finite elements, and with steel reinforcing bars modelled as truss
finite elements. An embedded interaction element was used between the concrete and the
tendon. Huang and Kang [22] developed FEM models to verify the sliding behaviour in
post-tensioned members. The authors considered unbonded, partially bonded and fully
bonded conditions. The nonlinear FEM code was developed in a MATLAB environment.
Post-tensioned tendons were modelled as nonlinear truss finite elements embedded in the
concrete, which was modelled as a two-node Euler–Bernoulli beam finite element.

The following observations emerge from the bibliography review. Combined exper-
imental studies and finite element method modelling for post-tensioned structures are
carried out by relatively small group of researchers. Tests and analyses of post-tensioned
beams are usually limited to a straight tendon route. Comparative analysis of the behaviour
of post-tensioned beams with different curvilinear tendon systems in combined experi-
mental studies with numerical modelling were not the subject of research. The approach
to the creation of finite element meshes is similar for all material components. However,
concrete is most often modelled as a solid element, the anchorages of the tendons are



Materials 2023, 16, 4141 4 of 32

modelled in a simplified way as flat elements and the reinforcing bars are modelled as truss
elements in a 2D plane or in 3D space. Due to the approach to modelling adopted in other
publications, the local loss of concrete stiffness caused by the specific location of reinforcing
bars, especially stirrups, was not taken into account in the modelling of crack propagation
in concrete. Damage analysis is usually performed with a concrete damage plasticity (CDP)
material model implemented in Abaqus. However, no numerical analyses take into account
the damage of concrete that is already under compression from the beginning of the plastic
hardening phase. In addition, no detailed description of the development of concrete
damage in particular deformation phases of post-tensioned beams is provided, which is
important for understanding the behaviour of beams under the influence of external loads.

The aim of this article is to present a new approach to the modelling of post-tensioned
beams with a detailed calibration of the FEM model to the experimental results until the
load capacity and post-critical state are reached. Two post-tensioned beams with curvilinear
systems of tendons with different eccentricities were experimentally tested. As part of the
experimental studies, strength tests of concrete, prestressing steel and reinforcing steel bars
were also performed. The finite element method for beam models was developed using
Abaqus/Explicit approach. Hypermesh was used to define the finite element mesh. A
spatial model of the entire beam was developed without applying symmetry conditions.
Hexahedral finite elements were used to model all construction materials. The finite
elements of the curvilinear tendons and all reinforcing bars were surrounded by the finite
elements of the concrete. The anchorages were modelled as multi-segment steel blocks.
Appropriate contact conditions of finite elements for concrete with lateral surfaces of
finite elements for all steel structural elements were also modelled. The concrete damage
plasticity model was used to describe the behaviour of concrete. A four-phase model of
stress–strain evolution for compression and a three-phase model for tension was proposed.
These models included an extended range of damage description from the onset of plastic
hardening in compression and in the range of constant residual stress both in compression
and tension. The method proposed in the papers of Cichorski and Stolarski [23,24] and
Stolarski et al. [25] was used to estimate the value of stresses and strains of concrete at the
phase boundaries of the stresses and strains evolution model, both in compression and
tension. Elastic—hardening plastic constitutive material models, were used to describe
the behaviour of steel tendons, rebars and anchorages. The static, load—displacement
analysis of a post-tensioned beam was obtained using an explicit solution procedure
with load application modelling and selection of the Rayleigh mass-damping coefficient.
The comparative analysis carried out showed a good agreement between the numerical
results and the experimental results. A detailed analysis of the stress state in the concrete,
reinforcing steel, tendon and anchorages was presented. Particular attention was paid
to explaining the development of concrete damage in each phase of the behaviour of
post-tensioned beams. The possibility of modelling the influence of unintended, random
material imperfections found during experimental studies on the results of numerical
analyses was also discussed.

2. Experimental Research
2.1. Post-Tensioned Concrete Beams

Two post-tensioned beams were designed. Their cross-section size was 150 mm × 220 mm
from C40/50 designed concrete class. Both beams were 3.2 m long. Main prestressing
reinforcement was assumed as a single-strand 7-wire tendon with a 15.2 mm diameter
and a total cross-section of 139 mm2, the characteristic tensile strength declared by the
manufacturer was fpk = 1860 MPa with a minimum ultimate capacity of Pult = 259 kN.
An unbonded prestressing system was used in both beams (low friction between the ten-
don and the concrete, without usage of injection grout). Two different tendon profiles
were designed in each beam. The tendon in the first beam (beam No. 1, Figure 1a) was
designed with a 300 mm straight part along its length at the beam faces to avoid any
additional bending moments at the anchorage zone and above the supports. Then, the
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tendon profile was parabolically changed to achieve 25 mm eccentricity measured from
the centreline of the beam’s cross-section to the tendon’s centre. The second beam (beam
No. 2, Figure 1b) had a similar approach in terms of the principles of the tendon layout
(straight part at the beam faces); however, it was parabolically changed to achieve 55 mm
eccentricity in the mid-length of the beam. For details of the analytical design of the beams,
see Jancy et al. [26].

Figure 1. Geometry of the beams and tendon layout: (a) beam No. 1 with 25 mm tendon eccentricity
and (b) beam No. 2 with 55 mm tendon eccentricity.

Mono-strand TTM 1E15 anchorages were used in both experimental beams, Figure 2.

Figure 2. TTM 1E15 tendon anchorage.

Additionally, beams were reinforced with steel reinforcing bars. Two 10 mm diameter
bars were located in both the upper and lower parts of the section. The cross-sectional area
of these reinforcing bars was designed as minimum reinforcement area required to control
cracking. Both post-tensioned beams were designed in a such a way that the ultimate load
capacity was determined by the strength of the concrete compression zone. Shear capacity
was increased by stirrups of 6 mm diameter at the 60 mm spacing in the support zone and
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then with 105 mm spacing within the central part of the beam. At the anchorage zones,
spiral reinforcement and additional stirrups were provided according to the European
Technical Approval of the manufacturer anchorages, Tension Technology Martin S.r.l. [27].
Reinforcement, tendons and anchorages are presented in the Figure 3.

