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Abstract: Fundamental studies have been carried out experimentally and theoretically on the magne-
siothermic reduction of silica with different Mg/SiO, molar ratios (1-4) in the temperature range of
1073 to 1373 K with different reaction times (10-240 min). Due to the kinetic barriers occurring in
metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical
software FactSage (version 8.2) and its databanks are not adequate to describe the experimental
observations. The unreacted silica core encapsulated by the reduction products can be found in some
parts of laboratory samples. However, other parts of samples show that the metallothermic reduction
disappears almost completely. Some quartz particles are broken into fine pieces and form many
tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture
pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core
model is thus inadequate to represent such complicated reaction schemes. In the present work, an
attempt is made to apply a machine learning approach using hybrid datasets in order to describe
complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium
relations calculated by the thermochemical database are also introduced as boundary conditions for
the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed
Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its
advantages when describing small datasets. A composite kernel for the GPM is specifically de-
veloped to mitigate the overfitting problems commonly encountered when using generic kernels.
Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a
regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-5iO, mixtures,
temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been
covered by experiments. Additional experimental validation indicates that the GPM works well for
the interpolates of the observations.

Keywords: magnesiothermic reduction; silica; kinetic barrier; Gaussian process machine; machine
learning

1. Introduction

Theoretically, silicon is the metal produced by carbothermic reduction at temperatures
higher than 1821 °C [1]. Conventional silicon production has at least two drawbacks: high
energy consumption and a negative impact on the environment through CO, emissions.
It is estimated that the energy required to produce 1 kg of silicon (230-235 M]J) is about
10 times higher than that for iron (20-25 M]) [2]. The carbon footprint of the primary
production of silicon is also about 10 times higher than that of the ironmaking process.
Therefore, it is of great importance to develop a new silicon production process with a
friendly environmental footprint.

Silicon can be produced by metallothermic reduction at relatively low temperatures
with no CO; emissions. Among the candidate elements for the metallothermic reduction
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of silica, magnesium possesses several advantages: it is abundant in natural resources,
highly reactive to silica, relatively low cost, and is readily manufactured by the carbon-free
electrolytic process. Recently, the synthesis of advanced structures of nonmetals by metal-
lothermic reduction has just begun to show its versatile capability, and pioneering examples
were reported for the preparation of nanostructured silicon by Bao et al. in 2007 [3]. Since
2007, a large number of investigations have been published in the literature [4,5]. However,
fundamental knowledge about the magnesiothermic reduction of silica at relatively high
temperatures (above the magnesium melting temperature of 800-1100 °C) is still poorly
understood.

Metallothermic reductions have been known for more than two hundred years. They
have been widely employed for the industrial production of metals and alloys. It is
worth noting that the fundamental mechanisms of metallothermic reduction processes
still remain elusive in terms of the energy and mass transfer on the evolving interphases,
although metallothermic reductions in nature are simple chemical displacement reactions.
In particular, metallothermic reduction reactions take place in multicomponent systems,
where phase fusion and separation take place at high temperatures with less controllable
reaction rates.

In our previous studies, the magnesiothermic reduction of nature quartz at 1073-1373 K
was extensively studied experimentally [6,7]. Reaction schemes with the formation of
different layers around an unreacted quartz core were proposed based on experimental
observations. It has been found that Mg diffusion through the MgO-based product layer
controls the whole rate of magnesiothermic reactions. The amount of heat released from
the magnesiothermic reduction of silica is too small to increase the temperature of the
entire system significantly. The effects of the Mg to SiO, molar ratio, reaction time, and
size of quartz have also been discussed in detail. For example, it was found that the quartz
particle size significantly influences the reaction rate. For Mg/SiO, molar ratios of 1 and 2,
the primary products are MgO and Si. The reaction rate declines, which is attributed to
the limited diffusion rate of Mg through the product layer [6]. When the molar ratios of
Mg/SiO; are increased to 3 and 4, the reaction rate significantly accelerates, facilitated by
the formation of a large amount of liquid and the cracking of quartz particles [6,7]. The
final product of these reactions is a mixture of MgO-Mg,Si-Si and MgO-Mg,Si-Mg for
molar ratios of 3 and 4, respectively. Nevertheless, a general mathematical description of
reduction products as a function of the starting materials, temperature, and reaction time
has not yet been established.

