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Abstract: Smart textiles recently reaped significant attention owing to their potential applications in
various fields, such as environmental and biomedical monitoring. Integrating green nanomaterials
into smart textiles can enhance their functionality and sustainability. This review will outline recent
advancements in smart textiles incorporating green nanomaterials for environmental and biomedical
applications. The article highlights green nanomaterials’ synthesis, characterization, and applications
in smart textile development. We discuss the challenges and limitations of using green nanomaterials
in smart textiles and future perspectives for developing environmentally friendly and biocompatible
smart textiles.
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1. Introduction

Significant advances have been reported lately for smart textiles, alongside progress
in materials science and nanotechnology [1]. Smart textiles, also named smart fabrics or
e-textiles, are designed with integrated electronic components, sensors, and other tech-
nologies. These components can be used to monitor, transmit, and receive data, and can
be embedded in textiles in various ways, such as by weaving or printing them directly
onto the fabric [2]. Based on how they react to the environment, they can be classified into
passive smart textiles (can sense the environment), active smart textiles (can sense and
react to stimuli from the environment), and very smart textiles (can sense, react, and adapt
their behaviour based on the received stimuli) [1,3]. Based on their functionality, smart
textiles can also be classified into sensing, actuating, energy harvesting, and communicat-
ing [4]. Thus, smart textiles can be designed to detect and measure various physical and
chemical parameters (i.e., temperature, pressure, humidity, and gas concentration), and
can be employed in healthcare and environmental monitoring [5]. The actuating smart
textiles can respond to external stimuli (i.e., heat or light) and change their properties or
shape accordingly [6]. Smart textiles can also be designed to capture and store energy
from external sources, such as sunlight or body heat, and use it to power other devices or
sensors [7,8]. Finally, they can be designed to transmit and receive data wirelessly, allowing
them to be integrated into more extensive networks or systems [9].

In the environmental sector, smart textiles can be used to monitor environmental
conditions (i.e., temperature, humidity, and light). They can also be used in construction
for indoor air quality monitoring and controlling heating and cooling systems [10].

In healthcare, smart textiles can be employed to monitor a range of health parameters
(i.e., heart rate, respiration, and body temperature), and to deliver drugs or other therapeutic
agents directly to the body. For example, smart textiles can be used as wearable sensors to
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monitor patients with chronic conditions, such as diabetes, and to alert healthcare providers
to potential problems [11,12].

Smart textiles can represent a sustainable choice compared to conventional textiles due
to their unique properties and functionality. For example, the fabrics can be designed to
use fewer energy and water resources during production and use. They can be made more
durable by integrating specific functions such as self-cleaning, thus reducing the need for
frequent washing, which generates textile waste. Additionally, they can be combined with
renewable energy sources such as solar cells, which can reduce reliance on non-renewable
energy sources [8,13,14].

However, not all smart textiles are necessarily more sustainable than conventional
textiles. Textile sustainability depends on the materials used, the manufacturing process,
and the textile’s end-of-life options. Hence, the sustainability of fabrics should be assessed
on a case-by-case basis. In some cases, conventional textiles may be more sustainable than
smart textiles. For example, a cotton t-shirt made with organic cotton and dyed with natural
dyes may be more sustainable than a smart textile t-shirt made with synthetic fibres and
electronic components. Therefore, it is crucial to consider the entire life cycle of a textile
and evaluate its sustainability based on its specific characteristics and intended use [15–17].

Green nanomaterials [13] can be integrated into smart textiles in various ways, depend-
ing on the intended application and the properties of the nanomaterials. Some standard
methods for integrating green nanomaterials into smart textiles include coating (i.e., dip-
coating, spray-coating, or electrospinning), embedding, printing (i.e., inject printing, screen
printing, or gravure printing), or weaving [1,18].

Integrating nanomaterials into smart textiles increases concerns regarding their en-
vironmental impact and safety. Some environmental concerns include the potential for
releasing nanoparticles during the production, use, and disposal of textiles, which can
accumulate in the environment and affect ecosystems. Additionally, specific nanomaterials,
such as silver nanoparticles, may have antimicrobial properties that could harm beneficial
microorganisms in soil and water. The safety concerns are related to human exposure to
nanoparticles through inhalation, ingestion, or skin contact, which may have toxic effects
on human health. Furthermore, the long-term effects of exposure to nanoparticles still need
to be fully understood, and more research is needed to determine their safety [18,19].

Green nanomaterials can address the environmental and safety concerns related to
nanomaterials integrated into smart textiles in several ways. For example, biodegradable
green nanomaterials can address concerns related to the persistence of nanomaterials in the
environment. On the other hand, nanomaterials sourced from renewable sources such as
plant extracts can reduce the use of non-renewable resources and reduce environmental
impact. The safety concerns can also be addressed by non-toxic green nanomaterials that
do not pose a risk to human health. Moreover, using sustainable synthesis methods such
as green chemistry can contribute to reducing the environmental impact of nanomaterials.
Thus, using green nanomaterials can reduce the environmental and safety concerns associ-
ated with nanomaterials integrated into smart textiles, making them a more sustainable
and environmentally friendly choice [20,21].

Incorporating green nanomaterials can promote the sustainability of smart materials.
As discussed earlier, green nanomaterials are produced using environmentally friendly
methods and materials, and can be derived from renewable resources [21,22]. Smart
textiles could also benefit from enhanced functionality from green nanomaterials, as such
materials exhibit unique physical, chemical, and biological properties [18]. Aside from
enhanced functionality in sensing, actuation, and energy harvesting, green nanomaterials
can improve fabrics’ strength, flexibility, and durability. This can result in more comfortable,
durable textiles, and resistance to wear and tear [22]. Using green nanomaterials in smart
textiles can also promote health and safety. Traditional nanomaterials have raised concerns
about their potential impact on human health and the environment. Green nanomaterials
can reduce these concerns and ensure safe and responsible development of smart textiles.
Moreover, incorporating green nanomaterials into smart textiles can also increase the
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market demand for these innovative and sustainable products. As consumers become
more environmentally conscious and demand more sustainable products, smart textiles
incorporating green nanomaterials can provide a competitive advantage to companies that
produce them [23–25].

