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Abstract: Metal injection molding (MIM) is one of the most widely used manufacturing processes
worldwide as it is a cost-effective way of producing a variety of dental and orthopedic implants,
surgical instruments, and other important biomedical products. Titanium (Ti) and Ti alloys are
popular modern metallic materials that have revamped the biomedical sector as they have superior
biocompatibility, excellent corrosion resistance, and high static and fatigue strength. This paper
systematically reviews the MIM process parameters that extant studies have used to produce Ti
and Ti alloy components between 2013 and 2022 for the medical industry. Moreover, the effect of
sintering temperature on the mechanical properties of the MIM-processed sintered components has
been reviewed and discussed. It is concluded that by appropriately selecting and implementing
the processing parameters at different stages of the MIM process, defect-free Ti and Ti alloy-based
biomedical components can be produced. Therefore, this present study could greatly benefit future
studies that examine using MIM to develop products for biomedical applications.

Keywords: titanium and titanium alloys; metal injection molding; biomedical; sintering;
mechanical properties

1. Introduction

The history and development of biomaterials are long and rich. Archaeologists
have discovered that biomaterials have been used as dental implants since as early as
200 A.D. [1–3]. According to Vallet-Regí [4], after World War II, multiple materials were
examined to create prostheses and implants for soldiers wounded in action. At that time,
the term “biocompatibility” solely described how well an organism tolerated a material.
However, in the 1960s, some of these implants led to complications. This created a need to
identify implant materials that did not cause more problems than they effectively solved,
as well as how to implant these new materials. In the late 1960s, surgical, medical, and
dental laboratories began examining effective methods of producing replacement parts and
implants for bodily injuries and published their findings in biomedical literature. Since
then, the prevalence of such implants has increased globally.

Biomaterial implants are commonly used to replace and restore damaged or deterio-
rated organs or tissues in the human body [2]. This includes dental and orthopedic implants,
ligaments, intraocular lenses, vascular grafts, artificial hearts, heart valves, biosensors, and
cardiac pacemakers [5–13]. An implant should function flawlessly for a lifetime. As such,
the development of materials that can withstand long-term implantation in the human
body is a top priority, as, at present, commercially available biomaterials tend to break
down after extended use due to poor biocompatibility, low fatigue strength, low corrosion
and wear resistance, and a higher modulus than bone [14]. Biological biocompatibility,
corrosion resistance, and mechanical biocompatibility determine the biocompatibility of
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orthopedic implant materials [7,15]. Biological biocompatibility examines interactions
between an implant material and biological processes and includes its cancer-causing,
mutational, genotoxic, or cytotoxic potential. Corrosion resistance in a biological envi-
ronment is another important characteristic, as long-term orthopedic implants must be
mechanically biocompatible and possess high wear resistance, high strength, and a low
Young’s modulus [7]. The Young’s modulus is an important mechanical quality, as the
effects of stress shielding often result in revision surgeries [15–18].

Biocompatible metals have so far been most widely used in biomedical applications.
Titanium (Ti) and Ti alloys, stainless steel, and cobalt (Co) alloys are the broadly recognized
biocompatible metals in the medical industry [19–36]. These materials are commonly used
to replace and support fractured bone fragments as well as in dental implants, pacemaker
casings, artificial heart valves, screws, plates, artificial joints, extrinsic fixators, spinal
fixations, and stents [2,34–36].

Researchers currently prefer Ti and Ti alloys as the most advantageous biocompatible
metals [19–25]. The utilization of Ti and Ti alloys as implant materials is deemed favorable
due to their optimal properties [35]. As Ti and Ti alloys are chemically inert and possess
strong fatigue resistance and a low Young’s modulus, they perform better than stainless
steel and Co alloys in long-term implantation [21,37,38]. In addition, when compared
to other biocompatible metals, Ti and Ti alloys exhibit significantly greater corrosion
resistance [35,37]. Corrosion usually shortens the lifespan of the implants and necessitates
additional surgery to replace the damaged ones.