In this work, thermochemical descriptions of the Mg-5iO, pseudo-binary system
are first presented using the commercial software package FactSage [8]. The equilibrium
relations determined by the thermochemical software can thus be used as boundary condi-
tions for mathematical descriptions of the magnesiothermic reduction of silica. We then
propose a physics-informed Gaussian process machine for the machine learning of the
small experimental dataset. Additional experiments are also carried out in order to verify
the Gaussian process machine predictions. We aim to provide a mathematical description
of the magnesiothermic reduction of silica at relatively high temperatures, where liquid
metals can be produced.

2. Equilibrium Relations

Thermochemical calculations can help us to figure out the fundamental reactions that
take place in Mg-SiO, pseudo-binary systems in composition and temperature ranges of
interest. Equilibrium relations also provide the framework for the data mining and machine
learning algorithms that are applied in this work.

First, the Mg-5iO, phase equilibrium diagram calculated using the commercial ther-
mochemical databases FactPS, FTOxid, and FSStel in the FactSage software package [8]
is shown in Figure 1. Because of the low evaporation temperature of Mg, the gas phase
become stable at a relatively low temperature in the Mg-rich domain. The calculated
Mg-5i0O; phase diagram can be approximately divided into two parts: the left part is for
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the metal-rich system and the right part is the oxide-rich system. For the magnesiothermic
reduction of silica to produce Si metals, we focus on the left part of the calculated phase
diagram with respect to Mg/SiO; molar ratios of 2 to 4.
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Figure 1. The Mg-SiO, pseudo-binary phase diagram calculated by FactSage and its commercial
databases [8].

The Si and Mg contents in the liquid metal phase obtained from the magnesiothermic
reduction of silica are studied. As shown in Figure 2, the Mg and Si contents in the
equilibrium liquid metal phase are almost parallel to the y-axis, meaning that the Mg and
Si contents in the liquid alloy phase can be reasonably estimated by the Mg/SiO, molar
ratios. It is thus reasonable to assume that a target alloy with a high Si content requires a
low Mg/SiO; ratio.
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Figure 2. Calculated (a) iso-Mg and (b) iso-Si content contours in the liquid metal phase.

On the other hand, the metal fraction is also an important parameter of magnesio-
thermic reduction products. Little information exists in the literature on how the reaction
conditions affect the formation of different phases quantitatively. Figure 3 shows the liquid
metal phase fraction and the total metallic species in the reduction products as functions
of the Mg/SiO; ratio at different temperatures. At temperatures below 1100 °C, there are
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optimal magnesium to silicon dioxide ratios. A higher Mg/SiO, dioxide ratio results in the
formation of more liquid metals with a lower silicon content.
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Figure 3. Effect of the Mg/SiO; ratio on (a) the equilibrium liquid metal phase fraction and (b) total
metallic species.

A comparison of Figures 2 and 3 shows that producing a high-silicon alloy requires
the use of lower magnesium to silicon dioxide ratios, along with relatively high reduction
temperatures. As Figure 1 illustrates, when the magnesium to silicon dioxide molar ratio
is less than 2, the liquid metal phase becomes unstable. Rasouli et al. [6] conducted
experiments with a Mg/SiO, molar ratio of 1, but these results did not factor into our
analysis.

3. Experimental Results

To verify the calculations and predictions of the Gaussian process machine, two
experiments were carried out with an initial Mg/SiO; molar ratio of 3, in addition to
the experimental results reported by Rasouli et al. [6,7]. The same raw materials were
used in the additional experiments. Reduction experiments were carried out in a gas-tight
stainless-steel reactor, as schematically shown in Figure 4. The experimental procedures
are described elsewhere [6]. The product phases after reduction were identified by X-
ray diffraction and an electron probe microanalyzer (EPMA). The MgO, SiO,, Mg,SiO4
and MgSiO;3 oxides, and Si, Mg, and Mg,Si metallic phases were determined by X-ray
diffraction analysis.