The purpose of a review regarding green nanomaterials for smart textiles dedicated
to environmental and biomedical applications is to provide an overview of the recent
advancements in the field of smart textiles and the potential use of green nanomaterials
in their development. The review will focus on the synthesis, properties, and potential
applications of green nanomaterials in smart textiles for environmental and biomedical
applications, such as pollution monitoring, air and water filtration, drug delivery, wound
healing, and disease diagnosis.

The analysis of the smart materials field (Figure 1) has been performed using a tool
to visualise bibliometric elements, namely VOSviewer 1.6.18 [26]. From Figure 1, it can be
seen that this area of interest is a very complex and interdisciplinary one.
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Figure 1. The bibliometric analysis of data extracted from the ISI Web of Science database using the
keyword, “Green nanomaterials for smart textiles to environmental and biomedical applications”.

VOSviewer is a powerful tool for analysing and visualizing networks based on key-
word co-occurrence in the smart materials field. By interpreting the network analysis and
visualization, we gain a deeper understanding of the relationships and trends within this
rapidly evolving field. We use VOSviewer to identify clusters of related keywords within
the network; we find clusters related to specific types of smart materials, such as shape
memory alloys, supercapacitors, or nanocellulose.

The relevance of the items about smart materials presented in this review is associated
with the number of times they appear in the ISI Web of Science database.

Figure 2 shows a bibliometric analysis of the data extracted from the ISI Web of Science
(www.webofscience.com, accessed on 1 April 2023) database, using the following keywords:
“Green nanomaterials for smart textiles to environmental and biomedical applications”.

www.webofscience.com
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Figure 2. Publication trend (2000–2020) in the application of green nanomaterials for smart textiles
(Source of raw data: ISI Web of Science; search keywords: “Green nanomaterials for smart textiles to
environmental and biomedical applications”).

The number of papers on the topic has increased considerably over the past five years,
demonstrating the scientific community’s increased interest in the field.

In summary, incorporating green nanomaterials into smart textiles has many purposes
and benefits, including promoting sustainability, enhancing functionality and performance,
promoting health and safety, and meeting the growing market demand for sustainable and
innovative textile products. The review will also address the challenges and limitations in
developing and commercialising these materials, and future perspectives and opportunities
in the field.

2. The Development of Sustainable and Environmentally Friendly Smart Textiles—An Overview

This review aims to provide insights into the development of sustainable and environ-
mentally friendly smart textiles that can improve human health and the environment.

The limitations of this review regarding green nanomaterials for smart textiles dedi-
cated to environmental and biomedical applications are related to the insufficient number of
studies on the topic, as this is a relatively new and emerging field of research. Additionally,
there are challenges in scaling up the production of green nanomaterials and integrating
them into textile products. As the research on this topic is relatively new, the long-term
performance, stability, and safety of green nanomaterials in different environmental and
biomedical applications must be investigated.

Several reviews tackle this subject [1,18]. Some specific examples of green nanomateri-
als that can be integrated into smart textiles include cellulose nanocrystals [27,28], silver
nanoparticles [29,30], alginate nanoparticles [30], chitosan nanoparticles or fibres [31–33],
silk nanofibres, pullulan [34], clay nanoparticles (i.e., montmorillonite, kaolinite, and
halloysite) [35,36], and the list may continue [37]. Table 1 illustrates the use of green
nanomaterials integrated into smart textiles and their integration method.
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Table 1. The use of green nanomaterials integrated into smart textiles.

Textile Nanomaterials Synthesis
Method

Integration
Method Application Ref.

cotton silver nanoparticles green synthesis using seaweed
extract (Padina gymnospora) coating

Antibacterial and water-repellent
textiles for healthcare and
outdoor use

[38]

jute silver nanoparticles green synthesis
using plant extract

ultraviolet (UV) photoreduction
and by using polyethylene glycol
as a reducing agent and stabilizer

Antibacterial and durable textiles
for agricultural and industrial use [39]

cotton zinc oxide nanoparticles

green synthesis using
plant extracts such as
Anisochilus carnosus and
Plectranthus amboinicus

sol–gel method
with a green solvent

UV-resistant and antibacterial
textiles for outdoor and
healthcare use

[40]

cotton copper oxide nanoparticles green synthesis using green
plant Carica papaya leaves dispersion

A medical textile to avoid
cross-infection within a
clinical environment

[41]

antibacterial fabric zinc oxide nanoparticles green synthesis using
Moringa oleifera extract

melt spinning,
dry-jet wet spinning

Antibacterial and UV-protective
textiles for healthcare and
outdoor use

[42]

synthetic fibres gold nanoparticles green synthesis using
Lantana camara linn leaf extract

dip coating, electroless, screen
printing, dropwise, immersion,
sonication, and electrospinning

Antimicrobial and conductive
textiles for healthcare and
wearable electronics

[43]

gelatine-bioactive glass cellulose nanocrystals green synthesis using
Komagataeibacter xylinus bacterium freeze-drying technique

Fabrication of synthetic
bone tissue scaffolds
with high compressive
strength and wettability

[44]

poly(L-lactic acid) chitosan nanoparticles green synthesis using a natural
biopolymer such as chitosan casting Antibacterial and durable textiles [45]

cotton TiO2 nanoparticles green synthesis using
Azadirachta indica leaf extract immobilisation

Decontamination, self-cleaning
of intense stains, and bacterial
inhibition without TiO2
UV-activation

[46]

3. Green Synthesis Methods for Nanomaterials Used for Smart Textiles

Green nanomaterial synthesis methods use eco-friendly and sustainable approaches,
such as renewable resources, non-toxic solvents, and mild reaction conditions, and are
popular due to their sustainability and eco-friendliness. These methods can also result
in nanomaterials with unique properties and enhanced biocompatibility, making them
attractive for biomedical applications. However, it is essential to ensure that the green syn-
thesis methods are safe and effective, and that the resulting nanomaterials are thoroughly
characterized and tested before use in any application [47–51]. The green synthesis of
nanomaterials is addressed by bottom-up approaches (nanomaterials are assembled from
individual atoms, molecules, or nanoparticles to form larger structures) in which bacteria,
fungi, algae, and plant extracts are employed [52]. Top-down approaches are also used
to synthesise green nanomaterials [53]. Figure 3 summarises the synthesis approaches of
green nanomaterials, and each method is discussed in the following.