Powder injection molding (PIM) is an economical method of mass-producing shaped
components. Metal injection molding (MIM), a type of PIM, has made inroads into numer-
ous industries as it is fast, cost effective, versatile, and potentially downsizable, as well
as possessing outstanding design, dimensional accuracy, and mechanical properties that
yield an exceptional surface finish and minimal by-products or waste [39–48]. At present,
MIM is a popular method of manufacturing precise net-shaped parts for orthopedic and
dental implants, surgical tools, and medical equipment [21,49–55]. Figure 1 depicts some
commonly used MIM-fabricated medical tools and equipment. Aust et al. [56] used MIM
to produce Ti-6Al-7Nb alloy bone screw implants to restore a fractured dens axis (Figure 2).
Meanwhile, Barbosa et al. [57] and Barbosa [58] used two-component MIM to develop a Ti
spinal implant (Figure 3). The study found that the highly porous section of the implant
facilitated osseointegration via cell ingrowth and bodily fluid circulation in the intercon-
nected pores, while the low-porosity section provided mechanical stability. Shu et al. [59]
successfully fabricated MIM-based intravascular stents using 316L stainless steel powder
in an effort to create stents with greater biocompatibility (Figure 4). The main steps of the
production process included mixing, injection molding, debinding, and sintering (Figure 5).
The binders were first mixed with the metal powder prior to undergoing the MIM process
to produce a homogeneous feedstock, which was then converted into suitably sized pellets.
During the MIM process, pressure and heat were used to mold the feedstock into the
required shape. It was then demolded by removing the green part from the cavity of the
mold. Solvent and thermal debinding techniques were used to remove the soluble and
insoluble binders from the green part, respectively. Lastly, the brown debound part was
sintered to produce the required mechanical and physical properties.

In the MIM process, it is highly important to get defect-free components with the
desired mechanical properties. Choosing the appropriate process parameters at all stages
of the MIM process is crucial to obtaining flawless components. Moreover, sintering is
an indispensable step in the MIM process, and sintering parameters, especially sintering
temperature, have a big impact on the mechanical properties of the components. The influ-
ence of sintering temperature on the microstructures and mechanical properties of different
components is now being studied by MIM researchers from several domains [39,43,45,46].
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Figure 1. MIM-processed medical tools and equipment, reused with permission from Elsevier [60]. 

 

Figure 2. Bone screw design for MIM processing and the placement of a typical implant in the sec-
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Figure 2. Bone screw design for MIM processing and the placement of a typical implant in the second
cervical vertebra of the neck, reused with permission from John Wiley and Sons [56].

In view of the above, as Ti and Ti alloys are superior to other existing biocompatible
metals, this paper reviewed the MIM process parameters that studies published between
2013 and 2022 used to produce Ti and Ti alloy components for biomedical applications. In
addition, this present study outlines the investigations of the MIM researchers over the
past 10 years to attain desirable mechanical properties for Ti and Ti alloy-based biomedical
components by using varying sintering temperatures.
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Figure 3. (a) Spinal implant of titanium produced employing the two-component-MIM process;
(b) positioning of implant immediately after surgical procedure; and (c) cross-sectional microstructure
exhibiting adequate joining between the dense parts and porous, reused with permission from Elsevier
and John Wiley and Sons [57,60].
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2. Biomedical Applications of Titanium and Titanium Alloys

