

Article Enhancement of the Desorption Properties of LiAlH₄ by the Addition of LaCoO₃

Noratiqah Sazelee ¹^(b), Nurul Amirah Ali ¹^(b), Mohammad Ismail ^{1,*}^(b), Sami-Ullah Rather ²^(b), Hisham S. Bamufleh ², Hesham Alhumade ², Aqeel Ahmad Taimoor ² and Usman Saeed ²^(b)

- ¹ Energy Storage Research Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; atiqahsazelee19@gmail.com (N.S.); nurulllamirah@gmail.com (N.A.A.)
- ² Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia; rathersami@kau.edu.sa (S.-U.R.); hbamufleh@kau.edu.sa (H.S.B.); halhumade@kauedu.sa (H.A.); ataimoor@kau.edu.sa (A.A.T.); umsaeed@kau.edu.sa (U.S.)
- * Correspondence: mohammadismail@umt.edu.my; Tel.: +60-96-683-487

Abstract: The high hydrogen storage capacity (10.5 wt.%) and release of hydrogen at a moderate temperature make LiAlH₄ an appealing material for hydrogen storage. However, LiAlH₄ suffers from slow kinetics and irreversibility. Hence, LaCoO₃ was selected as an additive to defeat the slow kinetics problems of LiAlH₄. For the irreversibility part, it still required high pressure to absorb hydrogen. Thus, this study focused on the reduction of the onset desorption temperature and the quickening of the desorption kinetics of LiAlH₄. Here, we report the different weight percentages of LaCoO₃ mixed with LiAlH₄ using the ball-milling method. Interestingly, the addition of 10 wt.% of LaCoO₃ resulted in a decrease in the desorption temperature to 70 °C for the first stage and 156 °C for the second stage. In addition, at 90 °C, LiAlH₄ + 10 wt.% LaCoO₃ can desorb 3.37 wt.% of H₂ in 80 min, which is 10 times faster than the unsubstituted samples. The activation energies values for this composite are greatly reduced to 71 kJ/mol for the first stages and 95 kJ/mol for the second stages compared to milled LiAlH₄ (107 kJ/mol and 120 kJ/mol for the first two stages, respectively). The enhancement of hydrogen desorption kinetics of LiAlH₄ is attributed to the in situ formation of AlCo and La or La-containing species in the presence of LaCoO₃, which resulted in a reduction of the onset desorption temperature and activation energies of LiAlH₄.

Keywords: LiAlH₄; LaCoO₃; solid-state hydrogen storage; metal oxide

1. Introduction

Due to the world's population growth and civilizational developments, there has been an exponential increase in energy demand. The exploration of sustainable and renewable energy such as wind energy, hydropower, electrochemical energy and solar energy is believed to relieve the burden on the current energy demand [1–3]. Moreover, the amount of renewable energy consumed today is increasing which raises the standard for energy storage and transportation. However, the primary energy source is still fossil fuels despite the fact that they are unsustainable and have brought serious problems to the environment and human health [4,5]. Based on these facts, all countries have begun to implement a variety of strategies in order to avoid such problems. Future carbon emissions are predicted to be significantly reduced by hydrogen [6,7]. Over the last two decades, studies on hydrogen storage have received more attention in the literature [8,9]. In addition, hydrogen has the tremendous benefit of providing clean secondary energy with high energy content, no pollution and abundant resources [10,11]. There are three ways of storing hydrogen: (i) in a liquid form [12], (ii) in compressed gas [13] and (iii) in solid-state forms [14]. However, storing hydrogen in a solid-state form is attractive due to its safety reasons. The solid-state

Citation: Sazelee, N.; Ali, N.A.; Ismail, M.; Rather, S.-U.; Bamufleh, H.S.; Alhumade, H.; Taimoor, A.A.; Saeed, U. Enhancement of the Desorption Properties of LiAlH₄ by the Addition of LaCoO₃. *Materials* **2023**, *16*, 4056. https://doi.org/ 10.3390/ma16114056

Academic Editors: Alessandro Dell'Era and Erwin Ciro Zuleta

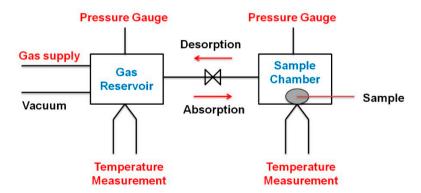
Received: 16 April 2023 Revised: 24 May 2023 Accepted: 27 May 2023 Published: 29 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). form has two main types: (i) physisorption and (ii) chemisorption. In physisorption, the hydrogen bind in the molecular to the surface of the host materials through weak interaction [15]. This physisorption process occurs for materials such as metal-organic frameworks [16] and carbon-based materials [17]. In 2023, a study by Mishra and colleagues [18] explored novel polycrystalline carbon nanotubes (PCNTs) in order to be used for large-scale hydrogen storage applications. They also revealed that PCNTs with moderate grain size are quite effective for these applications. Liang et al. [19] also reported an effective way to enhance hydrogen storage performance by using a porous carbon nanotube (CNT). However, the physisorption process has a low enthalpy of adsorption as revealed by previous studies [20,21]. Chemisorption is favorable because it can create a better storage capacity in ambient conditions [22]. Complex hydrides (such as NaBH $_4$ and LiAlH $_4$) and metal hydrides (such as MgH₂) are typical materials for chemisorption. Other typical materials for chemisorption in chemical hydrogen storage are ammonia borane, methane, dimethyl ether, methanol, methanol and formic acid [23]. However, these chemical hydrides materials also suffer from some drawbacks, for example, ammonia borane (NH₃BH₃) requires a long induction time and high temperature to release hydrogen [24] and ammonia (NH₃) must be heated at high temperature (above 650 °C) to achieve complete conversion [25].

In this study, lithium aluminium hydride (LiAlH₄), which are complex hydrides, have been used due to their low cost, moderate temperature to release hydrogen and high hydrogen storage capacity (10.5 wt.%) [26,27]. However, the use of LiAlH₄ for hydrogen storage applications is still constrained by its sluggish kinetics and irreversibility [28,29]. Furthermore, LiAlH₄ needs to be handled according to the safety data sheet and Standard Operating Procedure (SOP). LiAlH₄ needs to be stored away from heat/flame and moisture/water sources and kept sealed under an inert atmosphere. Personal protective equipment including safety glasses, lab coat, gloves and covered shoes should be used. In order to overcome the disadvantages, a few techniques for enhancing its kinetics and thermodynamics have been investigated. For example, doping LiAlH₄ with various kinds of catalysts or additives such as metal oxides [30–33], metal halides [34,35], metal hydrides [36], pure metals [37,38] and carbon material [39] have been performed via the ball-milling method. However, the improvement of LiAlH₄ is adversely affected by the ball-milling technique as proposed by Resan and colleagues [40].

A study by Jiao and colleagues [41] revealed that excellent desorption properties of LiAlH₄ were accomplished after being doped with 1 wt.% NiCo nanoalloy encapsulated in graphene layers (NiCo@G). The starting hydrogen release for the doped samples was unexpectedly lowered by 109 °C compared to pure LiAlH₄ (152 °C). For the desorption kinetic performance, as-milled LiAlH₄ releases 1.6 wt.% of H₂ at 150 $^{\circ}$ C within 10 min. Meanwhile, faster desorption kinetics can be observed after LiAlH₄ is doped with 1 wt.% NiCo@G. The desorption kinetics for the doped samples carries on rapidly with 5.8 wt.% of H_2 under the same conditions. As investigated by Li et al. [42], the addition of CoFe₂O₄ nanopowder to LiAlH₄ effectively lowered the decomposition kinetic barrier for LiAlH₄. Additionally, the activation energies of LiAlH₄ doped with CoFe₂O₄ for the first two stages were 52.4 kJ/mol and 86.5 kJ/mol, respectively. During the heating process of LiAlH₄ doped with CoFe₂O₄, the LiAlO₂, LiFeO₂, Al_{0.52}Co_{0.48} and Fe_{0.98}O phases appeared in the X-ray diffraction (XRD) patterns, indicating that this reaction could alter the reaction thermodynamics by lowering the enthalpy of the desorption reaction. The improvement of LiAlH₄ after the addition of $CoFe_2O_4$ as a catalyst is also supported by Wei et al. [43]. It is exciting to note that they created CoFe₂O₄ using a thermal decomposition method and discovered that the starts of hydrogen release as compared to pure LiAlH₄ (176 $^{\circ}$ C and 279 °C for the first two stages) were lowered by 103.3 °C and 97.9 °C for the first two stages, respectively.