Biosynthesis involves using biological systems such as plant extracts (i.e., neem, green
tea, aloe vera) [54–56], microorganisms (bacteria and fungi) [57–59], and biomolecules
(proteins, enzymes, and carbohydrates) [60–62] as reducing or stabilizing agents to synthe-
size nanoparticles. Biosynthesis is a green and sustainable method, as it often requires mild
conditions, low energy inputs, and nontoxic reagents [63,64].

Green solvents are environmentally friendly alternatives to the traditional solvents
commonly used in the green synthesis of nanomaterials. They have several properties that
make them attractive for green synthesis, including low toxicity, low volatility, high boiling
points, and low environmental impact. Water, ethanol, and glycerol are polar solvents
employed in the green synthesis of nanomaterials. Ionic liquids are salts in a liquid state at
room temperature and have low volatility, high thermal stability, and tunable solubility.
Supercritical fluids are gases compressed to a critical point, resulting in a substance with
properties of both a gas and a liquid [65–68].

Green chemical reduction employs environmentally friendly reducing agents and
solvents to synthesize nanomaterials. For instance, graphene oxide can be reduced to
graphene using green reducing agents such as ascorbic acid instead of hazardous chemicals
such as hydrazine [69]. This method minimises the use of toxic chemicals and reduces waste
generation. Huang et al. [70] discussed graphene-based composites’ synthesis, properties,
and applications, including a section on green reduction methods for graphene oxide.

Solar irradiation can be used in nanoparticle synthesis, as it acts as a reducing agent
and energy source. This method is typically carried out under mild reaction conditions and
requires no toxic chemicals [71,72].
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Mechanical methods, such as high-energy ball milling or ultrasonication, can be used
to produce green nanomaterials without the need for harsh chemicals or high temperatures.
Cellulose nanofibres can, for example, be obtained from plant sources by mechanical
processing, which involves grinding or refining the cellulose fibres for their separation
and individualisation into nanofibres. Zhu et al. [73] presented various methods for the
grinding and refining of cellulose nanofibres from wood. Abitbol and co-workers [74]
provided an overview of nanocellulose materials, their properties, and their applications,
including a discussion of mechanical processing methods for producing cellulose nanofibres.
Chen et al. [75] investigated using ultrasonication combined with a mild chemical treatment
to isolate cellulose nanofibres from various plant sources.

Electrospinning and electrospraying are other top-down methods that use electric
fields to produce nanofibres or nanoparticles from solutions or melts of polymers, biopoly-
mers, or other materials. Using green materials, such as chitosan or cellulose, and en-
vironmentally friendly solvents, electrospinning and electrospraying can create green
nanomaterials for smart textiles. Bhardwaj et al. [76] provided an overview of electrospin-
ning techniques for producing fibres from biopolymers such as chitosan and cellulose.
Geng and co-workers [77] investigated the electrospinning of chitosan nanofibres using
concentrated acetic acid as a green and environmentally friendly solvent.

Template-assisted synthesis involves using a porous membrane or a self-assembled
monolayer as a template to guide the formation of nanomaterials with specific shapes
and sizes. By using biodegradable polymers or naturally occurring structures as green
templates, together with environmentally friendly synthesis conditions, the technique can
create green nanomaterials for smart textiles [78,79].

The sol–gel process is another technique which can be adapted for the green synthesis
of nanomaterials. The technique involves the formation of a colloidal suspension (sol) and
the subsequent gelation of the sol to form a network structure (gel). By using biopolymers
or metal-organic compounds as green precursors, and environmentally friendly solvents,
the sol–gel process can be used to create green nanomaterials for smart textiles, such as
stimuli-responsive hydrogels or biodegradable porous materials [80,81].

Green nanocomposites can be created by in situ polymerization, melt blending, or
solution casting by combining green nanomaterials with biopolymers, natural fibres, or

https://www.biorender.com/about
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other environmentally friendly materials. Green nanocomposites can be used to create smart
textiles exhibiting biodegradability, antimicrobial activity, or mechanical strength [82,83].

The methods exemplified above for obtaining green nanomaterials can promote the
development of sustainable and eco-friendly smart textiles.

The way nanomaterials and textile substrates interact depends on their nature. When
using green nanomaterials, physical adsorption can occur through van der Waals forces,
electrostatic interactions, or hydrogen bonding. Metallic nanoparticles, for instance, can
be physically anchored to the textile surface through sonochemical processes [84,85]. PE-
DOT:PSS, on the other hand, physically adheres to the textile fibres through a combination
of mechanisms, including electrostatic forces and hydrogen bonding. The negatively
charged sulfonate groups (SO3

−) present in the PSS component of PEDOT:PSS can form
electrostatic interactions with the positively charged sites on the textile fibres [86,87]. In
another study, Jain et al. discovered that the entropy gain drives adsorption onto cellulose
surfaces [88]. These interactions are based on weak forces that are reversible. Alterna-
tively, nanomaterials and textiles can form covalent bonds, wherein electron pairs are
shared between the atoms of both materials, resulting in a strong and stable attachment.
Covalent bonding ensures that the nanomaterials remain securely anchored to the tex-
tile even when exposed to washing, mechanical stress, or chemicals [89]. For instance,
Korica et al. conducted a study [90] wherein they treated viscose fabrics with 2,2,6,6-
tetramethylpiperidine-1-oxy radical (TEMPO) and coated them with TEMPO-oxidized
cellulose nanofibrils (TOCN). This process facilitated the covalent bonding of chitosan
nanoparticles to the textile fibre by incorporating functional groups such as COOH and
CHO. In their study, Xu and colleagues [91] utilised a pad-dry-cure technique to create cot-
ton fabrics with antibacterial and ultraviolet (UV) protection properties. This was achieved
through the use of carboxymethyl chitosan (CMCh) and Ag/TiO2 composites. By applying
heat (at 180 ◦C) during the deposition process, the carboxyl group of the CMCh chain re-
acted with the hydroxyl group of the cotton cellulose to establish esterification. As a result,
CMCh was covalently grafted onto the cotton fabric. The choice of interaction mechanism
depends on the smart textile’s specific application and desired properties. Sometimes,
a weaker or reversible interaction may be preferred to allow for easy modification or
reusability. The most stable interaction mechanism is selected based on the compatibility
between the nanomaterials and the textile substrate, as well as the surface chemistry and
morphology of both materials. Table 2 reflects more examples of the textile substrates, the
interaction mechanisms between textiles and nanomaterials, and the integration method.

