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Abstract: We discuss the theoretical solution to the differential equations governing accelerating edge
dislocations in anisotropic crystals. This is an important prerequisite to understanding high-speed
dislocation motion, including an open question about the existence of transonic dislocation speeds,
and subsequently high-rate plastic deformation in metals and other crystals.
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1. Introduction and Background

Dislocations can influence many materials’ properties such as thermal conductivity [1],
thermal stability [2], impact sensitivity [3], ferroelectricity [4], and electrical resistance [5].
At extremely high rates, plastic deformation is governed by high-speed dislocations,
a regime where dislocation mobility is poorly understood [6–8]. High-speed disloca-
tions experience a drag force due to scattering phonons (an effect known as ‘phonon wind’)
and this interaction (and thus, dislocation mobility) is sensitive to the stress distribution in
the vicinity of the moving dislocation. Dislocation drag is thus key to predicting material
strength at extremely high stress and understanding high-rate plastic deformation [9]. The
first-principles phonon wind theory was derived in the isotropic and steady-state limit
for dislocation glide velocities that are much smaller than the transverse sound speed
some time ago; see the excellent review article [10]. More recently, dislocation drag theory
was generalized to very high (but still subsonic) dislocation velocities [11] and anisotropic
crystals [12], though the effects of acceleration have so far been neglected.

Another key question in this regard is whether dislocations can reach transonic and
supersonic speeds under sufficiently high stress. The only indication that such speeds are
possible comes from molecular dynamics (MD) simulations [13–19]. Experiments cannot
track dislocations in real time at these high speeds (After the present manuscript was
completed, ref. [20] appeared, which for the first time measured transonic dislocations in
diamond in real time), but one can hope to indirectly determine the presence of supersonic
dislocations and perhaps estimate the fraction and velocity of these dislocations in the
near future [21,22]. This in turn requires a thorough understanding of the solutions to the
differential equations governing dislocations, i.e., the equations of motion supplemented
by the (leading order) stress-strain relations.

Dislocation theory predicts divergences in self energy and stress at certain limiting ve-
locities [23–26] for steady-state dislocations. In the isotropic limit, it was shown [27–29] that
an acceleration term together with a regularized dislocation core removes the divergence,
thereby opening the possibility of supersonic events. Other authors emphasized the impor-
tance of size variations of the dislocation core as a function of dislocation velocity [30–33].
The steady-state solution for dislocations in arbitrary anisotropic crystals has been known
for some time [34,35]. The case of accelerating dislocations in anisotropic crystals has also
been studied [36–42], with pure screw dislocations having been discussed in the most
detail [36,42]. The most general solution has been given only in a very formal form [39],
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apart from an additional asymptotic wave front analysis. In this paper, we consider formal
derivation of the accelerating dislocation field of ref. [39] as a starting point to discuss in
detail the solution of an accelerating pure edge dislocation in anisotropic crystals.

In particular, we discuss the solution to the following set of differential equations for
accelerating dislocations for the special case of pure edge dislocations:

∂iσij = ρüj , σij = C′ijkluk,l (1)

in coordinates aligned with the dislocations, i.e., ẑ is aligned with the dislocation line and ŷ
is parallel to the slip plane normal. The components of the tensor of second-order elastic
constants (SOEC) is always measured in Cartesian coordinates that are aligned with the
crystal axes, and thus this tensor must be rotated into our present coordinate basis, i.e.:

C′ijkl = Uii′Ujj′Ukk′Ull′Ci′ j′k′ l′ (2)

with rotation matrix U.
In order to study pure edge (or pure screw) dislocations, the rotated tensor of SOEC

must fulfill the following symmetry requirements (shown here in Voigt notation which
maps index pairs to single digits, (11, 22, 33, 32/23, 31/13, 21/12)→ (1, 2, 3, 4, 5, 6)):