Figure 3. Tendon with anchorages and steel reinforcement: (a) beam No. 1 and (b) beam No. 2.

2.2. Loading and Testing Program

During concreting of the beams, 5 samples of 150 mm × 150 mm × 150 mm concrete
cubes were taken for compressive strength test according to PN-EN 206 + A1:2016-12 [28].

On the 28th day, 2 concrete samples were tested, the formwork of the beams was
removed, and the tendon was prestressed to the first level of prestressing force of 158 kN.

On the 45th day, i.e., on the day of beam testing, the concrete strength of 3 samples
was checked and the tendon was prestressed to the second level of prestressing force of
206.1 kN.

2.3. Structural Materials Testing
2.3.1. Concrete

The machine controls of I-st accuracy class were used to conduct the testing. The
results of compressive strength tests fci,cub and the mean compressive strength fcm, cub for
the concrete cube samples, are presented in the Table 1.

Table 1. Concrete compressive strength experimental results.

Age of
Concrete

(Days)

Sample
No.

Cube
Compressive Strength

fci,cub

Cube Mean
Compressive Strength

fcm,cub

Concrete
Density
(kg/m3)

28
1 57.7

58.1

2320

2 58.4

45
1 60.1

61.42 62.7
3 61.4

According to the compliance criteria for the compressive strength test specified in
PN-EN 206 + A1:2016-12 Annex B, [28]: “the test result should be the average of the results
obtained on at least two test samples made of one sample of the mixture and tested at the
same age”. Therefore, the compliance criteria for the designed concrete class C50/60 have
been met.

2.3.2. Prestressing Steel

A tensile strength test was performed for three samples taken from the prestressing
strand. This strand was used to transfer prestressing force into concrete in the beams.
Experimental results for tensile strength fp0.1 registered at 0.1% permanent strain and
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tensile ultimate strength limit fpt, modulus of elasticity Ep and elongation at failure εpt
were obtained from tests. The results with their mean values are presented in the Table 2.

Table 2. Prestressing steel experimental results.

Sample
No.

Bar Section Area
(mm2)

fp0.1
(MPa)

fp0.1m
(MPa)

fpt
(MPa)

fptm
(MPa)

Ep
(GPa)

Epm
(GPa)

εpt
(%)

εptm
(%)

1 20.83 1802.00
1816.03

1944.07
1949.47

212.00
213.65

2.80
2.872 20.83 1807.70 1946.72 212.67 2.80

3 20.83 1838.38 1957.62 216.28 3.00

Figure 4 presents the stress—strain relationship obtained from the experimental
strength verification of the prestressing bars.

Figure 4. Stress–strain experimental relationships for the prestressing steel.

2.4. Reinforcement Steel Bars

Reinforcing steel grade B500SP, class C with increased ductility was used. The results
of the reinforcement steel bars’ tensile strength tests are presented in Table 3.

Table 3. Tensile strength of reinforcement steel.

Type of Bar Bar Section Diameter
(mm)

Yield Limit
fy (MPa)

Tensile Strength
ft (MPa)

Longitudinal bars 10 540 615
Stirrups 6 532 620

2.5. Stand and Method for Strength Testing of the Beams

Ultimate capacity of the beams was verified using the ZD40 strength machine of the
I-st accuracy class with a maximum load application up to 400 kN. For the purposes of the
tests, additional steel beams for both supporting and loading zones were introduced to
allow for testing of 3200 mm long beams. Based on the following, a four-point bending
scheme was adopted with two loading and two support points, as shown in Figure 5.
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Figure 5. Beams on the load capacity test stand: (a) beam No. 1 (NOTE: the beam was placed on
the test stand symmetrically in relation to the centre point (A0) of beam A; the grid of measurement
points on the lateral plane of the beam was asymmetrical) and (b) beam No. 2.

Loading was applied with a constant value of maximum 0.8 kN/s. Results were
recorded with Phantom MIRO M310 camera with a recording speed of 3260 fps at a maxi-
mum resolution of 1280 × 800 pixels and high-resolution digital camera Nikon D5200 with
a maximum photo resolution of 6000 × 4000 pixels. Photos were taken every one second.

2.6. Results of the Experimental Research of Strength Testing of the Beams

Both beams were loaded until the ultimate strength of the concrete was achieved.
For each beam test, damage progression was similar. Firstly, uniformly distributed per-
pendicular cracks appeared at the largest bending moment area (Figures 6 and 7), then
a local damage of the compression zone was achieved (Figures 8 and 9) and finally after
the ultimate load was achieved, the steel reinforcing bars buckled, which caused further
concrete degradation within both compression and tension zones (Figure 10). The obtained
behaviour of the beams reflects the design assumptions regarding the ultimate capacity
depending on the compressive strength of the concrete.

The highest concentration of degradation within the compression zone appeared
between loading points for beam No. 1. For beam No. 2, it was localized under the left
loading point. It has been noted that the loading beam had rotated during the loading
force application process, which could be a reason for the damage concentration at the left
loading point instead of at the middle part of the beam.
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Figure 6. Initial perpendicular cracks propagation in beam No. 1.

Figure 7. Initial perpendicular cracks propagation and horizontal crack below left loading point in
beam No. 2.

Figure 8. Compressive zone failure in beam No. 1.

Figure 11 presents obtained results of the loading force to displacement relationship
for both beams. Ultimate force value for beam No. 1 was Qu1 = 80.90 kN, the value occurred
at u1 = 36.60 mm of vertical displacement. For beam No. 2, ultimate capacity was equal to
Qu2 = 94.80 kN with u2 = 53.11 mm displacement achieved.
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Figure 9. Compressive zone failure in beam No. 2.