Many studies have observed that rare earth metals such as Nb, Y and La exhibited excellent hydriding and dehydriding kinetics of MgH₂ [44,45]. Additionally, adding 10 wt.% LaFeO₃ lowered the activation energies and started the hydrogen release of LiAlH₄ as indicated by our earlier research [46]. A further study discovered that the desorption


properties of LiAlH₄ were greatly benefited by the freshly formed La or La-containing species, Fe and LiFeO₂ that had been generated during the heating process. Based on the study by Zhou et al. [47], the reduction temperature in the endothermic peaks showed that the desorption properties of LiAlH₄ were positively affected after the inclusion of LaF₃. On the other hand, Xueping et al. [48] looked into how the addition of La₂O₃ affected the desorption properties of LiAlH₄–NH₄Cl. The result obtained shows that adding La₂O₃ to LiAlH₄–NH₄Cl will increase the rate of hydrogen release while reducing the starting time.

In this context, with the aim of combining La and Co, Cobalt lanthanum oxide $(LaCoO_3)$ was introduced to prepare $LaCoO_3$ –LiAlH₄ via the ball-milling method to improve the hydrogen storage properties of LiAlH₄. Interestingly, various weight percentages of LaCoO₃ were investigated to study the catalytic effects and the microstructure of hydrogen storage properties of LiAlH₄. To the best of the author's knowledge, no research on LaCoO₃ and LiAlH₄ performance has been published.

2. Materials and Methods

In this study, LaCoO₃ was used as an additive and was synthesized using the solidstate method as discussed in our previous research [49]. A total of 0.121 g of citric acid (\geq 98% pure; Sigma Aldrich, St. Louis, MO, USA), 0.081 g of lanthanum oxide (\geq 99.9% pure; Aldrich Chemical Compound, Milwaukee, WI, USA) and 0.040 g of pure cobalt oxide (99.99% pure, Sigma Aldrich) were ground in an agate mortar and calcined at 950 °C in a furnace for 5 h. Different weight percentages of pure LaCoO₃ (5, 10, 15 and 20) were milled in a planetary ball mill (NQM–0.4) with LiAlH₄ (95% pure, Sigma Aldrich) for an hour (15 min milling time, 2 min resting time with 3 cycles) at a rotational speed of 400 rpm with a ball to powder ratio of 40:1. To prevent the reaction of samples with oxygen and moisture, all operations were conducted in an argon atmosphere glove box (MBRAUN UNIIab, Germany) containing low concentrations of O₂ (<0.1 ppm) and H₂O (<0.1 ppm) and high-purity Ar (99.99%).

The Gas Reaction Controller (GRC) evaluates quantitative analysis of the gas–solid reaction. It introduces a controlled amount of gas into the reaction chamber that holds a specimen. The pressure of the gas needs to be monitored while the temperature of the chamber is held constant or slowly changed. The instrument is connected to a computer and controlled by software (GrcLV), which performs fully automatic operations. Figure 1 below shows a schematic diagram of the working principles of the Sieverts apparatus. To determine the decomposition temperature of each sample, 150 mg of the materials were inserted into the sample holder and were heated at a rate of 5 °C/min from 30 to 250 °C. In the meantime, the desorption kinetics for all of the samples were heated for 80 min at 90 °C. This experiment was conducted by using Sievert-type apparatus (Advanced Materials Corporation, Pittsburgh, PA, USA).

Figure 1. Schematic diagram showing the working principles of the Sieverts apparatus for determining hydrogen uptake/release.

Differential thermal analysis of the prepared samples was carried out using differential scanning calorimetry (Mettler Toledo, Columbus, OH, USA TGA/DSC 1) between 30-300 °C

with a heating rate of 15, 20, 25 and 30 °C/min. Alumina crucibles were used as reference material. Samples weighing 6–8 mg were put into the crucible. The crucible was then sealed in a glass bottle to avoid the oxidation of the samples during the transfer from the glove box to the DSC apparatus. After the sample was placed inside the DSC, the gas inside the DSC was purged and constant argon flow (50 mL) was supplied. The designation of phase and composition of the samples were recorded by using XRD using Cu-K α radiation at room temperature at a scanning range of $20^{\circ} < 2\theta < 80^{\circ}$. To prevent the oxidation of the samples, a small amount of the sample was spread uniformly on the sample holder and covered with scotch tape and followed by sealing with plastic wrap as described in our previous studies [50,51]. Fourier transform infrared (FTIR) spectroscopy spectra were collected at room temperature at a resolution of 4 cm⁻¹ from 800 to 2000 cm⁻¹. For FTIR, the samples were placed in microcentrifuge tubes (1.5 mL) during transportation from the glove box. The samples were placed on the FTIR, and the measurement was analyzed for a few seconds. We had additionally taken some precautionary steps so that the exposure of the samples to the air is minimized. Meanwhile, the surface configuration of the samples was analyzed using scanning electron microscopy (SEM; JEOL, Akishima, Tokyo, Japan (JSM-6360LA). Before each sample was analyzed, the samples were prepared on carbon tape and sprayed with a gold spray in a vacuum. Next, the samples were put in a sample container during the transfer process from the glove box to the SEM apparatus to prevent the samples from oxidizing. During the sample investigation, the samples were put inside the SEM under a vacuum state.

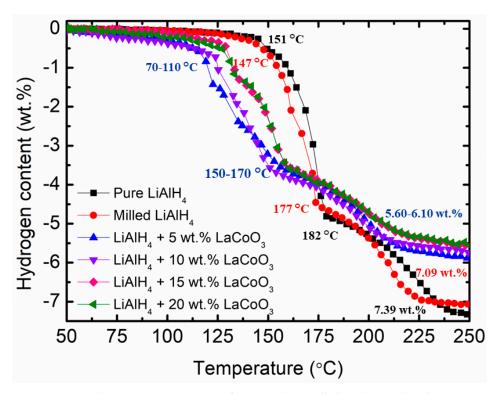
3. Results and Discussion

3.1. Onset Desorption Temperature

The hydrogen release curves with temperature are shown in Figure 2 for pure LiAlH₄, milled LiAlH₄ and LiAlH₄ with different weight percents of LaCoO₃. A remarkable low-temperature shift was observed for hydrogen released from LiAlH₄ in the presence of LaCoO₃. For pure LiAlH₄, the first and second stages began at 151 °C and 182 °C, respectively with 7.39 wt.% of H₂ released. However, after LiAlH₄ was milled for an hour, the starting temperature release could be decreased from 151 °C to 147 °C and from 182 °C to 177 °C for the first and second stages, respectively, with 7.09 wt.% of the total H₂ released. It is validated that the milling of the samples used has a positive effect on the peak of the desorption temperature of LiAlH₄. This statement was also proven by Liu et al. [36]. Theoretically, LiAlH₄ decomposes according to the following reactions [52,53]:

For the first stage,

$$3\text{LiAlH}_4 \rightarrow \text{Li}_3\text{AlH}_6 + 2\text{Al} + 3\text{H}_2 \tag{1}$$


and for the second stage,

$$Li_3AlH_6 \rightarrow 3LiH + Al + 3/2H_2 \tag{2}$$

However, the temperature of onset desorption compared with milled LiAlH₄ was reduced from 147 °C to 98 °C and from 177 °C to 153°C for the first and second stages, respectively, with 6.01 wt.% of H₂ released when 5 wt.% of LaCoO₃ was added. The desorption temperature drops to 70 °C and 105 °C for the first stage and 156 °C and 164 °C for the second stage, respectively, when 10 wt.% and 15 wt.% of LaCoO₃ are added. The total H₂ released for LiAlH₄ + 10 wt.% LaCoO₃ and LiAlH₄ + 15 wt.% LaCoO₃ were 5.86 wt.% and 5.72 wt.%, respectively. Increasing the amount of LaCoO₃ to 20 wt.% also lowered the onset desorption temperature by 45 °C and 13 °C compared with pure LiAlH₄ for the first and second stages, respectively. In spite of that, the amount of hydrogen released also decreased to 5.67 wt.%. This happens due to the zero hydrogen content in the LaCoO₃; this outcome also has been testified by Xia et al. [54] and Ahmad et al. [55]. Table 1 summarizes the onset desorption temperature, hydrogen content and total hydrogen loss for pure LiAlH₄, milled LiAlH₄ and different weight percentages of LaCoO₃ with LiAlH₄ composites.

Samples	Onset Desorption Temperature (1st Stage) (°C)	Onset Desorption Temperature (2nd Stage) (°C)	Hydrogen Content (wt.%)	Hydrogen Loss (wt.%)
Pure LiAlH ₄	151	182	7.39	-
Milled LiAlH ₄	147	177	7.09	0.30
LiAlH ₄ + 5 wt.% LaCoO ₃	98	153	6.01	1.38
$LiAlH_4 + 10$ wt.% $LaCoO_3$	70	156	5.86	1.53
$LiAlH_4 + 15$ wt.% $LaCoO_3$	105	164	5.72	1.67
$LiAlH_4 + 20$ wt.% $LaCoO_3$	106	169	5.67	1.72

Table 1. Onset desorption temperature, hydrogen content and hydrogen loss from each sample.

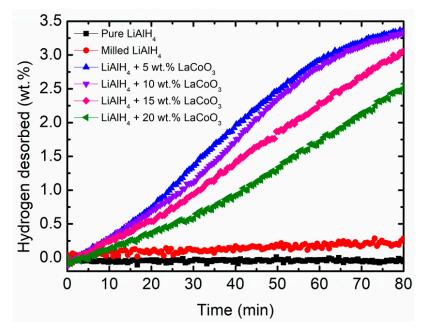


Figure 2. Onset desorption temperature of pure LiAlH₄, milled LiAlH₄ and LiAlH₄ + x wt.% LaCoO₃ (x = 5, 10, 15 and 20).

3.2. Isothermal Desorption Kinetics

For practical applications, the desorption rate of hydrogen storage materials is a crucial characteristic. Hence, Figure 3 below shows the isothermal desorption kinetics for LiAlH₄ with different weight percents of LaCoO₃ composites compared to pure LiAlH₄ and milled LiAlH₄ at 90 °C within 80 min. Under the same conditions, the LiAlH₄ + 5 wt.% LaCoO₃ systems desorbed 3.37 wt.% of H₂. Increasing the amount of LaCoO₃ to 10 wt.% also released 3.37 wt.% of H₂ under the same period. However, slightly faster desorption kinetics can be observed for LiAlH₄ + 5 wt.% LaCoO₃ systems within 30 min at 90 $^{\circ}$ C. Meanwhile, $LiAlH_4 + 15$ wt.% $LaCoO_3$ and $LiAlH_4 + 20$ wt.% $LaCoO_3$ composites release approximately 3.06 wt.% and 2.50 wt.% of H₂, respectively. The individual LiAlH₄ releases less than 0.30 wt.% under the same conditions. This has proven that after the addition of LaCoO₃, the isothermal desorption kinetics are 10 times faster than the unsubstituted LiAlH₄. The next characterization was optimized to be 10 wt.% of LaCoO₃. This is because the LiAlH₄ + 10 wt.% LaCoO₃ system decomposes at lower temperatures for the first stages compared to another amount of LaCoO₃. Even though 5 wt.% also performed well for the isothermal desorption properties, the onset desorption temperature for 10 wt.% of LaCoO₃ compared to that of LiAlH₄ + 5 wt.% LaCoO₃ (98 °C) decreased by 28 °C for the first stages,

which indicates that the temperature for the LiAlH₄ + 5 wt.% LaCoO₃ is quite high for the desorption process to occur. Sulaiman and Ismail [56] also studied different weight percentages of $SrFe_{12}O_{19}$ (10, 20 and 50) on the thermal desorption of LiAlH₄. A further study relating the catalytic effect of $SrFe_{12}O_{19}$ on the hydrogen storage performance of LiAlH₄ was performed using 10 wt.% of $SrFe_{12}O_{19}$. Next, the effects of 5, 10, 15 and 20 wt.% of CoTiO₃ were investigated on the onset desorption temperature of LiAlH₄ [57]. However, 10 wt.% of CoTiO₃ was chosen as an optimal amount to explore the desorption properties of LiAlH₄. Thus, based on the discussion above, 10 wt.% of LaCoO₃ was chosen for further characterization.

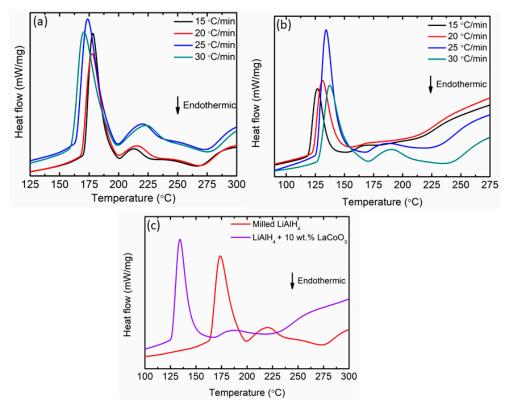


Figure 3. Isothermal desorption kinetics of pure LiAlH₄, milled LiAlH₄ and LiAlH₄ + x wt.% LaCoO₃ (x = 5, 10, 15 and 20).

3.3. Activation Energy

The DSC traces for milled LiAlH₄ and LiAlH₄ + 10 wt.% LaCoO₃ are included in Figure 4a,b, respectively. The figure below indicates that as the heating rate increases, the temperature also increases. Figure 4c exhibits the comparison for milled LiAlH₄ and LiAlH₄ + 10 wt.% LaCoO₃ at a heating rate of 25 $^{\circ}$ C/min. For milled LiAlH₄, there are four peaks (two exothermic peaks and two endothermic peaks) [58,59]. At 174 °C, the first exothermic peak can be regarded as being caused by LiAlH₄ interacting with the surface hydroxyl impurities. These characteristics are due to the presence of surface hydroxyl impurities in the alanate powder, as already described in a previous study [60]. The second exothermic peak at 220 °C was directly related to the decomposition of LiAlH₄ to Li₃AlH₆ and Al (as in Equation (1)) and the second endothermic peak at 273 °C was believed to happen due to the decomposition of Li_3AlH_6 to LiH and Al (as in Equation (2)). In contrast with the unsubstituted samples, the temperature of each peak dropped after the inclusion of 10 wt.% LaCoO₃. The first exothermic and endothermic peaks were 134 °C and 167 °C, respectively. Further heating led to additional exothermic and endothermic peaks at 188 °C and 242 °C, respectively. It has been shown that the addition of 10 wt.% LaCoO₃ has shifted the peaks to a lower temperature for each reaction, proving that the desorption kinetics performance of LiAlH₄ was improved. This could be associated with the fact that the introduction of 10 wt.% $LaCoO_3$ leads to significant particle size refinement of LiAlH₄. The lower desorption peaks of the composite can effectively contribute to the kinetic improvement of LiAlH₄ via the addition of 10 wt.% LaCoO₃. Furthermore, LaCoO₃ is reported to have a hardness of 6.5 Mohs compared with the 4.0 Mohs of LiAlH₄ [61]. The hardness of the LaCoO₃ had thus broken the LiAlH₄ particles. Therefore, smaller particle

size could enhance the kinetic enhancement and lower the activation energy of the LiAlH₄. The enhancement in the desorption kinetics performance is related to the energy barrier for hydrogen released from LiAlH₄.