Table 2. Interaction mechanism between nanomaterials and textile substrates.

Textile Substrates Nanomaterials Interaction Integration Method Ref.

cotton (CMCh) and Ag/TiO2 composites
Covalent, esterification between the
hydroxyl group of cotton and carboxyl
group of CMCh

pad-dry-cure [91]

viscose
2,2,6,6-tetramethylpiperidine-1-
oxy radical (TEMPO)-oxidized
cellulose nanofibrils (TOCN)

Covalent, functional groups
(COOH and CHO) suitable for irreversible
binding of chitosan nanoparticles

TEMPO-mediated oxidation
of native cellulose [90]

cotton AgNPs and PdNPs Semi-covalent impregnation with thiol-modified
cellulose fabric [92]

cotton CeO2 nanoparticles Non-covalent
immobilisation of CeO2
nanoparticles on a chitosan-treated
linen fabric using in situ synthesis

[93]

non-Woven Fabrics Nanocomposite Nylon 6/ZnO Non-covalent ultrasound-assisted Extrusion [94]
wool-polyamide/polyester textiles TiO2 nanoparticles Non-covalent wet chemical technique [95]

polyester fabrics Titania nanowires Non-covalent Sol–gel [96]
cotton fabric PANI/TiO2 Non-covalent polymerization [97]
cotton fabrics Platinum (IV) chloride modified

TiO2 and N-TiO2 nanosols Non-covalent dip-coating process [98]

4. Green Nanomaterials with Potential Applicability for Smart Textiles

Natural (i.e., cotton, silk, wool, and jute) and artificial fibres (i.e., polyester, nylon,
and elastane) can be equally employed in smart textile development [99]. They provide
the necessary structure, comfort, and functionality, which can be further enhanced by
incorporating nanomaterials, electronic components, or sensors. Conventional materials
used for smart textile development include conductive polymers (i.e., polyaniline—PANI
or poly(3,4-ethylenedioxythiophene)—PEDOT), widely used to create flexible and stretch-
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able conductive paths for electronic components and sensors. Metal wires and threads
(i.e., copper or silver) are used to create electrical connections in smart textiles. They can
be woven or embroidered into the fabric to enable conductivity and the transmission of
electrical signals [100].

Conventional materials for smart textiles are often derived from fossil fuels and pro-
duced using energy-intensive processes. They may also involve toxic chemicals, leading
to higher environmental pollution. Additionally, they do not possess the same level of
biocompatibility as green nanomaterials, having the potential to cause allergic reactions
or adverse effects on the skin, limiting their use in certain biomedical applications. In
this context, green nanomaterials offer a promising solution for developing sustainable
and environmentally friendly smart textiles. Recently, the potential applicability of green
nanomaterials in smart textiles has been explored, including cellulose nanocrystals, chi-
tosan nanoparticles, and silver nanoparticles synthesized from plant extracts. Figure 4
summarises some of the nanomaterials which can be synthesised via green chemistry and
their potential applications in smart textiles.
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Cellulose nanocrystals (CNCs) are biodegradable nanomaterials derived from cellulose
and can be produced from wood, cotton, and bacteria. CNCs possess high strength, low
density, biodegradability, and biocompatibility, making them attractive materials for smart
textiles [101,102]. Green synthesis of CNCs involves the use of environmentally friendly
methods to produce cellulose nanocrystals from plant-based materials [103,104]. The green
synthesis of CNCs involves cellulose extraction, accomplished by acid hydrolysis, alkali
treatment, and enzymatic hydrolysis [105]. Once the cellulose is extracted, it is processed
to isolate the CNCs using mechanical processes such as high-pressure homogenisation or
sonication, or by chemical processes such as acid hydrolysis [106]. The final step involves
the characterisation of the cellulose nanocrystals to determine their size, morphology, and
surface charge [105]. Bacteria, fungi, and algae have also been used to produce cellulose
nanocrystals [107].

The process for obtaining CNCs from microorganisms is similar to that of plant-based
materials. The microorganisms are grown under controlled conditions to produce cellulose,
which is then extracted and processed to obtain the cellulose nanocrystals. One advantage
of using microorganisms is that they can be grown in a controlled environment, producing
uniform and high-quality CNCs [108]. Additionally, bacteria can produce cellulose more
rapidly than plants, making them a potentially more efficient source of CNCs [109].

Some potential applications of CNCs in smart textiles are discussed in detail in the
following. CNCs can be incorporated into textile fibres or fabrics to improve their mechan-

https://www.biorender.com/about
https://www.biorender.com/about


Materials 2023, 16, 4075 9 of 27

ical properties, such as tensile strength, toughness, and elasticity. This can be beneficial
in creating high-performance textiles for use in sports, military, and aerospace applica-
tions [110–112]. These nanomaterials could change their structure in response to tempera-
ture, humidity, or pH. Incorporating CNCs into textiles makes it possible to create fabrics
that change their properties or appearance in response to external stimuli, allowing for
the developing of smart textiles with tuneable properties [113,114]. Electrically conductive
textiles can be created by combining CNCs with conductive materials (i.e. carbon nan-
otubes, graphene, or conductive polymers). These conductive textiles can create wearable
sensors, electronic components, or energy-harvesting devices [115]. CNCs can form thin
films or coatings on textiles to enhance their barrier properties against water, gases, or other
environmental factors. This can be useful for creating protective clothing or packaging
materials [116,117]. CNCs can be functionalized with antimicrobial agents or photocatalytic
materials to create textiles with antimicrobial or self-cleaning properties. These textiles can
help prevent the growth of bacteria and fungi, or break down organic stains and pollutants
on the fabric’s surface, making them suitable for healthcare, sportswear, and military appli-
cations [118]. These green nanomaterials can be employed as a carrier for drugs or other
therapeutic agents and integrated into smart textiles. These textiles can be used as wound
dressings or wearable drug delivery systems, providing controlled and targeted release of
the loaded agents [119,120]. As the demand for sustainable and environmentally friendly
materials increases, the use of cellulose nanocrystals in smart textiles is likely to continue
to grow.