Figure 10. Local buckling of the steel reinforcing bars in beam No. 1.

Figure 11. Experimental curves for loading force vs. displacement of the measuring point A.

3. Numerical Models of the Post-Tensioned Concrete Beams
3.1. Numerical Model Description

Due to multiple curvatures caused by assumed tendon layout, a proper model meshing
has a crucial impact on the obtained results. In addition, a post-tensioned beam has
anchorages on both ends to maintain prestressing force in the beam, which has further
implications on the FE modelling approach. The developed models consist of a tendon
in a nonlinear route layout, two anchorages on both ends, steel reinforcing bars (both
longitudinal bars and stirrups) and concrete material. The finite elements of all the beams’
component parts were created as C3D8R spatial elements in the Hypermesh and then mesh
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geometry was exported to Abaqus/Explicit to perform the computational analysis, shown
in Figure 12.
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Figure 12. FE spatial computational model: (a) beam No. 1 and (b) beam No. 2.

The model of beam No. 1 has 121,951 nodes and the model of beam No. 2 has 114,121 nodes.
The finite elements of tendon, steel reinforcing bars and concrete material stiffnesses are
not duplicated, so the model stiffness is not artificially increased. Each component part
of each beam contains its own finite elements with the corresponding contact parameters
defined between each of them, as shown in Figure 13.

Tendon with anchorages and steel reinforcement were modelled as a separate FE-s as
shown in the Figure 14.

3.2. FE Mesh Details

The mesh size of the beam model was dependent on the geometry and curvature of
the tendon in different areas of the beam, the location of the anchorages and the location
of the steel reinforcement. Generally, a 20 mm × 20 mm mesh grid was provided along
longitudinal direction, but mesh density was reduced to a 10 mm × 10 mm grid between the
loading blocks. At the stirrups’ location, a 5 mm × 5 mm mesh was provided. Additionally,
mesh elements located next to the stirrups in the zone between loading blocks were also
meshed with a denser mesh of 5 mm × 5 mm. Two areas of denser mesh were provided for
the elements adjacent to the tendon (above and below the tendon). Those were meshed
with 5 mm × 5 mm elements, as shown in Figure 15a.

Beam No. 2, due to the higher inclination angle of the tendon, had smaller element
sizes for the mesh elements adjacent to the tendon within areas with the largest tendon
eccentricity. Here, the smallest element size was 4 mm × 4 mm, show in Figure 15b.
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Figure 13. Central longitudinal cross section through FE model: (a) beam No. 1 and (b) beam No. 2.

Figure 14. FE mesh details of steel reinforcement and tendon with anchorages: (a) beam No. 1 and
(b) beam No. 2.

3.3. Materials Models Definition
3.3.1. Prestressing Steel

The defined values of the stresses and strains for prestressing bars are calibrated with
experimental results presented in Section 2.3.2.
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Figure 15. The FE mesh quality between the anchorage and the centre of the beam, longitudinal
section through the middle of the beam and front view: (a) beam No. 1 and (b) beam No. 2.

Constitutive model of prestressing steel is defined by elastic and nonlinear plastic
material properties. The four-linear stress–strain diagram was properly adjusted to the
experimental curve shown in Figure 16.

Figure 16. Stress to strain relationship for prestressing steel.

The following characteristic points of the stress—strain diagram were assumed:

1. Elastic strength limit;
2. Lower yield limit equal to the tensile strength at 0.1% permanent plastic strain;
3. Upper yield limit;
4. Ultimate tensile strength.

Corresponding stress and strain values at each characteristic point are presented in
the Table 4.

Table 4. Stress and strain values for prestressing steel at the characteristic points.

Characteristic Point No. Stress (MPa) Strain

1 1424.06 0.007
2 1816.03 0.010
3 1878.67 0.012
4 1949.47 0.0287
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3.3.2. Steel Components

For the other steel components present in the FE model, i.e., reinforcing bars and
anchorages, a catalogue of values of strength and deformation parameters were adopted
based on the manufacturer’s information, Tension Technology Martin S.r.l. [27], with the
exception of strength values for reinforcing steel, for which these parameters have been
tested, see Table 3.

Based on the modulus of elasticity and yield strength values, the elastic strain values
were calculated. Steel properties for anchorages have the largest ultimate strain values,
which indicate the highest ductile level of all presented steel types. The strength and
deformation parameters of steel components are presented in the Table 5.

Table 5. Strength and deformation parameters of steel components.

Type of
Component

Modulus of
Elasticity (MPa)

Yield Strength
(MPa)

Elastic
Strains

Ultimate Tensile
Strength (MPa)

Ultimate
Strains

Rebar H6 210,000 532 * 0.00253 620 * 0.08
Rebar H10 210,000 541 * 0.00258 615 * 0.08
Anchorage 200,000 430 0.00215 700 0.16

* Tested values according to Table 3.

A constitutive model of steel components is defined by elastic and linear plastic
hardening material properties. Based on the adopted strength and deformation parameters,
bilinear, elastic–plastic with linear hardening and stress–strain relationships, are presented
in Figure 17.

Figure 17. Stress to strain relationship for steel components.

3.3.3. Concrete

The concrete damage plasticity model was used for numerical analysis. There are
several publications by Jankowiak et al. [29], Sumer and Aktas [30], Voyiadjis and Taqied-
din [31], Yu et al. [32], Bernkus et al. [12] and Szczecina and Winnicki [33], in which the
basic model approach is explained, therefore in this article the authors will focus on the
parameters of the concrete material model, established only in considered analysis.

At first, the basic parameters of the CDP model were assumed, such as dilation angle
ψ, plastic flow potential eccentricity ε, ratio of initial compressive strength in an equal
biaxial stress state to initial uniaxial compressive strength σb0/σc0, ratio of the second
stress invariant on the tensile meridian Kc and viscosity parameter µ. Table 6 presents the
assumed material model parameters.
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Table 6. Assumed CDP material model parameters.