@stainless  steel  container @
thermocouple (3] Mg-SiO2 mixture (4]
graphite gasket @ alumina crucible

Figure 4. Schematic drawing of the reactor.
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Figures 5 and 6 show the EPMA mapping of the sample obtained for magnesiothermic
reduction at 1100 °C for 1 h. In Figure 5, the unreduced silica core is obvious. The reduced
products around the silica particle consisting of different phases, such as MgO, Si, Mg,5i,
Mg,5i04, and MgSiOs, around quartz particles limits Mg diffusion to the central part of
the silica particles. For more detail about the product layers around the unreacted silica
core, one may refer the descriptions given by Rasouli et al. [6]. On the other hand, Figure 6
shows that a significant amount of liquid alloy forms, causing the silica particle to crack and
resulting in a significantly higher reaction rate. The silica particle can be reduced almost

completely.
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Figure 6. EPMA mapping of Si, Mg, and O elements in the reacted core sample.
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The conventional unreacted shrinking core model is inadequate to mathematically
describe the complex reaction schemes involved in the magnesiothermic reduction of
silica. Rather than developing a new unreacted core model, we attempt to use artificial
intelligence-based machine learning methods to describe the experimental observations.
As machine learning algorithms possess a self-learning nature, we anticipate that the
prediction accuracy will continually improve as experimental observations at different
experimental conditions are input.

4. Gaussian Process Machine for the Machine Learning of the Magnesiothermic
Reduction of Silica

Machine learning approaches are fast and scalable but ideally require large datasets
from which to learn. Obtaining such chemical datasets is a significant challenge, as many
are proprietary and not readily available for academic use [9]. Experimental determination
of the reaction schemes in the Mg—-5iO, system is, on the other hand, a time-consuming
and expensive task. High-temperature experiments present a challenge not only in terms
of devising a suitable design to prevent side reactions but also in terms of accurately
measuring the parameters. In order to apply machine learning to such cases, we need
to develop algorithms that are capable of learning from small datasets and be able to
interpolate the observations. Here, we apply the Gaussian process machine to this work.

The Gaussian process (GP) is a supervised machine learning method that is used
to solve regression and probabilistic classification problems [10,11]. It has recently been
applied in computational materials science and chemistry, especially for the regression of
atomistic properties and the construction of interatomic potentials, known as the Gaus-
sian Approximation Potential framework [12]. On the other hand, attempts have been
made to apply a machine learning approach using “hybrid” datasets to describe complex
magnesiothermic reductions. In addition to the small experimental laboratory dataset,
the equilibrium relations calculated by thermochemical software and its database have
also been introduced as boundary conditions for magnesiothermic reductions, assuming a
sufficiently long reaction time. Here, we refer to such training datasets as “hybrid”. The
table below provides an example of the hybrid dataset employed in this work (Table 1).

Table 1. Hybrid dataset used for the magnesiothermic reduction of silica *.

Mg/SiO, T (K) T (min) Mg,Si Si SiO, MgO Mg Note
2 1173 10 6.87 0.53 59.83 10.5 22.28 Exp.
2 1173 20 13.04 1.18 50.82 20.19 14.76 Exp.
2 1173 40 19.92 1.85 36.07 29.92 12.24 Exp.
2 1173 60 22.02 1.92 34.12 31.01 10.94 Exp.
2 1173 120 29.75 2.76 24.86 42.09 0.54 Exp.
2 1173 240 24.97 5.67 22.25 46.74 0.36 Exp.
2 1373 10 16.05 114 16.05 65.4 0 Exp.
2 1373 20 14.9 13.8 14.9 66.6 0 Exp.
2 1373 40 14.7 14.0 14.7 66.9 0 Exp.
4 1173 10 7.8 0.13 38.95 11.72 41.4 Exp.
4 1173 40 20.29 1.45 26.32 27.49 24.32 Exp.
4 1173 120 31.75 1.12 13.43 41.34 12.36 Exp.
4 1173 240 34.37 14 9.89 43.9 10.43 Exp.
2 1073 0 0 0 55.28 0 44.72 Des.
2 1173 0 0 0 55.28 0 44.72 Des.
2 1273 0 0 0 55.28 0 44.72 Des.
3 1073 0 0 0 45.18 0 54.82 Des.
3 1173 0 0 0 45.18 0 54.82 Des.
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Table 1. Cont.