Chitosan nanoparticles can be used as a coating to provide antimicrobial properties,
or as an additive to improve the mechanical properties of the textile. Chitosan [121,122] is
a biopolymer derived from chitin, found in crustaceans’ or shrimps’ exoskeletons [123,124].
Chitosan nanoparticles have been explored for their potential use in smart textiles thanks
to their unique biocompatibility, biodegradability, and antimicrobial activity [125]. Green
synthesis of chitosan nanoparticles involves using environmentally friendly methods to
produce nanoparticles from chitosan [126–128]. The basic steps for the green synthesis of
chitosan nanoparticles are the extraction of chitosan from chitin using an environmentally
friendly method such as acid-free deacetylation or enzymatic hydrolysis. Chitosan is
dissolved in an appropriate solvent, such as acetic acid, to form a chitosan solution, which
is then added dropwise to a non-solvent (i.e., sodium hydroxide or sodium sulphate),
under stirring conditions to form a nanoparticle suspension. The final step involves the
characterization of the chitosan nanoparticles to determine their size, morphology, and
surface charge [126].

Using environmentally friendly methods reduces the environmental impact of the
synthesis process. Chitosan nanoparticles are biocompatible, making them suitable for
delivery and tissue engineering applications [129]. The potential applications of chitosan
nanoparticles are further discussed below.

Chitosan nanoparticles can be woven into textile fibres or used as a coating on the
surfaces of fabrics to impart antimicrobial qualities, making these materials appropriate for
use in healthcare, athletic apparel, and military settings [129–132]. They can be incorpo-
rated into intelligent fabrics and loaded with medications or other medicinal substances.
Wound dressings and wearable drug delivery devices are potential applications for these
materials [33,133,134]. Chitosan nanoparticles can be mixed with other conductive ele-
ments, such as carbon nanotubes, silver nanoparticles, or conductive polymers, to make
conductive textiles. These fabrics have the potential to be fabricated into wearable sensors,
heating elements, and other electrical components [135,136]. Chitosan nanoparticles can be
loaded with colour-changing dyes or pigments, which can subsequently be incorporated
into textiles. Chitosan nanoparticles can also be loaded with other types of pigments. These
textiles can change colour in response to environmental conditions such as temperature,
humidity, or exposure to UV light [137,138]. As a result, they can provide either visual
feedback or concealment capabilities. Chitosan nanoparticles can encapsulate a wide va-
riety of active substances, including phase change materials (PCMs) and scents. After
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being encapsulated, these particles can subsequently be included into textiles in order to
provide temperature regulation, odour control, or other functionalities [139,140]. The use of
chitosan nanoparticles in smart textiles is expected to grow as the demand for sustainable
and environmentally friendly materials increases.

Silver nanoparticles (AgNPs) are a widely researched nanomaterial due to their excel-
lent electrical conductivity, antimicrobial activity, and optical properties. Silver nanoparti-
cles can be used as a coating to provide antimicrobial properties or as an additive to enhance
the electrical conductivity of the textile [141]. Green synthesis of silver nanoparticles in-
volves using eco-friendly methods to produce nanoparticles from silver ions. This method
is becoming increasingly popular as it is more sustainable and has a lower environmental
impact than traditional methods [142–145]. Plant-extract-mediated synthesis, microbial
synthesis, biopolymer-mediated synthesis, and green-chemistry-mediated synthesis are
several methods for obtaining AgNPs. Plant-extract-mediated synthesis involves using
plant extracts (i.e., Aloe vera, green tea, and neem) as reducing and stabilizing agents to
synthesize AgNPs [146–148]. Microbial synthesis involves the use of bacteria and fungi to
synthesize AgNPs. The microorganisms produce enzymes and metabolites that can reduce
and stabilize silver ions to form AgNPs [48,149]. Biopolymer-mediated synthesis uses
chitosan and starch as reducing and stabilising agents to synthesize AgNPs [150]. Green-
chemistry-based synthesis involves water as a solvent and glucose as a reducing agent [151].
The potential applications of green-synthesised AgNPs are summarised further.

Because AgNPs have antimicrobial properties, they can be incorporated into textile
fibres and fabrics or applied as a coating on the surfaces of fabric. Because of this, they
are suitable for use in healthcare settings, sportswear, and military uniforms to prevent
infections and odours [152–156]. Because AgNPs have such high electrical conductivity,
they can be used to make electrically conductive textiles [157,158]. These textiles can
then be utilised to produce wearable sensors, touch-sensitive fabrics, flexible electronics,
and heating elements. The fabrication of strain sensors, pressure sensors, or biosensors
in smart textiles can be accomplished using silver nanoparticles. These sensors can be
utilised for a variety of monitoring purposes, including detecting health metrics, monitoring
environmental conditions, and monitoring body movements [159,160]. When mixed with
phase change materials (PCMs) or other thermoregulating substances, silver nanoparticles
(AgNPs) can be used to assist in the production of textiles that can regulate temperature.
Because AgNPs have a high thermal conductivity, they are able to efficiently distribute
heat throughout the fabric, which results in more accurate temperature regulation [161,162].
Materials that change colour can be made with the help of silver nanoparticles thanks to the
plasmonic capabilities of these tiny particles. These fabrics can alter their colour in response
to various stimuli, such as being exposed to different types of light or experiencing shifts in
their immediate environment [18,163–165]. The usage of AgNPs allows for the production
of textiles that provide increased protection against electromagnetic interference (EMI) as
well as ultraviolet radiation. These materials have the potential to give a higher level of
protection in outerwear and cases for electronic devices [166]. Notably, the use of AgNPs
in textiles should be carefully considered due to their potential environmental and health
impacts, even though they are synthesized via the green route.

Carbon nanotubes (CNTs) are a unique class of materials with a wide range of potential
applications in areas such as electronics, energy storage, and biomedical engineering.
One of the challenges in producing CNTs is finding environmentally friendly and cost-
effective synthesis methods [167]. The following paragraphs present some examples of
green synthesis methods for CNTs, and their potential applications in the textile industry.
Qasim et al. [167] reviewed the use of plant-based materials as carbon sources for CNT
synthesis. For example, it has been reported that spices can be used to synthesise CNTs with
good optical properties [168]. Some bacteria can synthesise CNTs as a by-product of their
metabolic processes. This method is auspicious because it is low-cost and environmentally
friendly [169]. Hydrothermal synthesis involves using water at high temperatures and
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pressures to synthesise CNTs. This method is environmentally friendly because it does not
require toxic chemicals or solvents [170].