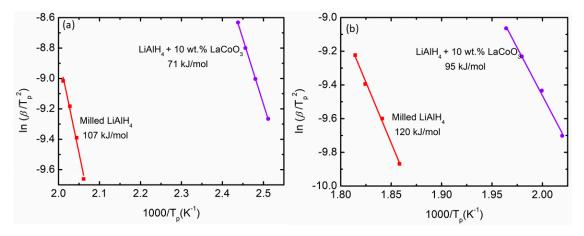


Figure 4. DSC traces of (**a**) milled LiAlH₄, (**b**) LiAlH₄ + 10 wt.% LaCoO₃ at various heating rates and (**c**) DSC traces at 25 °C/min of milled LiAlH₄ and LiAlH₄ + 10 wt.% LaCoO₃.

In order to obtain kinetic information of the hydrogen desorption from milled LiAlH₄ and LiAlH₄ + 10 wt.% LaCoO₃, the activation energies (E_A) were examined using the Kissinger equation, as shown in Equation (3) below:

$$\ln \left[\beta/T_p^2\right] = -E_A/RT_p + A \tag{3}$$

where A = linear constant, R = gas constant, $T_p = peak$ temperature in the DSC curve and β = heating rate. The activation value can be obtained by analyzing the slope of the Kissinger plot, $\ln (\beta/T_p^2)$ vs. 1000/T_p. The first stage of E_A was applied to the decomposition of LiAlH₄ as shown in Figure 5a while the second stage of E_A was applied to the decomposition of Li_3AlH_6 as illustrated in Figure 5b. From the figure, the E_A are 107 kJ/mol and 71 kJ/mol for milled LiAlH₄ and LiAlH₄ + 10 wt.% LaCoO₃, respectively. For the second stage, milled LiAlH₄ has an E_A of 120 kJ/mol and this value decreased by 25 kJ/mol after the addition of 10 wt.% LaCoO₃ (95 kJ/mol). This proves that adding $LaCoO_3$ as an additive could lower the E_A of $LiAlH_4$ for both stages. A previous study by Li et al. [62] exposed that the E_A of LiAlH₄ are 78.2 kJ/mol and 90.8 kJ/mol, 38 kJ/mol and 42.2 kJ/mol lower than pure LiAlH₄ for the first and second stages, respectively, after the addition of K_2 TiF₆. Furthermore, Zhang et al. [63] revealed that the E_A was reduced by 18 kJ/mol for the first stages and 73.3 kJ/mol compared to milled LiAlH₄ (90.6 kJ/mol and 144.7 kJ/mol) after adding Li_2TiO_3 . Adding $SrFe_{12}O_{19}$ also reduced the E_A from 103 kJ/mol to 76 kJ/mol for the first stage and from 111 kJ/mol to 96 kJ/mol for the second stage compared with milled LiAlH₄ [56]. Based on this discussion, it can be concluded that adding $LaCoO_3$ could lower the E_A of $LiAlH_4$. Owing to this reduction of the E_A , the desorption kinetics of LiAlH₄ are enhanced.

Figure 5. Activation energies of milled $LiAlH_4$ and $LiAlH_4 + 10$ wt.% $LaCoO_3$ for (**a**) first stages and (**b**) second stages.

3.4. Morphology and Microstructures

Figure 6 illustrates the SEM micrographs of pure LiAlH₄, milled LiAlH₄ and LiAlH₄ + 10 wt.% LaCoO₃. As shown in Figure 6a, the particles of pure LiAlH₄ are shaped like blocks and are coarse, as reported by a previous study [64]. After LiAlH₄ was milled for an hour, the particles became agglomerated and inhomogeneous, as shown in Figure 6b and proven by Ares and co-workers [65]. However, after the addition of LaCoO₃, the particle size became small compared to pure LiAlH₄ and milled LiAlH₄ (Figure 6c). This result is consistent with earlier research showing that adding an additive or catalyst can reduce the particle size of LiAlH₄ [66]. In addition, after LiAlH₄ was doped with MnFe₂O₄, the samples decreased in particle size, resulting in more grain boundaries and increased surface area, which enhanced the desorption properties of LiAlH₄ [67]. Therefore, it can be concluded that after the addition of 10 wt.% LaCoO₃ through the ball-milling method, a smaller particle size can be observed, which may benefit the desorption behavior of the LiAlH₄.

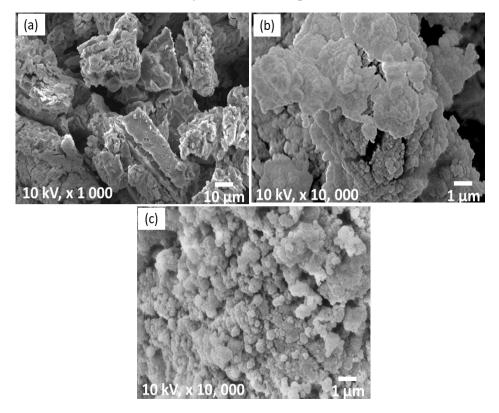
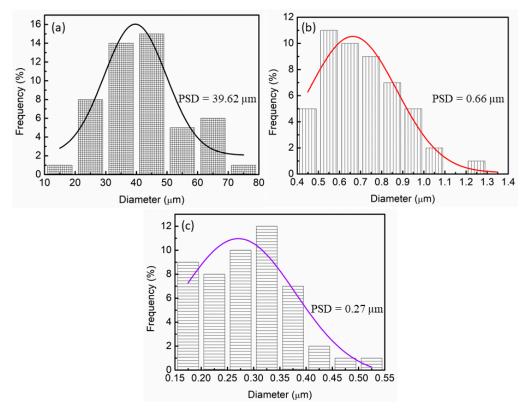



Figure 6. SEM images of (a) pure LiAlH₄, (b) milled LiAlH₄ and (c) LiAlH₄ + 10 wt.% LaCoO₃.

The data plotted in Figure 7 show the average particle size distribution (PSD) of composites with and without the addition of LaCoO₃. For pure LiAlH₄ (as in Figure 7a), the particle size distribution calculated using ImageJ was 39.62 μ m. After an hour of the milling process of LiAlH₄, the samples improve the quality of the powders in terms of reduction in the particle size, as shown in Figure 7b. The particle size of milled LiAlH₄ was reduced to 0.66 μ m. However, the particle size of LiAlH₄ + 10 wt.% LaCoO₃ is smaller if compared to the unsubstituted samples previously described in the SEM part. The average particle size of LiAlH₄ + 10 wt.% LaCoO₃ was 0.27 μ m, as shown in Figure 7c. In summary, the progressive phenomenon of reduction in particle size is reached, indicating that the inclusion of LaCoO₃ using the ball-milling method improved the desorption performance of LiAlH₄.

Figure 7. Particle size distributions of (**a**) pure LiAlH₄, (**b**) milled LiAlH₄ and (**c**) LiAlH₄ + 10 wt.% LaCoO₃.