Ever since William Justin Kroll first discovered a method of extracting metallic Ti from
its ore in the 1940s, Ti has increasingly been used in industrial and commercial applica-
tions [62,63]. Ti and Ti alloys have been extensively used in a variety of industrial fields,
such as the aerospace, nuclear, marine, biomedical, automotive, and chemical industries, as
they have high specific strength, low density, good biocompatibility, high fatigue strength,
and good corrosion resistance [64–75]. Ti and Ti alloys provide good biocompatibility
and superior corrosion performance as they naturally develop an uninterrupted, adhesive,
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and thin oxide film across the entire surface [76–80]. Figure 6 illustrates the two crystal
orientations that can exist in Ti, an allotropic element. At temperatures below 882 ◦C,
Ti remains in the alpha (α) phase with hexagonal, close-packed crystals. However, at
temperatures above 882 ◦C, it transitions to the beta phase (β) and has body-centered cubic
crystals [81–83]. Ti alloys with persistent α, β, and α + β phases can be produced at ambient
temperature by selectively alloying them with other elements [81,84]. Aluminum (Al),
carbon (C), oxygen (O), and nitrogen (N) stabilize Ti in the α phase, while manganese (Mn),
chromium (Cr), iron (Fe), and vanadium (V) stabilize it in the β phase [82,85]. Hundreds
of different types of Ti alloys have been developed worldwide, 20 to 30 of which, such as
Ti-6Al-4V, Ti-2Al-2.5Zr, Ti-5Al-2.5Sn, Ti-Mo-Ni, Ti-32Mo, Ti-Pd, Ti-10-5-3, Ti-811, Ti-1023,
Ti-1100, Ti-6242, IMI829, IMI834, BT9, and BT20, are very popular [86–88].
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In the 1950s, Brånemark discovered that it was possible to permanently integrate Ti
into bone. As such, they coined the term “osseointegration”, which refers to the secure
fixation of Ti to bone tissues [89–91]. Osseointegration is commonly used to describe the
biocompatible interactions that occur between a biomedical implant and the surrounding
bone tissues that enable it to integrate with the bone tissues [92]. Several studies have
examined the advantages of osseointegration in implants [93–98]. Sidambe [61] reported
that Ti and Ti alloys have been extensively used as biomedical implants since the early
1970s. According to Manivasagam et al. [99], a combined total of GBP 2.2 million of Ti
implants are transplanted into patients around the globe every year. Ti is commonly used
as orthopedic and dental implants, artificial knee and hip joints, pacemakers, artificial
hearts, cardiac valve prostheses, cornea backplates, bone plates, and screws for fracture
fixation [61,99–101]. Stress shielding, which causes bone resorption, occurs when the
Young’s moduli of the bone and the implant material are dissimilar [18,102–104]. The
Young’s modulus of bone ranges between 10 and 30 GPa [18,105]. As seen in Table 1, the
Young’s moduli of Ti alloys are more analogous to that of bone than other metal implant
materials. Ti with a porosity of around 60% to 70% has outstanding Young’s modulus
(Figure 7) and is, therefore, a promising material for bone implants [83,106]. However, the
strength and porosity of a material must be balanced, as they both affect the efficacy of an
implant [83,107,108].
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Table 1. Comparison of the mechanical properties of implant materials.

Material Young’s Modulus
(GPa)

Tensile Strength
(MPa)

Yield Strength
(MPa) Elongation (%) References

Stainless steels and
Co-based alloys

316L stainless steel 200 500–1350 200–700 10–40

[2,18,60,83,
109–119]

Co-Cr 200 – 500 8
Co-Ni-Cr 220 – 850 20

Type of alloy: α
Pure Ti grade 1 103 240 170 24
Pure Ti grade 2 103 345 275 20
Pure Ti grade 3 103 450 380 18
Pure Ti grade 4 104 550 485 15

Type of alloy: α + β

Ti-6Al-4V 110–114 895–930 860 6–10
Ti-6Al-7Nb 114 900–1050 880–950 8.1–15

Ti–5Al-2.5Fe 110 1020 780 6
Ti-3Al-2.5V 100 585 690 15

Type of alloy: β
Ti-13Nb-13Zr 79–84 973–1037 836–908 10–16

Ti-35Nb-7Zr-5Ta 55 590 800 20
Ti-35Nb-7Zr-5Ta-0.35O 41–46 876–1015 864–966 2.2–15.6