Mg/SiO, T (K) T (min) Mg,Si Si SiO, MgO Mg Note
3 1273 0 0 0 45.18 0 54.82 Des.
4 1073 0 0 0 38.2 0 61.8 Des.
4 1173 0 0 0 38.2 0 61.8 Des.
4 1273 0 0 0 38.2 0 61.8 Des.
2 1073 600 0 33.28 0 95.52 0 Equ.
2 1173 600 0 33.28 0 95.52 0 Equ.
2 1273 600 0 33.28 0 95.52 0 Equ.
3 1073 600 45.44 16.64 0 95.52 0 Equ.
3 1173 600 45.44 16.64 0 95.52 0 Equ.
3 1273 600 45.44 16.64 0 95.52 0 Equ.
4 1073 600 90.88 0 0 95.52 0 Equ.
4 1173 600 90.88 0 0 95.52 0 Equ.
4 1273 600 90.88 0 0 95.52 0 Equ.

* The experimental data used in the present work were taken from Rasouli et al. [6,7].

The GP is a nonparametric Bayesian approach that can be used for inference purposes.
Rather than inferring a distribution over the parameters of a function, the Gaussian process
infers a distribution over the function of interest itself. A Gaussian process defines a prior
function that is transformed into a posterior function after some values from the prior
distribution have been observed. The Gaussian process machine is desirable for the present
case, because it performs quite well in small data regimes, provides highly interpretable
results, and automatically estimates the predictive uncertainty.

There are several existing GP libraries: Scikit-learn [13], GPy [14], GPflow [15], and
GPyTorch [16]. However, none of them incorporate both the non-negativity and mass
conservation constraints into the GP algorithm. We, thus, developed the physics-informed
code for the above purposes.

For the implementation of the non-negativity constraint, we can simply apply the
square root function to the input array so that the Gaussian process machine can force the
results to be non-negative when it inverses the square of the results. To satisfy mass conser-
vation constraints, several approaches can be considered: the non-negative GPR [17,18],
Bayesian inference [11,19], and constrained optimization [20]. The easiest way is to in-
troduce a mass balance equation into the kernel function of the GPM. We used a set of
linear equations that relate the mole inventories of the species to the mole inventories of
the elements in the system to enforce the mass balance in this system. Specifically,

Y aiXi =b; 1

where a;j are the stoichiometric coefficients for the reactants, X; is the mole fraction of the
species, and b; is the mole inventory of element j in the system. This equation ensures
that the total number of moles of each element in the system remains constant over time.
We incorporated the above linear equations into the composited kernel function. By
formulating the mass conservation constraints in this way, the Gaussian process machine
will automatically satisfy elemental conservation laws when making predictions.

Overfitting is another crucial concern with the Gaussian process machine. Unfor-
tunately, simple kernel functions, such as the radial basis function (RBF), Matérn, and
periodic function, are inadequate for avoiding overfitting in the present case. To address
this issue, we conducted hyperparameter tuning by considering a variety of composite
kernel functions. The results of this tuning process indicate that the following composite
kernel can effectively address the overfitting problem:

feernet = C[RBF + White] + (" ai; X,y ), @
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100

20

GPR modelling for t=120(min) at 1173K

where RGF refers to the radial basis function, White is the white kernel, ¢ denotes the
constant kernel with a log-uniform prior from 0.001 to 1000 on that value, and a is the
scaling factor for the mass balance term. Here, we used the Scikit-learn library [13] to train
and predict the GPM. While the above hyperparameters were fine-tuned within a limited
range of values, it is crucial to keep in mind that their optimization may not extend to the
entire range of composition and temperature variables. A regression score of 0.9665 was
obtained using the composite kernel function.

Figure 7a shows the GPM-calculated species for the magnesiothermic reduction of
silica at 1173 K for 120 min. Figure 7b compares the GPM calculations with experimental
data at 1173 K for 240 min. The GPM results include uncertainties with a 50% standard
deviation for the predictive distribution. It is obvious that the GPM yields results that align
with the experimental values within the limits of its predicted uncertainty.

GPR modelling for t=240(min) at 1173K
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Figure 7. Comparison of GPM-calculated species variation as a function of the Mg/SiO, molar ratio
at 1173 K (a) for 120 min and (b) for 240 min with the experimental results [6,7].