3.6. Phase Structure

The XRD patterns of pure LiAlH₄ and LiAlH₄ after being milled for an hour are displayed in Figure 8a,b, respectively. At this stage, all the peaks correspond to LiAlH₄, which perfectly matches the standard pattern of LiAlH₄ (JCPDS card no. 73-461). However, the intensity of the sample lowered compared to pure LiAlH₄. According to these patterns, the milling process will result in a reduction in the intensity of the peaks. A previous study by Rahmaninasab and colleagues [68] revealed that the milling time causes the intensity to be reduced. This is due to the increase in the lattice strain and internal energy during the milling process, as revealed by Dittrich et al. [69]. This also demonstrates that LiAlH₄ is stable during the milling process, as stated in the previous studies [32,70,71]. The XRD pattern of LiAlH₄ + 10 wt.% LaCoO₃ is presented in Figure 8c. It was seen that the peaks related to LiAlH₄ become broad and had a lower intensity when compared to unsubstituted LiAlH₄. No new peaks or peaks for LaCoO₃ were detected during the milling process of LaCoO₃.

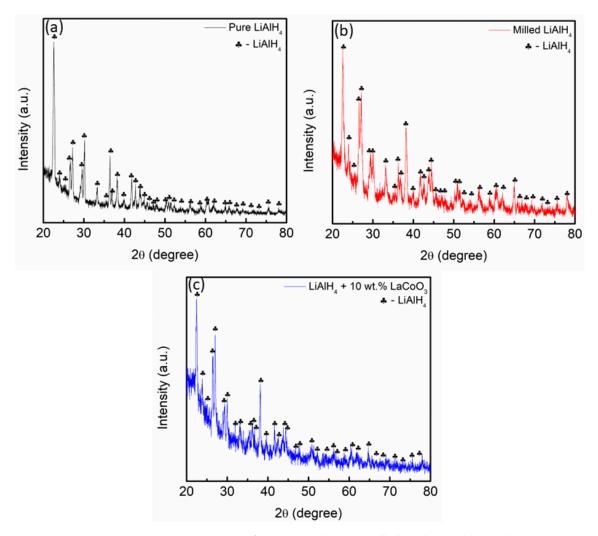


Figure 8. XRD pattern of (a) pure LiAlH₄, (b) milled LiAlH₄ and (c) LiAlH₄ + 10 wt.% LaCoO₃.

The FTIR spectra were carried out to confirm the presence of 10 wt.% LaCoO₃, as indicated in Figure 9. Two regions of active IR peaks that are the bending mode and the stretching mode were detected in the range of 800–900 cm⁻¹ and 1600–1800 cm⁻¹ [72], respectively, for pure LiAlH₄, milled LiAlH₄ and LiAlH₄ + 10 wt.% LaCoO₃. After the addition of 10 wt.% LaCoO₃, a new peak was detected at 1383 cm⁻¹, suggesting that LiAlH₄ was decomposed to Li₃AlH₆ and Al during the ball-milling process. A previous study led by Shen et al. [73] also revealed that the peaks that appear around 1400 cm⁻¹ represent the stretching peak of Li₃AlH₆. Furthermore, after the addition of NiFe₂O₄, Wei et al. [43] discovered a weak stretching mode at about 1404 cm⁻¹ which belongs to the Al–H stretching of [AlH₆]^{3–}.

To observe the change of phase structure of the LiAlH₄ with LaCoO₃ during the desorption process, an XRD scan has been conducted from 20° to 80° . As shown in Figure 10a below, after LiAlH₄ + 10 wt.% LaCoO₃ was heated, LiH and Al peaks were found, indicating that Equations (1) and (2) had occurred. A new peak for AlCo was identified, proving that the reaction of LiAlH₄ and LaCoO₃ may have occurred during the heating process. No peaks for La or La-containing species were detected as displayed in Figure 10a. However, after the amount of LaCoO₃ was increased to 30 wt.% (as shown in Figure 10b), the same peaks for AlCo and LiH/Al were spotted.

11 of 15

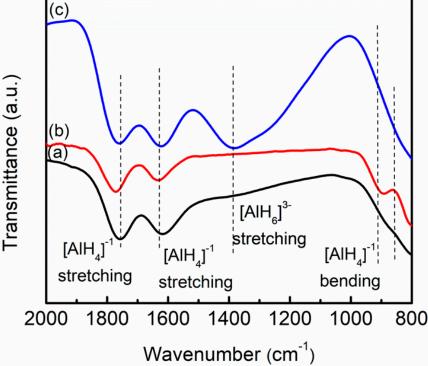
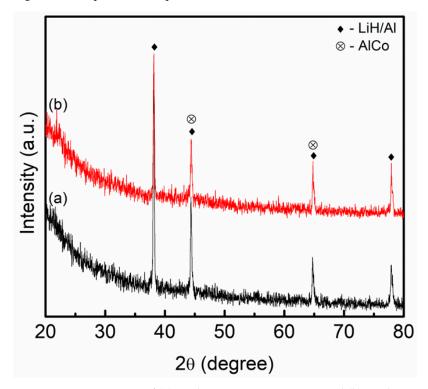



Figure 9. FTIR pattern of (a) pure LiAlH₄, (b) milled LiAlH₄ and (c) LiAlH₄ + 10 wt.% LaCoO₃.

Figure 10. XRD pattern of (a) LiAlH₄ + 10 wt.% LaCoO₃ and (b) LiAlH₄ + 30 wt.% LaCoO₃ after desorption at 250 $^{\circ}$ C.

From the above discussions, the enhancement of $LiAlH_4$ may be ascribed to a few factors. The new active species of AlCo formed after the heating process acts as a real additive in enhancing the hydrogen storage performance of $LiAlH_4$. Additionally, it has been evidenced that Co additives may benefit the desorption properties of light metal complex hydrides [74,75]. In addition, Lv and colleagues [76] managed to show that

the Co element significantly improves the hydrogen storage performance of the alloy. Other than that, Ali et al. [77] indicated that the formation of Al–Co alloys during the heating process of NaAlH₄ and CoTiO₃ is the cause of the enhanced desorption behavior of NaAlH₄. Furthermore, the starting hydrogen released by NaAlH₄ compared to milled NaAlH₄ (200 °C) decreased by ~65 °C after the addition of CoTiO₃. Moreover, hydrogen storage desorption of LiAlH₄ was improved by the presence of CoFe₂O₄ nanoparticles [42]. The start of hydrogen release dropped to 65 °C at the first stage and the activation energy lowered by 42.4 kJ/mol in the presence of CoFe₂O₄ nanoparticles. One of the reasons for the enhancement of LiAlH₄ is due to the formation of Al–Co phases during the heating process of LiAlH₄ and CoFe₂O₄ composites. However, no peak for La or La-containing species (such as La–O, Co-La or Al-La) was detected due to the low amount of LaCoO₃ in the composite or La being amorphous. This result was consistent with our previous study [46]. Hence, it is possible to speculate in situ formation of AlCo and La or La-containing species during the heating process attributed to improving the desorption kinetics of LiAlH₄.

4. Conclusions

In this paper, thermal desorption of LiAlH₄ has been studied with and without the addition of different weight percentages of LaCoO₃ additive (5, 10, 15 and 20). It was found that the addition of 10 wt.% LaCoO₃ is an effective additive which substantially lowered the onset desorption temperature by 81 °C and 26 °C for LiAlH₄ compared with pure LiAlH₄ for the first two stages, respectively. Furthermore, the desorption kinetics are 10 times faster than the unsubstituted LiAlH₄ at 90 °C for 80 min. The LaCoO₃ additive considerably reduced the activation energies from 107 kJ/mol to 71 kJ/mol for the first stages and from 120 kJ/mol to 95 kJ/mol for the second stages. From our observation, the morphology of LiAlH₄ + 10 wt.% LaCoO₃ additive reduced the particle size distribution also proved that the addition of LaCoO₃ additive reduced the particle size to 0.27 µm, 39.35 µm lower than pure LiAlH₄ and 0.39 µm reduced from milled LiAlH₄. Furthermore, the formation of new phases (AlCo and La or La-containing species) have a notable impact on enhancing the hydrogen storage behavior of LiAlH₄, which can be determined by observing the reaction between LiAlH₄ and LaCoO₃ during the heating process.