C′ij =



c′11 c′12 c′13 0 0 c′16
c′12 c′22 c′23 0 0 c′26
c′13 c′23 c′33 c′34 c′35 c′36
0 0 c′34 c′44 c′45 0
0 0 c′35 c′45 c′55 0

c′16 c′26 c′36 0 0 c′66

, (3)

i.e., the six components c′14, c′15, c′24, c′25, c′46, and c′56 must vanish, see refs. [43,44]. This en-
sures that u3 = 0 implies ∂iσi3 = 0, and likewise that u1 = 0 = u2 implies ∂iσi1 = 0 = ∂iσi2,
so that there exists a u3 that solves the differential equations independently from the pair
(u1, u2) and vice versa. Note that in the present coordinates, ui can only depend on x, y,
and t, but not on z. This latter property implies that non-vanishing components c′34 and c′35
are allowed since they do not enter the differential equations above for pure screw or pure
edge dislocations. On the other hand, the stronger condition c′34 = 0 = c′35 implies that the
x1, x2 plane is a reflection plane (and then σ33 = 0 for pure screw dislocations rather than
the weaker ∂3σ33 = 0).

The most general solution for pure screw dislocations was recently derived in ref. [42].
The case of accelerating pure edge dislocations was previously studied by Markenscoff
and Ni for the special case of c′16 = 0 = c′26 (in addition to (3)) in refs. [37,38], and the
general case was presented in ref. [39]. In refs. [37,39], only a formal solution was derived,
though not in closed form. Here, we present for the first time, a numerical implementation
of the accelerating dislocation field for pure edge dislocations in various anisotropic slip
systems and study its properties. Our code is included in version 1.2.7 of PyDislocDyn [45].

2. Most General Differential Equations for Pure Edge Dislocations

Following ref. [39] in this subsection, but setting u3 = 0 and plugging the most general
rotated tensor of SOEC fulfilling the required properties for studying pure edge dislocations,
Equation (3), into the differential Equation (1), we find:

ρü1 =
(

c11∂2
1 + 2c16∂1∂2 + c66∂2

2

)
u1 +

(
c16∂2

1 + (c12 + c66)∂1∂2 + c26∂2
2

)
u2 ,

ρü2 =
(

c66∂2
1 + 2c26∂1∂2 + c22∂2

2

)
u2 +

(
c16∂2

1 + (c12 + c66)∂1∂2 + c26∂2
2

)
u1 . (4)



Materials 2023, 16, 4019 3 of 13

Note that we have dropped the primes on the elastic constants for notational simplic-
ity; nonetheless, all cij are understood to be in the rotated frame aligned with the edge
dislocation. Additionally, we have the boundary conditions

lim
y→0±

u1(x, y, t) = ± b
2

Θ(x− l(t)) , ∀t > 0 ,

lim
y→0

σ22 = lim
y→0

(c12∂1u1 + c22∂2u2 + c26(∂1u2 + ∂2u1)) = 0 , (5)

where Θ(x) denotes the Heaviside step function, b is the Burgers vector length, and the
slip plane is located at y = 0. Clearly, the above differential equations and their boundary
conditions simplify significantly when c16 = 0 = c26, which is what was studied in
ref. [37,38].

In order to solve these more general equations, we apply a Laplace transform in
time, i.e.,

L{ui}(s) =
∫ ∞

0
ui(t)e−stdt , (6)

as well as a two-sided Laplace transform (which is related to the Fourier transform with
sλ→ ik) in x, i.e.,

T {ui}(λ) =
∫ ∞

−∞
ui(x)esλxdx , (7)

and thus, Ui(λ, y, s) ≡ T {L{ui(x, y, t)}}. The transformed differential equations read

ρs2U1 =
(

s2λ2c11 − 2sλc16∂2 + c66∂2
2

)
U1 +

(
s2λ2c16 − sλ(c12 + c66)∂2 + c26∂2

2

)
U2 ,

ρs2U2 =
(

s2λ2c66 − 2sλc26∂2 + c22∂2
2

)
U2 +

(
s2λ2c16 − sλ(c12 + c66)∂2 + c26∂2

2

)
U1 . (8)