Ti-29Nb-13Ta-4.6Zr 80 911 864 13.2
Ti-35.3Nb-5.1Ta-7.1Zr 55 597 547 19

Ti-24Nb-4Zr-8Sn 54–62 655–720 627–685 2–9
Ti-12Mo-6Zr-2Fe 74–85 1060–1100 100–1060 18–22
Ti-15Mo-5Zr-3Al 80 852–1100 838–1060 18–25
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Figure 7. Yield stress and Young’s modulus for porous titanium compacted toward out-of-plane. Purple
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The Ti-6Al-4V alloy, which was developed in the United States, was used for the
first time in the medical industry in 1954 [2]. As Ti-6Al-4V possesses superior mechanical
properties, is biocompatible, and does not interfere with innovative imaging methods
such as computer tomography and magnetic resonance imaging, it remained the primary
Ti alloy used in orthopedics and dentistry for a very long time [115,120–130]. However,
multiple studies have raised the issue of the toxicity of the Al and V found in the Ti-6Al-4V
alloy. Bodily exposure to Al and V has been found to cause cytotoxicity, allergic reactions,
and neurological disorders [7,131–135]. Furthermore, although the Young’s modulus
of Ti-6Al-4V (110 to 114 GPa) is lower than that of other biocompatible metals, such as
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stainless steel and Co alloys (Table 1), it is significantly higher than the stiffness of bone (10
to 30 GPa). Therefore, the mechanical loads of day-to-day tasks could cause stress shielding
and lead to peri-prosthetic fractures, implant loosening, and bone loss [7,136–139]. As such,
multiple studies have examined β-type Ti alloys to overcome the limitations of Ti-6Al-4V
and other α + β-type Ti alloys [83,115,135]. According to Niinomi [140], β-type Ti alloys
have low stiffness, which aids bone repair and remodeling. As β-type Ti alloys contain
β-stabilizing elements, such as Nb, zirconium (Zr), molybdenum (Mo), and tantalum
(Ta), their Young’s moduli are lower and closer to those of human bone, which could
prevent implant loosening and bone resorption from stress-shielding. Furthermore, as
they develop additional stable oxide layers, they have good biocompatibility, exceptional
corrosion resistance, and are non-toxic [135,141]. As seen in Table 1, many types of β-type
Ti alloys have been developed to achieve desirable Young’s modulus, tensile strength, yield
strength, and elongation for biomedical applications. In this context, it is worthwhile to
mention that the phase transformation process and mechanical properties of β-Ti alloys
are significantly impacted by the injection molding, debinding, and sintering parameters
during the MIM process.

3. MIM Process for Titanium and Titanium Alloys
3.1. Metallic Powder Selection

The attributes of a metallic powder, especially particle size and shape, substantively
affect the quality of the feedstock as well as important stages of the MIM process [142–149].
According to multiple studies, metallic powder particles should possess the following
characteristics to successfully complete the MIM process [39,150,151]:

• Spherical-shaped powder particles are preferred, as irregular-shaped particles cause
imbalanced powder loading and more shrinkage;

• A higher packing density is required to maximally load the powder;
• Adequate interparticle friction is required to retain the shape throughout the debinding

stage. Distortions are more likely to occur when larger powder particles are used, as
the intraparticle contact per unit volume decreases;

• The powder particles must be non-agglomerated to produce defect-free sintered
components;

• The particles should not react with the multicomponent binder system;
• The powder particles should be void-free to ensure that the sintered parts have excel-

lent density.

As powder particle size significantly affects the MIM process, the right powder size
must be chosen to produce flaw-free components. Most studies use particles that are less
than 22 µm in size to improve densification, which affects the mechanical and corrosion
properties of the product [2,151]. According to Piotter et al. [152], fine powder particles are
preferable for metal materials; however, commercial-grade metal powders are larger than
5 µm on average. Table 2 lists the powder particle sizes of Ti and Ti alloys that MIM studies
published between 2013 and 2022 used in biomedical applications.

Table 2. Particle sizes of titanium and its alloys used in MIM (years: 2013–2022).

Materials Particle Size (µm) References

Ti 19.1 [73]
<20 [74]
74.9 [75]
33.2 [153]
75 [154]
5 [155]

<45 [156–158]
45 [159]

26.5 [160]
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Table 2. Cont.