Parameter ψ
(◦) ε σb0/σc0 Kc µ

Value
56.3

range:
[10; 56.3]

0.1
range:

[0.1; 1.0]
1.16

0.677
range:

[0.5; 1.0]
0

From the above-mentioned parameters, the dilation angle ψ and the eccentricity of
the plastic flow potential ε have the greatest impact on the obtained results. An important
stage of the analysis is the appropriate calibration of the model parameters in relation to
the experimental results. The dilation angle was analysed in the range of 10◦ ≤ ψ ≤ 56.3◦.
Smaller values of the dilation angle are more appropriate for structural elements in high
shear or at brittle failure, while higher values better reflect damage to the ductile material.
Similar studies were carried out on the influence of the eccentricity of the plastic flow
potential in the range of 0.1 ≤ ε ≤ 1.0 and the influence of the ratio of the second stress
invariant on the tensile meridian in the range of 0.5 ≤ Kc ≤ 1.0 on the numerical results.

Then, the stress–strain relationships for compression and tension together with the
damage variables, were determined. The basis for the description of these relationships
is the determination of the mean values of concrete’s compressive and tensile strength as
well as the deformation modulus. For this purpose, the authors assume that all concrete
parameters relevant to the analysis depend on the mean compressive strength fcm,cub for
the concrete cube samples, which was obtained from the tests and is presented in Table 1.
The procedure of the parameters of actual concrete class determination is based on both the
partial experimental results as well as on the parameters of two adjacent classes of concrete
defined by the standard [34]. In this sense, the actual concrete class has an interpretation as
a theoretically possible strength class.

Therefore, if the actual concrete class:

Ca = C fck,cyl,a/ fck,cub,a (1)

is an intermediate class between two consecutive standard classes of concrete:

C0 = C fck,cyl,0/ fck,cub,0 and C1 = C fck,cyl,1/ fck,cub,1 (2)

this assuming that:
fck,cub,a = fcm,cub (3)

the following value can be determined by linear interpolation:

fck,cyl,a = fck,cyl,0 +
fck,cub,a − fck,cub,0

fck,cub,1 − fck,cub,0

(
fck,cyl,1 − fck,cyl,0

)
(4)

which is the basis for determining the mean values of the concrete compressive and tensile
strengths, and the deformation modulus, [34]:

fcm = fck,cyl,a + 8 (5)

fctm =

{
0.3
(

fck,cyl,a

)2/3
i f C ≤ C50/60

2.21 ln(1 + 0.1 fcm) i f C > C50/60
(6)

Ecm = 22( fcm/10)0.3 (7)

Taking into account that the mean compressive strength for the concrete cube sam-
ples is fcm,cub = 61.4 MPa, Table 1, the two adjacent standard classes of concrete are
C0 = C50/60 and C1 = C55/67. Hence, the actual concrete class is Ca = C51.0/61.4,
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Equation (1). As a result, the mean compressive strength is fcm = 59.0 MPa, Equation (5),
the mean tensile strength is fctm = 4.095 MPa, Equation (6)2, and the mean deformation
modulus is Ecm = 37.47 GPa, Equation (7).

Concrete material is very sensitive to creep effects. It is often found that FE models
obtain much stiffer behaviour than experimental beams; however, even if the experiment
happens just a few days after pouring the concrete, creep and shrinkage effects occur. This
is one of the reasons why the authors have found it important to include creep effects in the
FE analysis. This approach is based on the assumption that the total deformation including
creep is calculated by using an effective deformation modulus for concrete according to the
formula, EN 1992-1-1 [34]:

Ecm,e f f =
Ecm

1 + ϕ(t, t0)
(8)

where: ϕ(t, t0) is the creep coefficient relevant for the load and time interval.
The creep coefficient is calculated using the method provided in EN 1992-1-1 [34], in

the Annex B—creep and shrinkage strain.
Considering that the beams were supported by a formwork until compressive strength

was reached, and were prestressed to the first prestressing force level in t0 = 28 day, beam
tests were performed in t = 45 day after pouring the concrete, and the relative humidity
was RH = 50%, the authors have obtained a creep coefficient equal to ϕ(t, t0) = 0.78,
and an effective deformation modulus for concrete equal to Ecm,e f f = 21.05 GPa. By
including creep coefficient in the numerical analysis, deformation modulus is reduced by
approximately 44%, which has a significant impact on the beam’s behaviour.

The most crucial factor for the proper definition of the constitutive relationship in the
concrete damage plasticity material model is the adoption of the appropriate law of stress
evolution in the strain function. For this purpose, separate laws of evolution were adopted
for compression and tension, as shown in Figure 18.

Figure 18. Description of compression and tension behaviour of concrete in CDP model.
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For compression, an elastic–plastic material model with non-linear hardening, linear
softening and constant residual stress was assumed. For tension, the elastic material model
with linear softening and constant residual stress was adopted.

This model is described by the following stress–strain relationships:

σc =



− fctr if εc ≤ −εctr
−[ fctr − Ects(εc + εctr)] if −εctr ≤ εc ≤ −εct f

Ecεc if −εct f ≤ εc ≤ εce

fce + ( fc − fce)
kη−η2

1+(k−2)η if εce ≤ εc ≤ εc f

fc + Ecs

(
εc − εc f

)
if εc f ≤ εc ≤ εcr

fcr if εc ≥ εcr

(9)

where: fc is the compressive strength, fce = βce fc is the compressive elastic limit, βce is the
elastic range coefficient in compression, fcr = βcr fc is the residual compressive strength,
βcr is the residual strength range coefficient in compression, εce =

fce
Ec

is the elastic strain
limit in compression, Ec is the elastic deformation modulus, εc f is the strain limit in the
range of plastic hardening in compression, η = εc−εce

εc f −εce
is the relative strain in the range

of plastic hardening in compression, k = Ec
εc f −εce
fc− fce

is the proportionality coefficient of the

deformation modules in the range of plastic hardening in compression, Ecs = − fc− fcr
εcr−εc f

is
the deformation modulus in the range of plastic softening in compression, εcr is the strain
limit in the range of plastic softening in compression, fct is the tensile strength, εct f =

fct
Ec

is
the elastic strain limit in tension, fctr = βctr fct is the residual tensile strength, βctr is the
residual strength range coefficient in tension, Ects = − fct− fctr

εctr−εct f
is the deformation modulus

in the range of plastic softening in tension and εctr is the strain limit in the range of plastic
softening in tension.