Likewise, the transformed boundary conditions in the upper half plane (y ≥ 0) read

lim
y→0+

U1(λ, y, s) =
b
2s

∫ ∞

0
esλx′

(
1− e−sη(x′)

)
dx′ , (9)

lim
y→0+

(−sλc12U1 + c22∂2U2 + c26(−sλU2 + ∂2U1)) = 0 , (10)

where η(x) ≡ l−1(x) and the integral over time was carried out explicitly as described
in ref. [42]. Additionally, we demand lim

y→∞
Ui = 0 = lim

y→∞
∂2Ui. Markenscoff [39] argues

that the problem can be reduced to a problem on a half-space, so that we now assume
y ≥ 0 in the following derivation, and we will generalize to negative y only at the very
end. Note that the first term in boundary condition (9) is identified as that of the static
problem which cannot be treated by a Laplace transform without running into convergence
issues [42,46]. Hence, we presently subtract the static contribution and will add it at the
end of our derivation; more precisely, we will add the well-known solution to the static
problem at the very end so as not to clutter our equations in intermediate steps. Focusing
only on the dynamic part of the accelerating dislocation field, we presently replace (9) with

U0 ≡ lim
y→0+

Ũ1(λ, y, s) = − b
2s

∫ ∞

0
es(λx′−η(x′))dx′ , (11)

and for notational simplicity, we drop the tilde below (Ũ1 → U1). We furthermore assume
that c12 + c66 6= 0, i.e., we do not include the so-called irregular hyperbolic case [38] in
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our discussion, as we are unaware of any slip systems that in practice would exhibit this
property [23]. The differential Equation (8) can be rewritten in 4 × 4 matrix form as(

0 δkj
−ski

(
Ci11jλ

2 − ρδij
)
s2 ski

(
Ci12j + Ci21j

)
sλ

)(
Uj

∂2Uj

)
= ∂2

(
Uk

∂2Uk

)
, (12)

where we defined the compliances as skiCi22j ≡ δkj, i.e.,

s11 =
c22

c22c66 − c2
26

, s12 = s21 =
−c26

c22c66 − c2
26

, s22 =
c66

c22c66 − c2
26

. (13)

Since we focus here on the regular hyperbolic case, we may assume that the eigen-
values of the so-defined 4 × 4 matrix (µm with m = ±1,±2) are distinct [39]. Given these
eigenvalues, we make the ansatz

Uj(λ, y, s) = ∑
m

Ajm(λ, s)e−µmsy . (14)

Plugging this ansatz into the differential Equation (8) yields the determinantal equation

det
(

Ci11jλ
2 −

(
Ci12j + Ci21j

)
λµm + Ci22jµ

2
m − ρδij

)
= 0 , (15)

which may be used to calculate the µm(λ) by solving the following fourth-order polynomial:

0 = µ4
(

c22c66 − c2
26

)
− 2µ3λ(c22c16 − c26c12)

− µ2
[
c22

(
ρ− λ2c11

)
+ c66

(
ρ− λ2c66

)
+ λ2(c12 + c66)

2 − 2λ2c16c26

]
+ 2µ λ

[
c26

(
ρ− λ2c11

)
+ c16

(
ρ− λ2c66

)
+ λ2c16(c12 + c66)

]
+
(

ρ− λ2c11

)(
ρ− λ2c66

)
− λ4c2

16 . (16)

Note that s is factored out in this equation so that µm depends on λ but not on s. Finally,
the asymptotic condition lim

y→∞
∂2Ui = 0 tells us that the sum over m in the ansatz (14) above

must only include the positive eigenvalues and Markenscoff argued in [39] that because the
slowness surface (whose equation coincides with the determinantal Equation (15) above)
is symmetric about the origin, there are presently two positive eigenvalues, m = 1, 2.
The corresponding eigenvectors are (A1m, A2m,−µmsA1m,−µmsA2m) where the Aim is
determined from(