Carbon nanotubes can be embedded within the fibres of the textile to provide con-
ductivity or energy harvesting capabilities [171,172]. Research on using carbon nanotubes
in smart textiles is ongoing, and new applications and technologies are continually being
developed. For example, CNTs can be utilised to reinforce and enhance the mechanical
properties for polymer composites, in structural health monitoring, in electromagnetic
interference shielding, or in lightning strike protection [173].

Graphene oxide (GO) is a material with high mechanical strength, as well as thermal
and electrical conductivity. It can also be used for drug delivery, as it can be functionalized
with therapeutic agents [174–176]. Green synthesis methods for GO involve using natural
sources and environmentally friendly materials for the synthesis process to minimise
the environmental impact of GO production. The Hummers’ method is commonly used
for synthesizing GO but involves employing strong acids and oxidizing agents that can
harm the environment. Researchers have modified the Hummers’ method to make it
more environmentally friendly by using hydrogen peroxide or potassium permanganate
as alternative oxidising agents. This modification significantly reduces the amount of
hazardous waste generated during synthesis [177]. The use of graphene oxide recently
gained interest in the case of developing electronic textiles for biomedical applications [178].

Due to their antimicrobial properties, zinc oxide nanoparticles have been used for
wound healing applications. They can also be used for drug delivery, as they are bio-
compatible and biodegradable [179,180]. Plant-extract-mediated synthesis uses extracts
as reducing and capping agents to synthesise ZnO nanoparticles. Aloe vera, palm pollen,
dried leaves, and other zinc hyperaccumulator plants can be used to synthesise ZnO
nanoparticles [181].

Silk fibroin is a biocompatible and biodegradable protein derived from silk [182]. Silk
fibroin nanoparticles have been used for drug delivery, as they can be functionalised with
therapeutic agents [183,184].

This chapter emphasised the different green nanomaterials developed for biomedical
and environmental purposes, which can be included in textile fabrics. These materials’
versatility and unique properties make them attractive for various applications, from
wound healing to drug delivery to diagnostic tools.

5. Environmental and Medical Applications of Smart Textiles with Green Nanomaterials

Smart textiles incorporating green nanomaterials can have various environmental
applications, including air and water filtration, energy conversion and storage, and sustain-
able building materials [46,185,186]. These applications can potentially provide sustainable,
cost-effective, and innovative solutions to environmental challenges (Figure 5).

Smart textiles incorporating green nanomaterials can be used for air filtration. For
example, nanocellulose fibres have high filtration efficiency and low pressure drop, making
them a practical and energy-efficient option for air filtration [187–191]. Jhinjer et al. [192]
developed an in situ growth of zeolitic imidazolate metal-organic framework (ZIF MOF)
on carboxymethylated cotton fabric for the adsorption of organic pollutants (aniline, ben-
zene, and styrene). As Marino et al. presented [193], MOFs can be green-synthesised
using N,N-dimethyl-9-decenamide, a bioderived solvent, as an alternative for structurally
diverse MOFs.

GO and CNTs have been used to develop filters to remove heavy metals and bacteria
from water. These filters can potentially provide a low-cost and sustainable option for
water purification [194–197]. Xie et al. [198] studied a graphene oxide/Fe III based metal-
organic framework membrane for water purification. Their developed membrane showed
a photo-Fenton catalytic degradation efficiency of 98.81% for methylene blue (MB), and
an efficiency of 97.27% for bisphenol-A (BPA). For water purification, carboxylated multi-
walled carbon nanotubes (MWCNTs-COOH) loaded on cotton fabric acted as a separator
of the evaporation layer from the bulk water [199]. Wang et al. developed an effective
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technique for textile wastewater purification based on MXene/Carbon nanotubes/Cotton
fabric [200].
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The textiles made with piezoelectric nanomaterials can convert mechanical energy,
such as the movement of the fabric, into electrical energy. This can be used to power small
electronic devices, such as sensors and wearable technology [192,194,201,202]. GO, ZnO,
and BaTiO3 obtained by green chemistry synthesis methods can be incorporated into fabrics
to generate electricity from the mechanical stress produced by body movements [203–206].

Textiles made with supercapacitive nanomaterials can store and release electrical
energy quickly, making them a potential option for energy storage in wearable technol-
ogy [1,18,194,207]. In this sense, Dou et al. [208] developed a strain sensor based on a weft
knitted fabric with carbon nanotubes and polypyrrole deposited on the surface (WSP-CNT-
PPy), with robust electrochemical and electro-heating properties. The strain sensor can be
considered in future applications for wearable electronics. Poly(3,4-ethyeledioxythiopene)
(PEDOT) doped with poly(styrenesulfonate) (PSS) can be employed as flexible textile
supercapacitors. For example, Li et al. [209] used a spray-coating approach to create
graphene nanosheets with PEDOT:PSS. The conductive fabrics demonstrated an increased
specific surface capacitance of 245.5 mF/cm2, allowing them to be employed as flexible
textile supercapacitors.

To enhance the effectiveness of photovoltaic devices in collecting photo-generated
electrons, nanocomposites with high electron mobility can be designed rationally. Although
single-walled carbon nanotubes possess exceptional electron mobility, it remains difficult
to incorporate them into nanocomposites for efficient photovoltaic devices. In the study
conducted by Dang et al. [210], the synthesis of nanocomposites consisting of single-walled
carbon nanotube-TiO2 nanocrystal core-shell structures, utilizing a genetically engineered
M13 virus as a template, was presented.

Smart textiles incorporating green nanomaterials can also be used in sustainable
building materials. For example, textiles made with nanocellulose fibres can be used as
insulation and building panels, reducing the need for traditional construction materials,
and promoting sustainability [37,202,211].

Incorporating green nanomaterials into environmental applications such as air and
water filtration, energy conversion and storage, and sustainable building materials can im-
prove efficiency, reduce waste, increase sustainability, save costs, and improve performance.

https://www.biorender.com/about
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These advantages highlight the potential of green nanomaterials to provide innovative and
sustainable solutions to environmental challenges [187,194].