A full description of the adopted law of stress evolution in the strain function for
concrete modelling is possible with the following parameters, Table 7.

Table 7. Concrete model parameters.

Parameter Value

fc = fcm 59.0 MPa
fct = fctm 4.095 MPa

Ec = Ecm,e f f 21.05 GPa
βce = [0.2; 0.5] 0.4
βcr = [0.05; 0.4] 0.1
βctr = [0.05; 0.2] 0.1

εc f 3.45‰
εct f 0.19‰

εcr = [6.0; 12.0]‰ 6.0
εctr = [0.3; 0.6]‰ 0.42‰

More detailed information on the modelling of concrete behaviour is presented, among
others, in the works of Cichorski and Stolarski [23,24] and Stolarski et al. [25].

The last step of the CDP material model definition is a proper assignment of the
damage parameters for both compressive and tensile zones. It was assumed that the
damage parameter is proportional to the maximum stress value that material is capable to
withstand to the actual residual stress which occurs.
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In accordance with this assumption, the damage model is described by the following
damage–stress relationships:

d =



dt max if εc ≤ −εctr

dt max
−εc−εct f
εctr−εct f

if −εctr ≤ εc ≤ −εct f

0 if −εct f ≤ εc ≤ εce
dc mmax

εc−εce
εc f −εce

if εce ≤ εc ≤ εc f

dcS min + (dc mmax − dc min)
εc f −εc
εc f −εcr

if εc f ≤ εc ≤ εcr

dc max if εc ≥ εcr

(10)

where: dtmax and dcmax are the maximum values of the damage parameter in tension and in
compression, respectively, dcHmax is the maximum value of damage parameter in the range
of plastic hardening in compression, dcSmin and dcSmax are the minimum and the maximum
values of damage parameter in the range of plastic softening in compression, respectively.

A full description of the adopted damage model is possible with the following limit
values of damage parameters:

dcHmax = dcSmin = 0.05, dtmax = dcmax = dcSmax = 0.9 (11)

Figure 19 shows the implemented stress–strain relationship with the corresponding
damage variables. There are characteristic horizontal lines of the stress—strain diagram
describing the residual stresses. The advantage of such modelling is to ensure the greatest
ductility of the concrete material in interaction with steel reinforcement in reinforced
concrete structure to enable extended damage simulation within the FE model.

Figure 19. Stress to strain relationship and damage variables for concrete.

3.3.4. True Stress—Strain Relationships

All experimental, code and analytical stress and strain relationships discussed above
are considered nominal. For the purposes of numerical analysis, they have been trans-
formed into true stress–strain relationships, based on the equations:

εtrue = ln(1 + εnom) (12)

σtrue = σnom(1 + εnom) (13)

where: εnom—nominal strain and σnom—nominal stress.
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3.4. Contact Definition

Anchorages, stirrups and longitudinal rebars are permanently connected with concrete
material, without any slippery action. The surface-to-surface contact was used as a contact
discretization method, consisting of the equality of displacements in the nodes of both
contacting surfaces. The same assumption was made for contact between the outer surface
of the tendon and the inner surface of the hole in the anchorage.

Due to the assumed unbonded post-tensioned system in the experimental research,
similar behaviour needed to be reflected in the numerical model. In this case, the interaction
between the outer surface of the tendon and the inner concrete surface at the contact points
is defined as the kinematic contact method with finite sliding. Contact interaction properties
were defined in tangential and perpendicular directions to the tendon. Within a tangential
direction, the friction formulation was used with a friction coefficient of µ = 0.06, taken
according to the manufacturer specification, Tension Technology Martin S.rl. [27].

In turn, in the perpendicular direction, the contact pressure can be defined alternatively
for two cases. Namely, if any contact occurs, the contact pressure is transferred between the
defined surfaces, or if surfaces do not touch or separate after contact, the contact pressure
drops to zero. In the numerical analysis it was assumed that the tendon is tightly embedded
with concrete, and that it is not possible to separate the two materials in a perpendicular
direction.

3.5. Explicit Solving Procedure

Static analysis of post-tensioned beam will be obtained using an explicit solving
procedure based on limit formulation of the dynamic equilibrium equation of motion.

3.5.1. Dynamic Equilibrium Equation for Static Problems Analysis

An explicit procedure was used for solving the equation of motion under the as-
sumption of the lumped mass matrix of diagonal structure, see Wriggers [35]. Then, the
accelerations at the beginning of the current time were calculated as:

..
w(t) = M−1[P(t)− C

.
w(t)− Kw(t)

]
(14)

where: M, C and K are the nodal mass, damping and stiffness matrices,
..
w(t),

.
w(t) and

w(t) are the nodal accelerations, velocities and displacements vectors and P(t) is the vector
of the external applied forces.