Ci11jλ
2 −

(
Ci12j + Ci21j

)
λµm + Ci22jµ

2
m − ρδij

)
Ajm = 0 (17)

together with the boundary conditions which presently read

A11 + A12 = U1(λ, 0, s) ≡ U0 ,

c22(µ1 A21 + µ2 A22)− λc12(A11 + A12) + c26(µ1 A11 + µ2 A12 − λ(A21 + A22)) = 0 . (18)

Plugging the ansatz A2m = am A1m into (17), we find for am:

am = −
(
c11λ2 − 2c16λµm + c66µ2

m − ρ
)

(c16λ2 − (c12 + c66)λµm + c26µ2
m)

= −
(
c16λ2 − (c12 + c66)λµm + c26µ2

m
)

(c66λ2 − 2c26λµm + c22µ2
m − ρ)

(19)

where the last equality follows from the fact that µm solves (15). The boundary condi-
tions (18) finally determine A1m, and written in matrix form we presently have
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(
1 1

c22µ1a1 − λc12 + c26(µ1 − λa1) c22µ2a2 − λc12 + c26(µ2 − λa2)

)(
A11
A12

)
=

(
U0
0

)
. (20)

Thus,

A12 = U0 − A11 ,

A11 =
−[c22µ2a2 − λc12 + c26(µ2 − λa2)]

c22(µ1a1 − µ2a2) + c26(µ1 − λa1)− c26(µ2 − λa2)
U0 (21)

with am given in (19). Note that the coefficients Aim(λ) do not depend on s; this will be
important later when we derive the inverse Laplace transform.

3. Cagniard–De Hoop Method

In order to determine the displacement gradient field in real space and time, we need
to apply the inverse Laplace transform T −1{ f }(x) = 1

2πi
∫ ε+i∞

ε−i∞ f (λ)e−sλxsdλ and integrate
λ along a line parallel to the imaginary axis. This latter integral will not be carried out
explicitly, but rather we want to rewrite it in a way that allows us to interpret this integral
as a Laplace transform in time so that a subsequent inversion of the one-sided Laplace
transform L{ui} need not be carried out explicitly.

Thus, for each term in Ui we interpret the following combination as a strictly positive
time variable τ in order to apply the Cagniard–De Hoop method [47–49]:

τm ≡ yµm(λ) + (x− x′)λ ≥ 0 . (22)

The reader is reminded that we presently restrict our calculation to the half plane
y ≥ 0. In order to be able to integrate τ over the positive real axis instead of over the
imaginary λ axis, one needs to study an integral over λ over a closed path in complex space
and to account for the residua of all enclosed poles. This step requires knowledge of the
locations of all poles in the expressions above, and hence knowledge of the roots µm(λ).
Note, that such poles occur only for transonic and supersonic dislocations, but not in the
subsonic regime [39]. Furthermore, in passing from integration variable λ to integration
variable τm, we need the inverse of function (22), i.e., λm(τm), as well as the Jacobian dλm

dτm
.

The inverted functions λm appear in complex conjugate pairs which both need to be taken
into account in order to integrate over a closed path [39,42]. Using Cauchy’s theorem, we
presently have in the subsonic regime:

L{uj} = L{ustatic
j } − b

4πi

ε+i∞∫
ε−i∞

dλ e−sλx
2

∑
m=1

Ãjm(λ, s)e−µmsy
∞∫

0

dx′es(λx′−η(x′))

= L{ustatic
j } − b

2π

2

∑
m=1

∫ ∞

0
dx′ Im

[∫ ∞

τmin
m

dτm
dλm

dτm
Ãjm(λm)e−sτm e−sη(x′)

]
(23)

where τmin
m = lim

λ→0
τm(λ) and Ajm = ÃjmU0 is given in (21) with (19). In the transonic

and supersonic regimes, the expression above needs to be supplemented by appropriate
residua for all enclosed poles in the integration path. As discussed in earlier papers [42,46],
calculating uj directly is troublesome due to subtleties with respect to poles, and it is
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generally better to solve for its gradient. Thus, taking derivatives with respect to x and y
prior to passing from λ to τ, we find