Author Contributions: Writing—original draft, N.S. and M.I.; methodology, N.S.; writing—review and editing, N.A.A., S.-U.R., H.S.B., H.A., A.A.T. and U.S.; Visualization, N.A.A., S.-U.R., H.A., A.A.T. and U.S.; supervision, M.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was funded by Institutional Fund Projects under grant no. (IFPIP: 407-135-1443). The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: This research work was funded by Institutional Fund Projects under grant no. (IFPIP: 407-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Du, W.; Wang, X.; Zhan, J.; Sun, X.; Kang, L.; Jiang, F.; Zhang, X.; Shao, Q.; Dong, M.; Liu, H.; et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO₂ composites for high-performance asymmetric supercapacitors. *Electrochim. Acta* 2019, 296, 907–915. [CrossRef]
- Wu, D.; Xie, X.; Zhang, J.; Ma, Y.; Hou, C.; Sun, X.; Yang, X.; Zhang, Y.; Kimura, H.; Du, W. Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors. *Chem. Eng. J.* 2022, 446, 137262. [CrossRef]

- Wu, D.; Xie, X.; Ma, Y.; Zhang, J.; Hou, C.; Sun, X.; Yang, X.; Zhang, Y.; Kimura, H.; Du, W. Morphology controlled hierarchical NiS/carbon hexahedrons derived from nitrilotriacetic acid-assembly strategy for high-performance hybrid supercapacitors. *Chem. Eng. J.* 2022, 433, 133673. [CrossRef]
- 4. Guo, X.; Liang, C.; Umar, M.; Mirza, N. The impact of fossil fuel divestments and energy transitions on mutual funds performance. *Technol. Forecast. Soc. Change* 2022, 176, 121429. [CrossRef]
- 5. Hansen, T.A. Stranded assets and reduced profits: Analyzing the economic underpinnings of the fossil fuel industry's resistance to climate stabilization. *Renew. Sust. Energ. Rev.* 2022, 158, 112144. [CrossRef]
- Hienuki, S.; Noguchi, K.; Shibutani, T.; Fuse, M.; Noguchi, H.; Miyake, A. Risk identification for the introduction of advanced science and technology: A case study of a hydrogen energy system for smooth social implementation. *Int. J. Hydrogen Energy* 2020, 45, 15027–15040. [CrossRef]
- Chapman, A.; Itaoka, K.; Farabi-Asl, H.; Fujii, Y.; Nakahara, M. Societal penetration of hydrogen into the future energy system: Impacts of policy, technology and carbon targets. *Int. J. Hydrogen Energy* 2020, 45, 3883–3898. [CrossRef]
- 8. Lebrouhi, B.E.; Djoupo, J.J.; Lamrani, B.; Benabdelaziz, K.; Kousksou, T. Global hydrogen development—A technological and geopolitical overview. *Int. J. Hydrogen Energy* **2022**, *47*, 7016–7048. [CrossRef]
- 9. Zhang, Y.; Zheng, J.; Lu, Z.; Song, M.; He, J.; Wu, F.; Zhang, L. Boosting the hydrogen storage performance of magnesium hydride with metal organic framework-derived Cobalt@Nickel oxide bimetallic catalyst. *Chin. J. Chem. Eng.* **2022**, *52*, 161–171. [CrossRef]
- 10. Zhang, J.; Hou, Q.; Guo, X.; Yang, X. Achieve high-efficiency hydrogen storage of MgH₂ catalyzed by nanosheets CoMoO₄ and rGO. *J. Alloys Compd.* **2022**, *911*, 165153. [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. Techno-economic assessment of clean hydrogen production and storage using hybrid renewable energy system of PV/Wind under different climatic conditions. *Sustain. Energy Technol. Assess.* 2022, 52, 102195. [CrossRef]
- 12. Nasri, A.; Jaleh, B.; Shabanlou, E.; Nasrollahzadeh, M.; Ali Khonakdar, H.; Kruppke, B. Ionic liquid-based (nano)catalysts for hydrogen generation and storage. *J. Mol. Liq.* **2022**, *365*, 120142. [CrossRef]
- Wang, H.; Zhao, Y.; Dong, X.; Yang, J.; Guo, H.; Gong, M. Thermodynamic analysis of low-temperature and high-pressure (cryo-compressed) hydrogen storage processes cooled by mixed-refrigerants. *Int. J. Hydrogen Energy* 2022, 47, 28932–28944. [CrossRef]
- 14. Sürer, M.G.; Arat, H.T. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles. *Int. J. Hydrogen Energy* **2022**, *47*, 19865–19875. [CrossRef]
- 15. Sahoo, R.K.; Sahu, S. Transition from chemisorption to physisorption of H₂ on Ti functionalized [2,2,2]paracyclophane: A computational search for hydrogen storage. *J. Energy Storage* **2023**, *63*, 106951. [CrossRef]
- 16. Zhu, Z.W.; Zheng, Q.R. Investigation of cryo-adsorption hydrogen storage capacity of rapidly synthesized MOF-5 by mechanochemical method. *Int. J. Hydrogen Energy* **2023**, *48*, 5166–5174. [CrossRef]
- 17. Pandey, A.P.; Shaz, M.A.; Sekkar, V.; Tiwari, R.S. Synergistic effect of CNT bridge formation and spillover mechanism on enhanced hydrogen storage by iron doped carbon aerogel. *Int. J. Hydrogen Energy* **2022**, *in press, corrected proof*. [CrossRef]
- Mishra, S.; Luhadiya, N.; Kundalwal, S.I. Atomistic insights into the H₂ adsorption and desorption behavior of novel Lifunctionalized polycrystalline CNTs. *Carbon* 2023, 207, 23–35. [CrossRef]
- Liang, H.; Du, X.; Li, J.; Sun, L.; Song, M.; Li, W. Manipulating active sites on carbon nanotube materials for highly efficient hydrogen storage. *Appl. Surf. Sci.* 2023, 619, 156740. [CrossRef]
- Desai, F.J.; Uddin, M.N.; Rahman, M.M.; Asmatulu, R. A critical review on improving hydrogen storage properties of metal hydride via nanostructuring and integrating carbonaceous materials. *Int. J. Hydrogen Energy* 2023, *in press, corrected proof.* [CrossRef]
- Meduri, S.; Nandanavanam, J. Materials for hydrogen storage at room temperature—An overview. *Mater. Today Proc.* 2023, 72, 1–8. [CrossRef]
- Zhang, X.; Sun, Y.; Xia, G.; Yu, X. Light-weight solid-state hydrogen storage materials characterized by neutron scattering. J. Alloys Compd. 2022, 899, 163254. [CrossRef]
- 23. Pawelczyk, E.; Łukasik, N.; Wysocka, I.; Rogala, A.; Gębicki, J. Recent progress on hydrogen storage and production using chemical hydrogen carriers. *Energies* 2022, *15*, 4964. [CrossRef]
- 24. Akbayrak, S.; Özkar, S. Ammonia borane as hydrogen storage materials. Int. J. Hydrogen Energy 2018, 43, 18592–18606. [CrossRef]
- 25. Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [CrossRef]
- Sazelee, N.; Ismail, M. Recent advances in catalyst-enhanced LiAlH₄ for solid-state hydrogen storage: A review. *Int. J. Hydrogen Energy* 2021, 46, 9123–9141. [CrossRef]
- Feng, W.; Xue Ping, Z.; Xue Qin, M.; Yue Hui, D.; Xiao Yan, Z.; Zi Wei, X. Catalytic effects of FGO-Ni addition on the dehydrogenation properties of LiAlH₄. *Int. J. Hydrogen Energy* 2022, 47, 26458–26467. [CrossRef]
- Sazelee, N.; Ali, N.; Yahya, M.; Mustafa, N.; Halim Yap, F.; Mohamed, S.; Ghazali, M.; Suwarno, S.; Ismail, M. Recent advances on Mg–Li–Al systems for solid-state hydrogen storage: A Review. *Front. Energy Res.* 2022, 10, 875405. [CrossRef]
- 29. Graetz, J.; Wegrzyn, J.; Reilly, J.J. Regeneration of lithium aluminum hydride. J. Am. Chem. Soc. 2008, 130, 17790–17794. [CrossRef]
- 30. Li, Z.; Li, P.; Wan, Q.; Zhai, F.; Liu, Z.; Zhao, K.; Wang, L.; Lü, S.; Zou, L.; Qu, X. Dehydrogenation improvement of LiAlH₄ catalyzed by Fe₂O₃ and Co₂O₃ nanoparticles. *J. Phys. Chem. C* **2013**, *117*, 18343–18352. [CrossRef]