The Rayleigh model of damping was adopted, in which the damping matrix is a linear
combination of the mass and stiffness matrices:

C = αM + βK (15)

where α and β are assumed parameters.
The central-difference scheme is used for explicit time integration the equations of

motion. Within this scheme the velocities and the displacements are determined at the end
of the next time increment t + ∆t knowing all the kinematic conditions from the previous
increments:

.
w(t + ∆t) =

.
w(t − ∆t) + 2∆t

..
w(t) (16)

w(t + ∆t) = w(t) + ∆t
.

w(t + ∆t) +
.

w(t)
2

(17)

The initialization the central-difference scheme necessitates the introduction of the
initial conditions at the time t0 = 0:

..
w(t0) =

..
w0,

.
w(t0) =

.
w0,

.
w(t0 − ∆t) =

.
w0 − ∆t

..
w0 (18)

where: the relation (18)3 follows on the first-order accurate Taylor-series expansion for the
velocities.
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Since the explicit method for integration equations of motion is conditionally stable, it
is necessary to introduce the time step limitation in relation to the critical time step:

∆t ≤ ∆tcrit =
∆Le

min
cd,max

(19)

where: ∆Le
min is the smallest characteristic length of the element in the FE-discretization,

cd, max =
√

E
ρ is the fastest dilatation wave velocity in the elastic material, E is Young’s

modulus and ρ is the mass density.

3.5.2. Damping Parameters

According to the Rayleigh damping model, structural damping is defined as propor-
tional to both mass and stiffness of structure.

In the numerical analysis, only Rayleigh mass damping was used, changing the α
parameter in the range α = [100; 2000]. The omission of the structural stiffness damping
(β = 0) is justified by the fact that non-linear material models are used, which describe the
significant part of the structure stiffness reduction.

Comparative analysis of the numerical force—displacement results with the results of
experimental tests of the beams will allow for the selection of the optimal mass-damping
parameter.

3.5.3. Dilatation Wave Velocity and Critical Time Step

Decisive for calculation of the dilatation wave velocity for the entire post-tensioned
concrete beam model is the material defined for anchorages with parameters E = 200 GPa
and ρ = 7.85E − 09 t/mm3, which yield the fastest dilatation wave velocity
cd, max = 5047544.65 mm/s.

The smallest characteristic length of the element in the FE-discretization for both beam
models is equal to ∆Le

min = 2.15 mm (the element is located between the loading points,
next to the tendon). Based on the Equation (19) the critical time step value is equal to
∆tcrit = 4.26E − 07 s.

3.5.4. Prestressing Force Value

The post-tensioned beam has initial loading caused by prestressing force in the tendon.
Prestressing force was applied in the beam numerical model as a result of initial stress in
the tendon.

Since the beams were ultimately prestressed on the day of the experimental trial, it
was assumed that only initial prestressing losses occurred without any long-term effects,
e.g., steel relaxation.

Total prestressing force was reduced by initial losses and then, as the value equal to
Pm0 = 185.76 kN, it was converted to an initial stress with value of σp,m0 = 1336.4 MPa,
and applied in the beam model.

3.5.5. The Method of Applying the External Load

Since the purpose of the analysis is to obtain the behaviour of a static model, not a
dynamic one, the method of applying the external load has a significant impact on the
behaviour of the numerical model. Too high a load application velocity may cause an
unexpected model response.

It has been found that the most effective way to control the loading process is to use
the vectors of displacement velocity propagation, defined in every node on the top surface
of selected beam nodes as presented in the Figure 20.
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Figure 20. Displacement velocity propagation vectors for the loading process.

Typically, the recommended static load velocity value should be less than 1% of the
fastest dilatation wave velocity, as proposed by the manual Abaqus [36].

However, this proposed range turned out to be too large for post-tensioned beams. At
this velocity of loading application, large oscillations occurred in the model. It should be
noted that a typical post-tensioned beam already has an initial prestressing force applied,
which results in a greater dynamic response than typical reinforced concrete beams with
no initial forces applied.

In order to avoid model oscillations and the so-called local jetting effect, the blocks
displacement velocity applied cannot exceed 0.025% of the fastest dilatation wave velocity
identified in the model of beam. For this proportion of the fastest dilatation wave velocity,
the value of displacement velocity was applied as υload = 1261.89 mm/s.

Of equal importance to the value of displacement velocity, in order to stop the oscillat-
ing motion and to reflect the slow and smooth loading application, is the determination
of the load amplitude and the total analysis time. For the considered static analysis, the
method of smooth steps loading application was found to be suitable.

Total analysis time depends on the expected total displacement value and
loading velocity:

ttot =
umax

υload
(20)

Since the maximum load capacity of the beams was reached experimentally with
the displacement umax = u2 = 53.11 mm for beam No. 2 (Figure 11), if the load in the
numerical models continues until the assumed displacement is reached, e.g., 70 mm, then
the total analysis time is ttot = 0.055 s, and the number of analysis steps is equal to
n = ttot

∆tcrit
= 129108.

The relationship of the load amplitude to the analysis time was proposed using the
smooth steps method in the following form, see manual Abaqus [36]:

υ = υload

{
τ3(10 − 15τ + 6τ2) i f 0 ≤ t ≤ tc

1 i f tc ≤ t ≤ ttot
(21)

where: τ = t
tc

is the relative time parameter, tc is the time to reach a maximum load
velocity value.

The applied relationship of the load velocity amplitude to the analysis time is shown
in the Figure 21.

Comparative analysis of the numerical results of the force—displacement relationship
with the results of experimental tests of the beams will allow for the selection of the optimal
value of the time tc in the range of tc = (0.1; 0.9)ttot.
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Figure 21. Load velocity amplitude to analysis time relationship.

4. Results of the Numerical Research
4.1. Comparative Analysis of the Numerical and Experimental Results for the Force—
Displacement Relationship

The obtained numerical results of the force–displacement relationship are largely de-
pendent on the selected mass-damping parameter. Several calculation tests were performed
according to the mass-damping parameter range presented in Section 3.5.2. In the presented
numerical analysis, the most appropriate mass-damping parameter has been found to be at
the level of ∝ = 500, for which the results were closest to the experimental research results.
Both beams reached the maximum displacement between the load points, and the lower
middle node (see Figure 5) was used to compare the course of the displacement during the
loading process. Figure 22 shows the dependence of the load force on the displacement
obtained from the numerical analysis of both beams. The load capacity of beam No. 1 was
reached with the loading force Qu1 = 80.64 kN, and this value occurred with the vertical
displacement u1 = 36.50 mm. The load capacity of beam No. 2 was Qu2 = 96.50 kN with
displacement u2 = 36.44 mm.