L{∂xuj} = L{∂xustatic
j }+ b

2π

2

∑
m=1

∫ ∞

0
dx′ Im

[
s
∫ ∞

τmin
m

dτmλm
dλm

dτm
Ãjme−sτm e−sη(x′)

]

L{∂yuj} = L{∂yustatic
j }+ b

2π

2

∑
m=1

∫ ∞

0
dx′ Im

[
s
∫ ∞

τmin
m

dτmµm
dλm

dτm
Ãjme−sτm e−sη(x′)

]
. (24)

Another important subtlety concerns the exchange of integrals over λ and x′ prior to
the change of variables, which is only permissible if both integrations converge absolutely;
this is not the case in general and a remedy was put forward in the context of pure screw
dislocations in refs. [42,46]. In particular, the exchange of integrals leads to poles on
the slip plane at y → 0 which stem from the first two terms of a Taylor expansion of
η(x′) around x′ = x. On the other hand, if one were to replace η with its linear order
Taylor expansion terms, the integral over x′ can be carried out analytically before changing
integration variables:

∫ ∞

0
dx′ es[λx′−η̃(x,x′)] =

e−s[η(x)−xη′(x)]

s(η′(x)− λ)
. (25)

In that case, τ will not depend on x′ (i.e., one defines (22) with x′ = 0) and only one
integral over λ (resp. τm) is left.

To sum up: In order to eliminate divergences on the slip plane in the x′ integration,
we must add and subtract the dynamic term with η(x′) replaced by its linear order Taylor
expansion η̃ ≡ η(x) + (x′ − x)η′(x) with η′(x) ≡ sgn(x)∂xη(|x|) and η(x) ≡ sgn(x)η(|x|),
see ref. [42]. Hence,

L{∂xuj} = L{∂xustatic
j }+ b

2π

2

∑
m=1

Im

[∫ ∞

τmin
m

dτmλm
dλm

dτm
Ãjme−sτm

e−s[η(x)−xη′(x)]

(η′(x)− λm)

]

+
b

2π

2

∑
m=1

∫ ∞

0
dx′ Im

[
s
∫ ∞

τmin
m

dτmλm
dλm

dτm
Ãjme−sτm

(
e−sη(x′) − e−sη̃(x,x′)

)]

L{∂yuj} = L{∂yustatic
j }+ b

2π

2

∑
m=1

Im

[∫ ∞

τmin
m

dτmµm
dλm

dτm
Ãjme−sτm

e−s[η(x)−xη′(x)]

(η′(x)− λm)

]

+
b

2π

2

∑
m=1

∫ ∞

0
dx′ Im

[
s
∫ ∞

τmin
m

dτmµm
dλm

dτm
Ãjme−sτm

(
e−sη(x′) − e−sη̃(x,x′)

)]
. (26)

Considering the properties of the Laplace transform, where multiplication by e−sT

corresponds to a translation in time t→ t− T and multiplication by s corresponds to a time
derivative (modulo boundary terms which are zero here), we can read off the solution:

∂xuj = ∂xustatic
j +

b
2π

2

∑
m=1

Im

[
Θ
(

t−
[
η(x)− xη′(x)

]
− τmin

m

)
λm

dλm

dt
Ãjm

(η′(x)− λm)

]

+
b

2π
∂t

∫ ∞

0
dx′

2

∑
m=1

Im
[

λm
dλm

dt
Ãjm

(
Θ
(

t− η(x′)− tmin
)
−Θ

(
t− η̃(x, x′)− tmin

))]

∂yuj = ∂yustatic
j +

b
2π

2

∑
m=1

Im

[
Θ
(

t−
[
η(x)− xη′(x)

]
− τmin

m

)
µm

dλm

dt
Ãjm

(η′(x)− λm)

]

+
b

2π
∂t

∫ ∞

0
dx′

2

∑
m=1

Im
[

µm
dλm

dτm
Ãjm

(
Θ
(

t− η(x′)− tmin
)
−Θ

(
t− η̃(x, x′)− tmin

))]
, (27)
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where λm depends on the appropriately shifted time τ = t− [η(x)− xη′(x)], τ = t− η(x′),
or τ = t− η̃(x, x′), i.e., matching in each term the according part of the argument of the
step function.