An important parameter in metallothermic reduction is the effect of the reduction time
on the resulting products. Figure 8 displays the variations in the species calculated by the
GPM. Almost all experimental points lie within the limits of the uncertainty of the GPM
predictions. It is evident that the predictions given by the GPM show some nonsmoothed
variation. The uncertainty given by the GPM also increases moderately in the nonsmoothed
parts of the curves. Notably, the GPM predicts the variations in species for Mg/SiO, molar
ratios of higher than 4, since there are no experimental results available in this range. The
GPM predictions require further experimental validation in the future.

The predictive capability of the GPM was validated through experimental results at an
Mg/SiO, ratio of 2.9. Figure 9 shows the results. The experimental results (Mg/SiO; = 2.9)
are basically consistent with the fractions of Mg,Si, MgO, and SiO, predicted by the GPM.
Nevertheless, a significant discrepancy exists between the calculated phase fractions of
Mg and SiO; and the experimental results. This may stem from the examination methods
used for the samples. While the training phase distributions were obtained from a Rietveld
analysis of the reacted samples, the validated phase distributions were obtained from
EPMA results. Further experiments are necessary to validate the GPM’s calculations.
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GPR modelling the reduction profiles of species at 1173K
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Figure 8. Comparison of the experimental results [6,7] with GPM-calculated species variations over
time for an Mg/SiO, molar ratio of 2 at 1173 K.
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Figure 9. (a) Predictive capability of the GPM: phase fractions of species at 1173 K for varying
Mg /SiO; molar ratios. (b) Comparison of GPM-calculated and measured [6,7] species variations as
functions of the reaction time at Mg/SiO, ratios of 2 and 2.9 at 1173 K.

Figure 10 presents the GPM’s iso-contour predictions for the phase distributions
of Mg»Si, Si, Mg, and MgO species, with corresponding experimental data overlaid on
the diagrams. The GPM'’s predictions for the products of metallothermic reductions are
reasonably accurate. However, the abnormal variations in the iso-contour curves of Mg,Si
and Mg species between 120 and 240 min suggest that further experimental validation is
necessary to improve the GPM’s results. This also demonstrates the potential for machine
learning to assist in the improvement of experiment designs.
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Figure 10. The iso-contours of (a) Mg,S5i, (b) Si, (c) MgO, and (d) Mg generated by the GPM in
comparison with the experimental data points [6,7].

5. Conclusions

To develop an alternative method for producing silicon and silicon-based alloys, we
conducted experimental and theoretical studies on the magnesiothermic reduction of silica
under various conditions, including variation of the Mg/SiO, molar ratio from 1 to 4
and reaction times of 10 to 240 min at relatively high temperatures of 1073 K to 1373 K.
Based on the Mg-5iO, pseudo-binary equilibrium relations, the boundary conditions of
the metallothermic reduction of silica were defined.

Although the unreacted silica core encapsulated by the reduction products has been
found in some parts of laboratory samples, other parts of samples have demonstrated
near-complete metallothermic reduction. Laboratory investigation results on the magnesio-
thermic reduction of silica suggest that the traditional unreacted core model is inadequate
to represent such complicated reaction schemes.

An attempt was thus made to apply the machine learning approach to describe the
complex magnesiothermic reductions using a hybrid dataset. In addition to experimental
laboratory data, equilibrium relations calculated by the thermochemical database were also
introduced as boundary conditions for magnesiothermic reduction, assuming a sufficiently
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long reaction time (in this work, longer than 600 min). Here, we refer to such a training
dataset as “hybrid”.

The Gaussian process machine was chosen to be trained by the hybrid dataset due
to its advantages when describing small datasets. A composite kernel for the GPM was
developed to mitigate the overfitting problem that occurs when using generic kernels. The
physics-informed non-negative and mass balance constraints were implemented in the
GPM. The GPM almost perfectly reproduced the hybrid dataset with a regression score
of 0.9665. The trained GPM was thus used to predict the effects of the Mg/SiO; ratio,
temperature, and reaction time on the products of the magnesiothermic reduction of silica,
which no experiment has covered. Additional experimental validation indicates that the
GPM works well for the interpolates of the experimental observations.
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