Figure 22. Loading force vs. displacement diagrams for beam No. 1 and beam No. 2.

Basically, both diagrams reflect the experimentally found behaviour of the beams
during the loading process. Particularly good agreement between the numerical results and
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the experimental results was found for beam No. 1. However, in the numerical solution
of beam No. 2, the stiffness of the beam to reach the load capacity was greater than in the
experimental test. Namely, a good agreement of the load capacity was obtained with a
much smaller value of displacement.

The reason for the lower agreement of the numerical and experimental results in
beam No. 2 can be seen in the probable occurrence of unintentional, random material
imperfections in the experimental beam. This fact is confirmed by the almost identical
stiffness of both beams observed in the experimental diagrams until the load value of about
65 kN is reached. This means that the potentially stronger beam No. 2 showed no greater
stiffness than beam No. 1.

4.2. Numerical Analysis of Beams Behaviour

The highest values of the maximum principal stresses are obtained below the velocity
application nodes. Negative maximum principal stresses reflect compression stresses, and
positive values represent tensile stresses (in MPa units). The highest stress values are
obtained between loading points, but they do not exceed the strength of the material. Just
below the load application areas there are local stress concentrations due to local load
application. A similar stress distribution is obtained for both beams after reaching their
load capacity (Figure 23).

Figure 23. Maximum principal stresses in concrete at load capacity: (a) beam No. 1 and (b) beam No. 2.

The first tensile cracks occurred in the concrete below the load application points, in
the place of stirrups in both beams. Further damage propagation consists of the appearance
of successive cracks between the stirrups, and then in diagonally distributed regions.
Figure 24 shows the state of cracking under a load of 45 kN, which reflects the damage
immediately after the elastic—linear phase. Beam No. 1 had more cracks than beam No. 2
at a similar load.

Differences in tensile damage propagation were observed for both beams. Beam No. 1
for its hardening phase reached larger diagonal damage areas located on the outer sides of
the load points than beam No. 2 (Figure 25).
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Figure 24. Tensile damage distribution in concrete under a load of 45 kN: (a) beam No. 1 and (b) beam
No. 2.

Figure 25. Tensile damage distribution in concrete at load capacity: (a) beam No. 1 and (b) beam No. 2.

The extent of these zones increased in the post-critical phase of softening. Moreover,
beam No. 1 had larger areas of tensile damage next to the load points than beam No. 2
(Figure 26).

Since the damage was described from the beginning of plastic hardening in compres-
sion, the maximum range of compression damage under load capacity was obtained in
the numerical results shown in the Figure 27. The damage areas in beam No. 1 are much
larger than those in beam No. 2. These areas are especially related to the zones outside the
loading forces, where the highest values of shear forces occur.
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Figure 26. Tensile damage distribution in concrete in softening phase at displacement 70 mm:
(a) beam No. 1 and (b) beam No. 2.

Figure 27. Compression damage in concrete at load capacity: (a) beam No. 1 and (b) beam No. 2.

In the post-critical softening phase, beam No. 1 had larger areas of compression
damage located outside the loading forces than beam No. 2. In turn, beam No. 2 had larger
zones of compression damage between loading forces than beam No. 1, (Figure 28).
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Figure 28. Compression damage in concrete in softening phase at displacement 70 mm: (a) beam
No. 1 and (b) beam No. 2.

The yield strength was reached only in the lower longitudinal rebars, in the regions
below the loading forces (Figure 29). The yield limit was not reached in any stirrup.

Figure 29. Maximum principal stresses in the steel rebars at load capacity: (a) beam No. 1 and
(b) beam No. 2.

Figure 30 shows the maximum principal stresses in the tendons for half of the longitu-
dinal section. Compared to the initial stress value of 1336 MPa, the stresses in the tendons
increased beyond the limit of elastic strength (point No. 1 in Figure 16), but do not exceed
the lower yield strength equal to the tensile strength at 0.1% of permanent plastic strain
(point No. 2 in the Figure 16), when both beams reached their load capacity. The greatest
stresses occur in the straight part of tendon located between loading forces.
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Figure 30. Maximum principal stresses in tendons at load capacity: (a) beam No. 1 and (b) beam No. 2.

Figure 31 shows the stresses in one of the anchorages for each beam. The anchorage
in beam No. 1 has lower tensile stresses at the contact surface with concrete than the
anchorage in beam No. 2.

Figure 31. Maximum principal stresses in the anchorage in mid-section at load capacity: (a) beam
No.·1 and (b) beam No. 2.

4.3. Discussion on Imperfections Analysis
4.3.1. Location of Damage Initiation

The damage progression obtained from numerical analysis was fully symmetrical,
since no imperfections were introduced in the models. In fact, reinforced concrete structures
experience many imperfections caused by, e.g., uneven distribution of aggregate, blockage
of aggregate between reinforcement bars, rotation of stirrups during concrete pouring or
local reduction of concrete cover. Such imperfections may cause an initial cross-sectional
reduction; this is the starting point for further damage progression during loading.

Asymmetrical damage progression occurred in both experimental beams. The initial
cracks in beam No. 1 appeared in the middle between loading points (Figure 8), while in
beam No. 2 the damage was located below the left loading application area (Figure 9). The
location of the damage in beam No. 1 did not affect the total values of displacement. In
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beam No. 2 there were differences in the plastic hardening phase—more ductile behaviour
than in the numerical model, as shown in the Figure 22.