4. Special Cases: Constant Velocity and Constant Acceleration Rate

The simplest case one can study within the present solution is a dislocation initially
at rest which suddenly starts moving at constant velocity v at time t ≥ 0. As discussed
previously in the context of pure screw dislocations in [42], this “jump” in velocity is
nonphysical, but in the large time limit the solution must tend to the well-known steady-
state solution, thus providing us with a consistency check. The assumption of constant
dislocation velocity at t ≥ 0 leads to the following simplifications:

η(x) =
x
v

, η′(x) =
1
v

, t−
(
η(x)− xη′(x)

)
= t , η̃ =

x′

v
= η(x′) . (28)

Due to the last equality, the second and fourth lines within Equation (27) (i.e., the terms
containing the time derivative and the integral over x′) vanish identically for a dislocation
moving at constant velocity.

The simplest physical case within the present dynamic solution follows from the
assumption that the dislocation is at rest at time t < 0 and starts to accelerate at a constant
rate a from time t ≥ 0. Then l(t) = a

2 t2 > 0 and hence [42]

η(x) = sgn(x)

√
2|x|

a
, η′(x) =

η(x)
2x

, t−
(
η(x)− xη′(x)

)
= t− 1

2
η(x) , η̃ =

1
2

(
1 +

x′

x

)
η(x) . (29)

The velocity at time t is given by v(t) = at and the transition from subsonic to transonic
happens when t = vlim/a, where vlim is the lowest limiting velocity whose value can easily
be computed using the review article [23] and/or the open source code [45].

We have implemented this constant acceleration rate case in Python, using a combi-
nation of symbolic (sympy) calculations and numerical methods, and have integrated it
into the code PyDislocDyn [45]. The general strategy is as follows: The material’s tensor
of elastic constants is rotated into coordinates where the dislocation line is parallel to
the z direction, the slip plane normal points in the y direction, and the edge dislocation
accelerates from rest in the x direction at rate a. We then calculate the time t1 at which the
accelerating dislocation reaches a user-specified target velocity, as well as the position of
the dislocation core at that time in order to shift the x coordinate such that the dislocation
core resides at the origin at time t1. We use sympy to calculate the four solutions µ(ρ/λ2)
from Equation (16) after plugging in numerical values for all (rotated) elastic constants
and the material density, i.e., λ is the only unknown. For each of these 4 solutions, we
determine τ(λ) and its derivative, and the resulting sympy expressions are subsequently
‘lambdified’, i.e., converted into functions of λ, x, and y. We then loop over all points
x, y we wish to determine the displacement gradient for. At a given point x, y, function
τ depends only on λ, and since we are interested in one snapshot in time (meaning we
know τ), we can numerically determine λ(τ); note that λ is a complex number and we use
mpmath’s recommended root-finding method (the Muller method). This step constitutes
the bottleneck of our implementation, i.e., calculating the dislocation field for accelerating
edge dislocations is orders of magnitude slower than for screw dislocations which were dis-
cussed in [42]. Once we have λ, we determine µ(λ) and the Jacobian 1/

(
dτ
dλ

)
. At this point,

we have four sets of λ, µ(λ), but only two satisfy the asymptotic condition lim
y→∞

∂2Ui = 0.