- Ali, N.A.; Idris, N.H.; Sazelee, N.A.; Yahya, M.S.; Halim Yap, F.A.; Ismail, M. Catalytic effects of MgFe₂O₄ addition on the dehydrogenation properties of LiAlH₄. *Int. J. Hydrogen Energy* 2019, 44, 28227–28234. [CrossRef]
- Sazelee, N.A.; Yahya, M.S.; Ali, N.A.; Idris, N.H.; Ismail, M. Enhancement of dehydrogenation properties in LiAlH₄ catalysed by BaFe₁₂O₁₉. J. Alloys Compd. 2020, 835, 155183. [CrossRef]
- Ismail, M.; Ali, N.A.; Sazelee, N.A.; Suwarno, S. Catalytic effect of Al₂TiO₅ on the dehydrogenation properties of LiAlH₄. Int. J. Hydrogen Energy 2022, 47, 31903–31910. [CrossRef]
- Cao, Z.; Ma, X.; Wang, H.; Ouyang, L. Catalytic effect of ScCl₃ on the dehydrogenation properties of LiAlH₄. J. Alloys Compd. 2018, 762, 73–79. [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.B.; Dou, S.X. Effects of NbF₅ addition on the hydrogen storage properties of LiAlH₄. Int. J. Hydrogen Energy 2010, 35, 2361–2367. [CrossRef]
- Liu, S.S.; Li, Z.B.; Jiao, C.L.; Si, X.L.; Yang, L.N.; Zhang, J.; Zhou, H.Y.; Huang, F.-L.; Gabelica, Z.; Schick, C. Improved reversible hydrogen storage of LiAlH₄ by nano-sized TiH₂. *Int. J. Hydrogen Energy* 2013, *38*, 2770–2777. [CrossRef]
- Varin, R.A.; Zbroniec, L.; Czujko, T.; Wronski, Z.S. The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH₄ (lithium alanate). *Int. J. Hydrogen Energy* 2011, *36*, 1167–1176. [CrossRef]
- Xueping, Z.; Ping, L.; Fuqiang, A.; Guoqing, W.; Xuanhui, Q. Effects of Ti and Fe additives on hydrogen release from lithium alanate. *Rare Metal. Mat. Eng.* 2008, 37, 400–403. [CrossRef]
- Tan, C.Y.; Tsai, W.T. Effects of Ni and Co-decorated MWCNTs addition on the dehydrogenation behavior and stability of LiAlH₄. Int. J. Hydrogen Energy 2015, 40, 14064–14071. [CrossRef]
- Resan, M.; Hampton, M.D.; Lomness, J.K.; Slattery, D.K. Effect of Ti_xAl_y catalysts on hydrogen storage properties of LiAlH₄ and NaAlH₄. Int. J. Hydrogen Energy 2005, 30, 1417–1421. [CrossRef]
- 41. Jiao, C.; Sun, L.; Xu, F.; Liu, S.S.; Zhang, J.; Jiang, X.; Yang, L. NiCo nanoalloy encapsulated in graphene layers for improving hydrogen storage properties of LiAlH₄. *Sci. Rep.* **2016**, *6*, 27429. [CrossRef] [PubMed]
- 42. Li, Z.; Zhai, F.; Wan, Q.; Liu, Z.; Shan, J.; Li, P.; Volinsky, A.A.; Qu, X. Enhanced hydrogen storage properties of LiAlH₄ catalyzed by CoFe₂O₄ nanoparticles. *RSC Adv.* **2014**, *4*, 18989–18997. [CrossRef]
- 43. Wei, S.; Liu, J.; Xia, Y.; Zhang, H.; Cheng, R.; Sun, L.; Xu, F.; Huang, P.; Rosei, F.; Pimerzin, A.A.; et al. Remarkable catalysis of spinel ferrite XFe₂O₄ (X = Ni, Co, Mn, Cu, Zn) nanoparticles on the dehydrogenation properties of LiAlH₄: An experimental and theoretical study. *J. Mater. Sci. Technol.* 2022, 111, 189–203. [CrossRef]
- Wu, C.; Wang, Y.; Liu, Y.; Ding, W.; Sun, C. Enhancement of hydrogen storage properties by in situ formed LaH₃ and Mg₂NiH₄ during milling MgH₂ with porous LaNiO₃. *Catal. Today* 2018, *318*, 113–118. [CrossRef]
- 45. Sazelee, N.A.; Idris, N.H.; Md Din, M.F.; Yahya, M.S.; Ali, N.A.; Ismail, M. LaFeO₃ synthesised by solid-state method for enhanced sorption properties of MgH₂. *Results Phys.* **2020**, *16*, 102844. [CrossRef]
- Sazelee, N.A.; Yahya, M.S.; Idris, N.H.; Md Din, M.F.; Ismail, M. Desorption properties of LiAlH₄ doped with LaFeO₃ catalyst. *Int. J. Hydrogen Energy* 2019, 44, 11953–11960. [CrossRef]
- 47. Zhou, S.; Zou, J.; Zeng, X.; Ding, W. Effects of REF₃ (RE = Y, La, Ce) additives on dehydrogenation properties of LiAlH₄. *Int. J. Hydrogen Energy* **2014**, *39*, 11642–11650. [CrossRef]
- Xueping, Z.; Qiuhua, M.; Zhen, F.; Feng, M.; Shenglin, L.; Xin, F.; Guo, X.; Jiaojiao, Z. Effect of La³⁺ on dehydrogenation capacity of the LiAlH₄ – NH₄Cl system. *Rare Metal. Mat. Eng.* 2014, 43, 2075–2078. [CrossRef]
- 49. Sazelee, N.; Md Din, M.F.; Ismail, M.; Rather, S.U.; Bamufleh, H.S.; Alhumade, H.; Taimoor, A.A.; Saeed, U. Effect of LaCoO₃ synthesized via solid-state method on the hydrogen storage properties of MgH₂. *Materials* **2023**, *16*, 2449. [CrossRef]
- 50. Halim Yap, F.A.; Mustafa, N.S.; Ismail, M. A study on the effects of K₂ZrF₆ as an additive on the microstructure and hydrogen storage properties of MgH₂. *RSC Adv.* **2015**, *5*, 9255–9260. [CrossRef]
- 51. Ismail, M. Effect of adding different percentages of HfCl₄ on the hydrogen storage properties of MgH₂. *Int. J. Hydrogen Energy* **2021**, *46*, 8621–8628. [CrossRef]
- 52. Luo, Y.; Wang, Q.; Li, J.; Xu, F.; Sun, L.; Zou, Y.; Chu, H.; Li, B.; Zhang, K. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. *Mater. Today Nano* 2020, *9*, 100071. [CrossRef]
- He, Q.; Zhu, D.; Wu, X.; Dong, D.; Xu, M.; Tong, Z. Hydrogen desorption properties of LiBH₄/xLiAlH₄ (x = 0.5, 1, 2) composites. *Molecules* 2019, 24, 1861. [CrossRef]
- 54. Xia, Y.; Zhang, H.; Sun, Y.; Sun, L.; Xu, F.; Sun, S.; Zhang, G.; Huang, P.; Du, Y.; Wang, J. Dehybridization effect in improved dehydrogenation of LiAlH₄ by doping with two-dimensional Ti₃C₂. *Mater. Today Nano* **2019**, *8*, 100054. [CrossRef]
- Ahmad, M.A.N.; Sazelee, N.A.; Ali, N.A.; Ismail, M. Enhancing the dehydrogenation properties of LiAlH₄ using K₂NiF₆ as additive. Int. J. Hydrogen Energy 2022, 47, 24843–24851. [CrossRef]
- Sulaiman, N.N.; Ismail, M. Catalytic effect of SrFe₁₂O₁₉ on the hydrogen storage properties of LiAlH₄. Int. J. Hydrogen Energy 2017, 42, 19126–19134. [CrossRef]
- Ali, N.A.; Ahmad, M.A.N.; Yahya, M.S.; Sazelee, N.; Ismail, M. Improved dehydrogenation properties of LiAlH₄ by addition of nanosized CoTiO₃. *Nanomaterials* 2022, 12, 3921. [CrossRef]
- 58. Wei, S.; Xue, S.; Huang, C.; Che, B.; Zhang, H.; Sun, L.; Xu, F.; Xia, Y.; Cheng, R.; Zhang, C. Multielement synergetic effect of NiFe₂O₄ and h-BN for improving the dehydrogenation properties of LiAlH₄. *Inorg. Chem. Front.* **2021**, *8*, 3111–3126. [CrossRef]
- Li, Z.L.; Zhai, F.Q.; Qiu, H.C.; Wan, Q.; Li, P.; Qu, X.H. Dehydrogenation characteristics of ZrC-doped LiAlH₄ with different mixing conditions. *Rare Met.* 2020, 39, 383–391. [CrossRef]