Materials Particle Size (µm) References

Hydride-dehydride (HDH) Ti 45 [46]
29 [68]

<77 [161]
35.43 [162]

Ti-12Mo HDH Ti: ≤45, hydrogen reduced Mo: ≤25 [163]
Ti-Mn <45 [164,165]
Ti-Nb Ti: <45, Nb: <110 [166]

Ti: 21, Nb: <75 [167]
Ti: 32.95, Nb: 30.15 [168]

Ti: <14, Nb: <36 [169]
Ti: 21, HDH Nb: 75 [170]

Ti-6Al-4V 13.4 [19]
<45 [171]
15 [172]

25.5 [173]
18 [174]

HDH Ti-6Al-4V 51.8 [47]
70 [147]

Ti-6Al-4V/ Hydroxyapatite (HA) Ti-6Al-4V: 19.54, HA: 61.95 [175]
Ti-6Al-4V: 19.6, HA: 5 [176]

Ti-6Al-4V/Wollastonite (WA) Ti-6Al-4V: 19.54, WA: 10.10 [177]
Ti-16Nb-(0-4) Sn Ti: 23.81, Nb: 14.98, Sn: 20.19 [178]
Ti-24Nb-4Zr-8Sn <45 [113]

Ti-27.5Nb-8.5Ta-3.5Mo-2.5Zr-5Sn 6.08 [55]

As seen in Table 2, Ti and Ti-6Al-4V were most commonly used in MIM studies.
According to Dehghan-Manshadi [179], commercially pure Ti is more commonly used in the
MIM process as it is more tolerant of O, which may reach 0.4% in grade 4, than Ti-6Al-4V,
which can only tolerate 0.2% O. The study found that MIM-processed, commercially
pure Ti produces components with mechanical properties and chemical compositions
that satisfy ASTM standards. Meanwhile, other studies have demonstrated that MIM-
processed Ti-6Al-4V components have mechanical properties that are comparable to ASTM
standards, especially when combined with small amounts of other elements, such as boron
(B), C, gadolinium (Gd), and titanium carbide (TiC) [171,173,179–186]. As seen in Table 2,
more studies have investigated the use of micro-sized powder particles in MIM than
nanosized powder particles. This is because fine powder particles have a host of challenges,
such as difficulty increasing the viscosity of the feedstock, difficulty attaining higher
packing densities due to agglomeration, and more time needed to produce a homogeneous
feedstock [39,187,188]. Furthermore, as seen in Table 2, only a few studies have examined
the use of powder particles that are less than 22 µm in size. Larger particles decrease the
debinding strength and increase the likelihood of distortion. Moreover, unlike smaller
particles, larger particles have less intrinsic strength when they are packed together [151].

Powder particles are either spherical or irregular in shape, both of which possess
unique properties. Spherical Ti powder particles that are less than 30 µm in size and
produced using plasma atomization (from wire), gas atomization (from liquid), and plasma
spheroidization (from non-spherical powder) are excellent for MIM as they possess excel-
lent flow properties and shrink homogeneously throughout sintering [179]. Fine spherical
Ti powder is expensive and has a low O tolerance, while non-spherical Ti powder costs
significantly less and has a high O tolerance. As such, multiple studies have examined
developing MIM procedures that can be used for hydride-dehydride (HDH) Ti pow-
ders [179,189–193]. Another strategy to lower the cost of MIM-fabricated components
and increase the suitability of HDH powders for MIM is to combine HDH with spherical
powders [193]. Figure 8 depicts the scanning electron microscopy (SEM) images of gas
atomized, plasma atomized, and HDH Ti powders for MIM. As seen, the gas-atomized and
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advanced plasma-atomized Ti powders were spherical, while the HDH Ti powders were
irregular and, therefore, a promising cost-effective alternative for MIM [68].
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3.2. Binder Selection

A binder system is used in the MIM process to transport metal. The choice of binder
is crucial, as it affects the quality of the finished product. The purpose of a binder system
is to ensure that the shape of an MIM part remains unchanged until the sintering process
begins as well as to help the formation during MIM. The choice of binder affects multiple
variables and processes, such as packing density, powder-binder mix, feedstock flowability,
injection molding, binder extraction, dimensional accuracy, and defect generation. Binders
for the MIM process should possess the following characteristics [39,173,194]:

• Outstanding adhesion to Ti powder;
• Low likelihood of powder-binder separation;
• Superior wetting capabilities and flow properties;
• A viscosity that only varies slightly during MIM;
• Produce very little residual C post-burnout;
• Does not cause chemical reactions when interacting with Ti powder particles;
• Toxicity-free.