Smart textiles with green nanomaterials have many potential health applications
thanks to their unique properties and functionality (Figure 6).
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One approach to creating smart textiles with green nanomaterials for wound healing is
to coat fibres with antibacterial nanoparticles. For example, silk fibres coated with chitosan
nanoparticles proved to have antibacterial properties and promote the growth of skin
cells [182,212–216]. Chitosan nanoparticles have antibacterial properties against various
bacteria, including MRSA (methicillin-resistant Staphylococcus aureus), Escherichia coli, and
Pseudomonas aeruginosa [214,217]. A simple dipping method can be used to create silk fibres
coated with chitosan nanoparticles. First, silk fibres are soaked in a solution containing
chitosan nanoparticles. The fibres are then dried and heated to stabilise the coating. The
resulting silk fibres are antibacterial and have been shown to promote the growth of skin
cells, making them ideal for use in wound dressings [218]. The antibacterial properties of
silk fibres coated with chitosan nanoparticles can help prevent wound infections while
promoting skin cell growth and can aid in the healing process.

Additionally, silk fibres are biocompatible and biodegradable, which means they are
safe for the body and will break down naturally over time [219]. Silver nanoparticles have
also been shown to have strong antibacterial properties and are effective against a wide
range of microorganisms, including antibiotic-resistant strains [220,221]. In summary, smart
textiles with green nanomaterials, such as silk fibres coated with chitosan nanoparticles,
have great potential for wound healing due to their antibacterial properties and ability to
promote skin cell growth. Further research is needed to fully understand these materials’
potential benefits and risks in wound healing applications.

Smart textiles with green nanomaterials can be used for localised drug delivery [222].
Silver nanoparticles can be used to deliver antibiotics to the site of infection, reducing
the number of antibiotics needed and minimising the risk of systemic side effects [220].
Cotton fibres can be coated with silver nanoparticles for drug delivery by electrospinning,
dip-coating, and chemical vapour deposition. The antibacterial properties of the silver
nanoparticles were also effective at killing bacteria in the surrounding area [38]. In a
study [223], cotton fibres coated with silver nanoparticles have shown a good release
of antibiotics over a sustained period, with the release rate varying depending on the
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thickness of the coating. Overall, smart textiles with green nanomaterials have the potential
to revolutionize drug delivery by providing a targeted, localized approach to treatment. In
the case of cotton fibres coated with silver nanoparticles, this technology can improve the
effectiveness of antibiotic treatments while minimising side effects.

Smart textiles with green nanomaterials can be designed to provide UV protection for
the skin. For example, cotton fibres coated with zinc oxide nanoparticles have been shown
to provide UV protection while remaining breathable. UV protection is essential for textiles
and clothing, as prolonged exposure to UV radiation can lead to skin damage and increase
the risk of skin cancer [224,225]. Zinc oxide nanoparticles effectively absorb and scatter UV
radiation, making them ideal for UV-protective textiles. The nanoparticles can be easily
incorporated into textiles through various coating methods, such as dip-coating, spraying,
or electrospinning [226]. Further research is needed to fully understand these materials’
potential benefits and risks in UV protection applications [225].

Temperature regulation is an essential consideration in many applications, particularly
in healthcare. Smart textiles with green nanomaterials have potential applications in body
temperature regulation, benefiting individuals with hypothermia or hyperthermia. For
instance, copper nanoparticles embedded in fabrics can help regulate body temperature by
reducing heat loss [18,227]. Copper nanoparticles have unique properties, including high
thermal conductivity, which makes them effective at regulating body temperature. Copper
nanoparticles can be embedded into fabrics using various methods, such as dip-coating or
electrospinning [18].

Smart textiles with green nanomaterials can potentially be used for sensing and
monitoring vital signs and biometric data in real time, helping in the early detection of
health problems and preventing complications. For instance, Shamena et al. employed
poly(3,4-ethyeledioxythiopene) (PEDOT) doped with poly(styrenesulfonate) (PSS) films,
as they are used for electronic applications and are stable, biocompatible, and flexible. In
addition, silver and copper nanoparticles were blended with PEDOT:PSS to provide better
conductivity [228]. PEDOT:PSS can be synthesized via green synthesis methods. In situ
polymerization of PEDOT:PSS containing differing tin oxide (SNO2) content in aqueous
medium using plasma-activated H2O2 as oxidant has been reported [229]. In another
scientific paper [230], negatively charged gold and silver nanoparticles, prepared using the
dry leaf of Annona reticulata, were employed in PEDOT:PSS thin films. By electrospinning a
mixture of poly(vinyl alcohol) (PVA) and PEDOT:PSS, Zhang et al. [231] created ultrafine
conductive nanofibres with an average diameter of 68 nm. The resulting composite of
PVA/PEDOT:PSS was employed as a sensor for detecting low concentrations of ammonia
with high sensitivity.

For healthcare applications, incorporating green nanomaterials into smart textiles can
provide numerous benefits, including antibacterial properties, which can help prevent
the spread of infections in healthcare settings. Additionally, the incorporation of green
nanomaterials has the potential to increase the performance and durability of the textile,
resulting in longer-lasting, more comfortable textiles that can withstand repeated use
and washing. Zinc oxide nanoparticles have been shown to have antimicrobial and anti-
inflammatory properties, which can help improve wound healing. By incorporating these
materials into smart textiles, wound dressings can be created that are more effective at
preventing infections and promoting healing. Last but not least, green nanomaterials are
typically non-toxic and biodegradable, making them safer for both the environment and
human health.

6. Conclusions and Perspectives

Smart textiles incorporating green nanomaterials have the potential to add new func-
tionalities to clothing and other textile products, such as sensing, actuation, and energy
harvesting. Green nanomaterials, which are produced using environmentally friendly
methods and materials, are particularly promising as they address the environmental
concerns associated with traditional nanomaterials. Nanomaterials in smart textiles possess
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the potential to revolutionize topics, from environmental science to medicine, due to their
unique properties. The future potential for the development and commercialization of
these materials is expansive and diverse.