- 60. Ismail, M.; Sinin, A.; Sheng, C.; Nik, W. Desorption behaviours of lithium alanate with metal oxide nanopowder additives. *Int. J. Electrochem. Sci.* **2014**, *9*, 495.
- Ismail, M.; Sazelee, N.A.; Ali, N.A.; Suwarno, S. Catalytic effect of SrTiO₃ on the dehydrogenation properties of LiAlH₄. J. Alloys Compd. 2021, 855, 157475. [CrossRef]
- Li, Z.; Liu, S.; Si, X.; Zhang, J.; Jiao, C.; Wang, S.; Liu, S.; Zou, Y.-J.; Sun, L.; Xu, F. Significantly improved dehydrogenation of LiAlH₄ destabilized by K₂TiF₆. *Int. J. Hydrogen Energy* **2012**, *37*, 3261–3267. [CrossRef]
- 63. Zhang, T.; Isobe, S.; Wang, Y.; Liu, C.; Hashimoto, N.; Takahashi, K. Enhanced hydrogen desorption properties of LiAlH₄ by doping lithium metatitanate. *Phys. Chem. Chem. Phys.* **2016**, *18*, 27623–27629. [CrossRef] [PubMed]
- 64. Varin, R.; Zbroniec, L. Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH₄) including long-term storage and moisture effects. *J. Alloys Compd.* **2010**, *504*, 89–101. [CrossRef]
- 65. Ares, J.R.; Aguey Zinsou, K.F.; Porcu, M.; Sykes, J.M.; Dornheim, M.; Klassen, T.; Bormann, R. Thermal and mechanically activated decomposition of LiAlH₄. *Mater. Res. Bull.* **2008**, *43*, 1263–1275. [CrossRef]
- Li, L.; Qiu, F.; Wang, Y.; Xu, Y.; An, C.; Liu, G.; Jiao, L.; Yuan, H. Enhanced hydrogen storage properties of TiN–LiAlH₄ composite. *Int. J. Hydrogen Energy* 2013, 38, 3695–3701. [CrossRef]
- Zhai, F.; Li, P.; Sun, A.; Wu, S.; Wan, Q.; Zhang, W.; Li, Y.; Cui, L.; Qu, X. Significantly improved dehydrogenation of LiAlH₄ destabilized by MnFe₂O₄ nanoparticles. *J. Phys. Chem. C* 2012, *116*, 11939–11945. [CrossRef]
- 68. Rahmaninasab, M.A.; Raygan, S.; Abdizadeh, H.; Pourabdoli, M.; Mirghaderi, S.H. Properties of activated MgH₂+ mischmetal nanostructured composite produced by ball-milling. *Mater. Renew. Sustain. Energy* **2018**, *7*, 15. [CrossRef]
- 69. Dittrich, M.; Schumacher, G. Evolution of crystallite size, lattice parameter and internal strain in Al precipitates during high energy ball milling of partly amorphous Al₈₇Ni₈La₅ alloy. *Mater. Sci. Eng. A* **2014**, 604, 27–33. [CrossRef]
- Li, P.; Li, Z.; Zhai, F.; Wan, Q.; Li, X.; Qu, X.; Volinsky, A.A. NiFe₂O₄ nanoparticles catalytic effects of improving LiAlH₄ dehydrogenation properties. J. Phys. Chem. C 2013, 117, 25917–25925. [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.B.; Nevirkovets, I.P.; Dou, S.X. Significantly improved dehydrogenation of LiAlH₄ catalysed with TiO₂ nanopowder. *Int. J. Hydrogen Energy* 2011, *36*, 8327–8334. [CrossRef]
- Pratthana, C.; Aguey-Zinsou, K.F. Surfactant induced synthesis of LiAlH₄ and NaAlH₄ nanoparticles for hydrogen storage. *Appl. Sci.* 2022, 12, 4742. [CrossRef]
- Shen, X.; Zhang, X.; Xiao, Q.; Liu, H. Catalytical enhancement on hydrogen production from LiAlH₄ by Fe–Fe₂O₃ addition. *Int. J. Hydrogen Energy* 2022, 47, 16964–16977. [CrossRef]
- Wang, Y.; Ren, Q.; Wang, Y.; Li, L.; Song, D.; Jiao, L.; Yuan, H. A facile two-step synthesis and dehydrogenation properties of NaAlH₄ catalyzed with Co–B. Int. J. Hydrogen Energy 2010, 35, 11004–11008. [CrossRef]
- 75. Hu, J.; Pohl, A.; Wang, S.; Rothe, J.; Fichtner, M. Additive effects of LiBH₄ and ZrCoH₃ on the hydrogen sorption of the Li-Mg-NH hydrogen storage system. *J. Phys. Chem. C* **2012**, *116*, 20246–20253. [CrossRef]
- 76. Lv, L.; Lin, J.; Yang, G.; Ma, Z.; Xu, L.; He, X.; Han, X.; Liu, W. Hydrogen storage performance of LaNi_{3.95}Al_{0.75}Co_{0.3} alloy with different preparation methods. *Prog. Nat. Sci. Mater.* **2022**, *32*, 206–214. [CrossRef]
- 77. Ali, N.A.; Ismail, M.; Nasef, M.M.; Jalil, A.A. Enhanced hydrogen storage properties of NaAlH₄ with the addition of CoTiO₃ synthesised via a solid-state method. *J. Alloys Compd.* **2023**, *934*, 167932. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.