Markenscoff [39] determined that the imaginary parts of λ and µ/λ must have opposite
signs for positive y, and we drop the other two solutions to λ. The remaining two sets of
λ, µ(λ) are plugged into (19) and (21), and subsequently into the first (i.e., leading) dynamic
terms of (27). The static part is computed with the well-known Stroh/integral method [34].
The time-derivative term in (27) can be neglected for constant acceleration rates.
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Figure 1 shows the edge dislocation field at the example of hcp Mg for prismatic
slip and compares the accelerating field to the steady-state field. Figure 2 shows the
edge dislocation field at the example of bcc Nb for the 112 slip planes and compares
the accelerating field to the steady-state field. In contrast to the previous example, edge
dislocations on 112 slip planes of bcc metals have a non-vanishing (rotated) elastic constant
c′26, and thus represent a more general case than the former. Both examples show some
enhancement of the dislocation displacement gradient field for moderate acceleration rates
of a ∼ 1013 m/s2 typical for flyer plate impact scenarios [50], albeit maintaining the shape
of the steady-state solution for the most part. Only for very extreme acceleration rates
do we start to see more significant deviations as illustrated in Figure 3 with the example
of Mg. Note that the numerical accuracy of the accelerating edge solution in its current
implementation is limited by the accuracy of the (complex) root-finding algorithm.
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Figure 1. We show ∂iuj at dislocation velocity v = 2.838 km/s for hcp Mg and prismatic slip
(ρ = 1.74 g/ccm, b = 3.21 Å, c11 = 59.5 GPa, c12 = 26.12 GPa, c13 = 21.805 GPa, c33 = 61.55 GPa,
and c44 = 16.35 GPa, see [51]). This velocity corresponds to roughly 92% of the critical velocity. All
plots are centered at the dislocation core, showing the plane perpendicular to the dislocation line in
units of a Burgers vector. On the left of each pair of plots, we show the steady-state solution [34] and
on the right we show the full solution for constant acceleration (27) with (29) and a = 1× 1013 m/s2

at time tv = v/a = 2.838× 10−10 s needed to reach velocity v. At this point, the dislocation has
traveled a distance of 0.4 microns. We see that the changes in the dislocation displacement gradient
due to the inclusion of acceleration lead to a slight enhancement.
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Figure 2. We show ∂iuj at dislocation velocity v = 1.883 km/s for an edge dislocation in bcc Nb
gliding on a 112 slip plane (ρ = 8.57 g/ccm, b = 2.86 Å, c11 = 246.5 GPa, c12 = 134.5 GPa,
and c44 = 28.73 GPa, see [51]). This velocity corresponds to roughly 90% of the critical velocity. All
plots are centered at the dislocation core, showing the plane perpendicular to the dislocation line in
units of a Burgers vector. We compare the steady-state solution [34] with the full solution for constant
acceleration (27) with (29) and a = 1× 1013 m/s2 at time tv = v/a = 1.883× 10−10 s needed to
reach velocity v. At this point, the dislocation has traveled a distance of ∼0.18 microns. We see that
the changes in the dislocation displacement gradient due to the inclusion of acceleration lead to a
slight enhancement.

Mg, a = 1013 m/s2 Mg, a = 1014 m/s2 Mg, a = 1015 m/s2
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Figure 3. We compare ∂yux in Mg (prismatic slip) at dislocation velocity v = 2.838 km/s for different
acceleration rates.

Furthermore, we confirm (numerically) that the divergence at a ‘critical’ dislocation
velocity (which separates the subsonic from the transonic regime) persists for general
accelerating edge dislocations with vanishing core size, consistent with previous work
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on the isotropic limit [27] as well as the accelerating screw dislocation in anisotropic
crystals [42].

5. The Isotropic Limit

The following simplifications apply in the isotropic limit: c22 = c11 = c12 + 2c44,
c66 = c44, and c16 = 0 = c26, as well as s11 = 1/c11 = s22 and s12 = 0 = s21 within (13).
Hence, Equation (16) simplifies to

0 = µ4c11c44 − µ2
[
c11

(
ρ− λ2c11

)
+ c44

(
ρ− λ2c44

)
+ λ2(c12 + c44)

2
]
+
(

ρ− λ2c11

)(
ρ− λ2c44

)
, (30)

where c11 = c12 + 2c44, and solutions µm are found to be

µ1 = ±
√

ρ

c44
− λ2 , µ2 = ±

√
ρ

c11
− λ2 . (31)

In both cases, only one of the two signs must be considered, namely, convergence
of (14) requires that the real part of µm has the same sign as y. For positive y, this means
that Im(λ) > 0 implies Im(µm/λ) < 0 and vice versa [39].