There was no significant difference in the load capacity of both beams in the experi-
mental results in the elastic phase and in the plastic hardening phase (up to 65 kN loading
force), despite the introduction of the different eccentricities of the tendon system. Actually,
beam No. 2 should be stiffer than beam No. 1. There may have been additional imper-
fections related to the execution of the beams, the precise preparation of the stand or the
execution of the experiment, which could have caused the unexpected behaviour of beam
No. 2. The numerical results show the expected differences in load capacity from the initial
load phases.

Imperfection modelling can be initiated by introducing an artificial crack in the place
obtained during experimental tests. A similar approach is also presented by other authors,
e.g., Jankowiak and Łodygowski [29] and Szczecina and Winnicki [33]. For beam No. 1,
the greatest concentration of compressive force was in the middle between load points.
Therefore, a similar crack initiation location was selected for the numerical model of the
beam, as shown in Figure 32.

Figure 32. Location of crack initiation site.

The initiated crack caused the greatest concentration of stresses between the load
points (Figure 33) and resulted in the highest values of tensile and compressive damage
parameters in the middle of beam No. 1. The damage parameters at the load capacity are
shown in Figures 34 and 35.

Figure 33. Maximum principal stresses in concrete at load capacity with crack initiated in beam No. 1.

Figure 34. Tensile damage in concrete at load capacity with crack initiated in beam No. 1.
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Figure 35. Compressive damage in concrete at load capacity with crack initiated in beam No. 1.

The maximum stresses in the steel reinforcement have also changed. Now, instead
of only stress concentrations below the load points, the maximum stress values occurred
below the crack initiation point as shown in Figure 36.

Figure 36. Maximum principal stresses in the steel reinforcement at load capacity with a crack
initiated in beam No. 1.

4.3.2. Local Concentrations of Stresses

There are a few specific places where local stress values exceed the material resistances
determined in the applied constitutive model of concrete. These places are located near the
load application points and at the greatest contact forces of the steel reinforcement with the
concrete in both numerical models. In experimental studies, the loading force was applied
locally by a steel support beam. Therefore, authors decided to model a similar approach in
the numerical analysis. Due to the nature of the load application, stress values above the
concrete compressive strength appeared in the overload zone at the achieved beam load
capacity, as shown for the location of the right loading point in beam No. 1 in the Figure 37.
A very similar effect occurred symmetrically near the left loading point in this beam.

Figure 37. Stress concentrations next to the right loading point at the load capacity in beam No. 1.

In the post-critical phase of the beam deformation, a similar effect was observed at the
contact place between the steel reinforcement and the concrete (Figure 38). At this place,
the upper longitudinal steel reinforcing bars began to bend.
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Figure 38. Stress concentrations next to the right loading point between longitudinal rebars in the
post-critical phase of beam deformation in beam No. 1.

These specific overload areas must be the focus of further detailed contact analysis.
The behaviour of concrete in these areas is influenced, for example, by the size and shape of
the FE mesh, the area (or volume) of the contact zone between two materials with extremely
different properties and determination of the properties of concrete with increased strength
parameters in high compression contact zones.

5. Conclusions

This paper presents the results of the numerical analysis of post-tensioned beams
based on the results of its own experimental research.

On the basis of the obtained results, the following conclusions can be drawn, relevant
for conducting experimental research, modelling of post-tensioned beams using the FEM
and calibrating the numerical model to the experimental results:

1. Precise preparation of experimental models of post-tensioned concrete beams and
careful execution of experimental tests allowed the avoidance of unintentional model
imperfections and the obtainment of appropriate results;

2. The use of a separate finite element for modelling each material component of each
beam: concrete, prestressing steel, reinforcing steel and anchorages, with appropriate
modelling of contact interactions, results in a damage simulation qualitatively similar
to the results of experimental tests. Initial cracks in the concrete occur at the location
of stirrups and then develop into larger damage with new cracks between the stirrups;

3. The convergence of the numerical solution is closely related to the precise modelling
of the finite element geometry system. Elements in the finite element mesh should be
made as square as possible to avoid numerical effects, i.e., shear locking and volume
locking. The proposed meshing of the model allowed the avoidance of the numerical
hourglass effect. The use of the reduced integration method for 3D hexahedral finite
elements was sufficient to obtain a convergent solution, which is more efficient than
other methods in terms of computational time. The applied meshing did not cause
differences in the results between the incompatible modes and the reduced mode of
the integration methods;

4. The explicit procedure is an effective method for modelling post-tensioned concrete
beams with different curvilinear tendon systems under static loading. With the ap-
propriate calibration of the numerical model in relation to a detailed analysis of the
experimental damage mechanism, the presented approach allows for the modelling
of various geometries of post-tensioned beams. The proposed loading procedure in
explicit solution method, based on an application of the loading velocity equal to
0.025% of the fastest dilatation wave velocity, gave a convergent solution for analysed
post-tensioned beams without model oscillations and the local jetting effect. The beam
models were calibrated to experimental results with the Rayleigh mass-damping
parameter α = 500;
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5. An appropriate simulation of concrete damage was obtained on the basis of the
description of concrete material softening with a model of concrete damage plasticity.
The inclusion of residual stresses in the concrete model ensured an increase in the
ductility of the concrete material in interaction with the steel reinforcement to enable
an extended damage simulation in the FEM beam models. Taking into account the
effective modulus of the elasticity of concrete with the use of the real creep coefficient
ensured a reduction in the stiffness in the numerical beam models by about 44%;

6. A very good agreement between the numerical results and the experimental results
for beam No. 1 was obtained. The slightly lower agreement between the numerical
and experimental results for beam No. 2, especially in terms of displacements, was
due to random imperfections found in the experimental results. The experimentally
observed nature of concrete damage mechanisms and the numerical simulations of
stress and damage states of both considered beams confirmed the design assumption
about the ultimate load capacity that was determined by the strength of the concrete
compression zone.
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