Scientists are investigating textiles incorporating carbon-based nanomaterials or metal-
organic frameworks (MOFs), which could effectively filter pollutants, contaminants, and
pathogens from air and water. The objective is to develop wearable technology that
promotes personal and environmental health [232,233]. It is possible to create personal
energy harvesting and storage systems through the development of textiles that incorporate
nanomaterials such as photovoltaic cells, thermoelectric devices, and piezoelectric materials.
This will increase the energy efficiency of wearable technology and lessen our reliance
on conventional energy sources [234]. Real-time health monitoring is one of the most
promising uses for smart textiles based on nanomaterials. Sensors can be incorporated into
these textiles to monitor physiological variables, including heart rate, body temperature,
and blood oxygen levels. Future breakthroughs might include the ability to identify
diseases [235]. Future smart textiles may contain nanoparticles that may securely transport
and deliver medications or other therapies, which could revolutionize the way we handle a
range of medical issues [236,237]. Nanomaterials have the potential to significantly enhance
wound treatment. To encourage more rapid recovery, decrease the risk of infection, and
even encourage tissue regeneration, smart fabrics may be developed [238]. Despite these
promising customers, there are still barriers to be solved for the use of nanoparticles in
smart textiles in the future. While many lab-scale demonstrations have been successful,
scaling these processes for mass production remains a challenge. The efficacy of the
nanoparticles and their related features must be maintained throughout the life cycle of
the textile product, including through washing and use. To ensure the reliability and
effectiveness of these materials, appropriate standards and regulations must be developed,
as with any breakthrough technology. It is important to fully understand and control
how nanomaterials interact with the environment and the human body. In order for the
public to easily understand and accept these products, education and communication are
essential. Issues and scepticism about the usage of nanoparticles may exist, and these must
be properly addressed.

Nevertheless, there are still several challenges to be addressed in developing and
implementing smart textiles incorporating green nanomaterials, such as those related to
compatibility, cost, safety, and regulation. However, the growing interest and investment
in this field suggest that we can expect continued progress in developing these innovative
and sustainable textile products in the future. Consumer acceptance, legal issues, cost-
effectiveness, and the scalability of production of nanomaterials, as well as the capacity
to integrate nanoparticles into textiles without affecting their qualities, will be crucial to
commercialization. Sustainability is an additional important aspect of commercialization.
From production to disposal, the life cycle of these materials should be evaluated and
optimized to reduce their environmental impact. For instance, biodegradable or recyclable
nanomaterials could be investigated.
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Abbreviations

Au Gold
Ag Silver
WHO World Health Organization
QD quantum dots
ASTM American Society for Testing and Materials
NP nanoparticle
mm millimetre
nm nanometre
NM nanomaterial
HPLC-MS High-performance liquid chromatography-mass spectrometry
PCR Polymerase chain reaction
ELISA Enzyme-linked immunosorbent assay
Pt Platinum
Pd Palladium
Zn Zinc
Cd Cadmium
Cu Copper
Fe Iron
Ni Nickel
Co Cobalt
HAuCl4 Tetrachloroauric Acid
H2PtCl6 Hexachloroplatinic acid
RhCl3 Rhodium (III) chloride
PdCl2 Palladium (II) chloride
cm centimetre
TiO2 Titanium dioxide
RF radio frequency
K Kelvin
kHz kilohertz
MHz megahertz
kW kilowatt
MW megawatt
atm atmosphere
sec seconds
N Nitrogen
DMF dimethylformamide
PEG polyethylene glycol
UV ultraviolet
AuNPs gold nanoparticles
◦C degrees Celsius
min minutes
ZnO Zinc oxide
SnO2 Tin oxide
PbO Lead (II) oxide
EC-SPR Electrochemical—surface plasmon resonance sensor
DNA Deoxyribonucleic Acid
LSPR Localised surface plasmon resonance
SERS Surface-enhanced Raman scattering
E. coli Escherichia coli
PMNCs polymeric nanocomposites
antibodies ABs
GOX glucose oxidase
PDA polydopamine
DA dopamine
CFU colony-forming unit
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mL millilitre
PtNPs platinum nanoparticles
PBNCs polymeric bionanocomposites
L. monocytogenes Listeria monocytogenes
µm micrometre
LOD Limit of detection
g gram
β-Gal β-galactosidase
S. typhimurium Salmonella typhimurium
h hours
PBS phosphate buffered saline
EC Commission Regulation
No Number
S. boydii Shigella boydii
ICS immunochromatographic strip
S. aureus Staphylococcus aureus
ATCC American Type Culture Collection
MNPs metal nanoparticles
MOs metal oxides
CuO copper oxide
Ag2O silver oxide
CuNPs Copper nanoparticles
pg picograms
Fe3O4 Iron oxide
SeNP Selenium nanoparticle
FeNP Iron nanoparticle
kg kilogram
K Potassium
Mg Magnesium
Ca Calcium
Hg Mercury
IC inhibition concentration
LC lethal concentration
CMT maximum permissible concentration
FDA Food and Drug Administration
LOx lactate oxidase
BC Bio-cellulose
Co Collagen
CuONPs Copper oxide nanoparticles
fmol femtomole
COVID-19 Coronavirus Disease 2019
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
USD The United States dollar
LDPE Low-density polyethylene
RFID Frequencies radio
EFSA The European Food Safety Authority
MNTS Micro- and Nanotechnologies
LDPE Low-density polyethylene
OR oil of oregano
RO rosemary oil
SWNT single walled carbon nanotube based
PLL Poly-L-lysine
ESI electrospray ionisation
GCE glassy carbon electrode
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PCL polycaprolactone
PHB polyhydroxy butyrate
PHV polyhydroxy valerate
PE polymers polyethylene
PVC polyvinyl chloride
EVOH ethylene vinyl alcohol
IgG Immunoglobulin G
IgM Immunoglobulin M
PBAT poly (butylene adipate-co-terephthalate
TPS cellulose-based thermoplastic starch
PLA poly lactide
PHA poly-hydroxyalkanoate
PHB poly-hydroxybutyrate
PGA poly-glutamic acid
MCF-7 Michigan Cancer Foundation-7
MOF metal-organic framework
ZIF MOF zeolitic imidazolate metal-organic framework
MWCNTs-COOH carboxylated multi-walled carbon nanotube
WSP-CNT-PPy weft-knitted spacer fabric-carbon nanotubes-polypyrrole
SNO2 tin oxide
PEDOT poly(3,4-ethylenedioxythiophene)
PEDOT:PSS poly (3,4ethyeledioxythiopene) doped with poly(styrenesulfonate)
PVA poly(vinyl alcohol)
TEMPO treated viscose fabrics with 2,2,6,6-tetramethylpiperidine-1-oxy radical
TOCN TEMPO-oxidized cellulose nanofibrils
CMCh carboxymethyl chitosan
PANI polyaniline
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