Coefficients Aim simplify to

Ã11 =
λc12 − c11µ2a2

c11(µ1a1 − µ2a2)
, Ã12 = 1− Ã11 , Ã2m = am Ã1m ,

am =

(
c11λ2 + c44µ2

m − ρ
)

(c12 + c44)λµm
=

(c12 + c44)λµm

(c44λ2 + c11µ2
m − ρ)

, (32)

with c11 = c12 + 2c44.
The definition of τm (with x′ = 0) then yields

λ±m(τ) =
τ

r2

(
x± iy

√
1− r2

c2
mτ2

)
,

µ±m =
1
y
(
τ − xλ±m

)
=

τ

r2

(
y∓ ix

√
1− r2

c2
mτ2

)
,

dλ±

dτ
=

1
r2

x± iy
1√

1− r2

c2
mτ2

 =
±iµ±m

τ
√

1− r2

c2
mτ2

, (33)

with r2 ≡ x2 + y2 and the short-hand notation c1 ≡ cT =
√

c44/ρ and c2 ≡ cL =
√

c11/ρ
for the transverse (T) and longitudinal (L) sound speeds. This special case was discussed in
ref. [52].

If we assume a constant dislocation velocity from time t > 0, i.e., η(x) = x/v and
take the limit of t→ ∞ after translating our coordinates to move with the dislocation (i.e.,
replacing x = x′ + vt, r2 = (x′ + vt)2 + y2 everywhere prior to taking the limit, see [42]),
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we recover the well-known steady-state solution for an edge dislocation in an isotropic
medium [11,53]:

∂xuiso,steady
x =

−by
πβ2

T

 1/γL(
(x− tv)2 + y2/γ2

L
) −

(
1− β2

T
2

)
/γT(

(x− tv)2 + y2/γ2
T
)
 ,

∂yuiso,steady
x =

b(x− tv)
πβ2

T

 1/γL(
(x− tv)2 + y2/γ2

L
) −

(
1− β2

T
2

)
/γT(

(x− tv)2 + y2/γ2
T
)
 ,

∂xuiso,steady
y =

b(x− tv)
πβ2

T

 1/γL(
(x− tv)2 + y2/γ2

L
) − γT

(
1− β2

T
2

)
(
(x− tv)2 + y2/γ2

T
)
 ,

∂yuiso,steady
y =

by
πβ2

T

 1/γ3
L(

(x− tv)2 + y2/γ2
L
) −

(
1− β2

T
2

)
/γT(

(x− tv)2 + y2/γ2
T
)
 . (34)

6. Conclusions

In this paper, we have presented and discussed the full solution to the differential
equations for an accelerating edge dislocation in a general anisotropic crystal in the sub-
sonic regime. Taking the formal solution of ref. [39] one step further, we have derived
the edge dislocation displacement gradient field using a combination of analytical and
numerical methods. Our python implementation is included in version 1.2.7 of the code
PyDislocDyn [45]. Two examples were illustrated in Figures 1 and 2 showing that the
dislocation strain field is slightly enhanced in the accelerating case, at least for typical
dislocation acceleration rates of a ∼ 1013 m/s2 [50], though still similar enough to the
steady-state solution (except for extreme conditions such as very high acceleration rates
and velocities near the limiting velocity), so that in most larger simulations it makes more
sense to use the (several orders of magnitude) faster-to-compute steady-state solution.
The transonic regime of the accelerating edge dislocation as well as accelerating mixed
dislocations are left for future work.
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