The filler phase enables the feedstock to flow easily, while the backbone polymer
serves as a second component that helps retain the shape of the sample. Additives, such as
lubricants, surfactants, and dispersants, are commonly used as a final binder to improve
the powder-binder interface. Table 3 lists the binders that MIM studies published between
2013 and 2022 used.

Table 3. Binders used in MIM processes pertaining to biomedical applications (years: 2013–2022).

Materials Binders References

Ti Paraffin wax, polyethylene, stearic acid [73]
Polyethylene glycol 1500, poly methyl methacrylate, stearic acid [75,154]

Paraffin wax, high-density polyethylene, stearic acid [153]
Polyvinyl butyral, benzyl butyl phthalate, solsperse 20,000 [155]

Paraffin wax, high-density polyethylene, stearic acid [156]
Polyethylene glycol, poly methyl methacrylate, polyvinylpyrrolidone [157]

Polyethylene glycol, polypropylene carbonate, poly methyl methacrylate [158]
Polyethylene glycol, poly methyl methacrylate, stearic acid [159]

Polyacetal-based thermoplastic binder [160]
HDH Ti Paraffin wax, high-density polyethylene, stearic acid [46]

Paraffin wax, low-density polyethylene, stearic acid [68]
Wax-based binders [161]

Agar, sucrose [162]

Ti-12Mo Liquid paraffin wax, stearic acid, low-density polyethylene, polypropylene,
Polyethylene glycol, naphthalene, solid paraffin [163]
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Table 3. Cont.

Materials Binders References

Ti-Nb Paraffin wax, polyethylene vinyl acetate, stearic acid [167,170]
Paraffin wax, carnauba wax, polypropylene, stearic acid [168]

Paraffin wax, low-density polyethylene, stearic acid [169]
Ti-6Al-4V Polyethylene glycol, polypropylene, stearic acid [19]

Paraffin wax, polyethylene vinyl acetate, stearic acid [171]
Polyoxymethylene, stearic acid, paraffin wax, ethylene vinyl acetate, polyethylene [172]

Paraffin wax, polypropylene, polyethylene, stearic acid [173]
Palm stearin, polyethylene [174]

HDH Ti-6Al-4V Polyethylene glycol, polyvinyl butyral, stearic acid [47,147]
Ti-6Al-4V/HA Palm stearin, low-density polyethylene [175,195]

Palm stearin, polyethylene [176]
Ti-6Al-4V/WA Palm stearin, polyethylene [177]

Ti-16Nb-(0-4) Sn Paraffin wax, carnauba wax, polypropylene, stearic acid [178]
Ti-24Nb-4Zr-8Sn Paraffin wax, polyethylene-vinyl acetate co-polymer, stearic acid [113]

Ti-27.5Nb-8.5Ta-3.5Mo-2.5Zr-5Sn Polyacetal-based binder [55]

As seen in Table 3, most of these studies examined the use of paraffin wax for feed-
stock flowability, polyethylene as the backbone polymer for Ti and Ti alloys in biomedical
applications, and stearic acid as a surfactant as it promotes effective powder-binder ad-
hesion. More recent MIM studies, however, examined the use of palm stearin as a binder.
Iriany et al. [196] were the first to examine the use of a palm stearin binder to circumvent
debinding, which is the most time-consuming stage of the MIM process. The ability of this
binder to serve as both a lubricant and a surfactant is a very important property [176,197].
Indonesia, Malaysia, Nigeria, and Colombia, as well as other African, Latin American,
and Asian nations, are directly involved in palm oil production. This has made palm
stearin more accessible to end users as a cost-effective commercial binder. Furthermore, as
a palm stearin binder poses few environmental hazards, it is highly recommended for use
in MIM [198].

3.3. Preparation of Feedstock

Ti and Ti alloys are typically mixed with binders to produce feedstocks. Powder
loading and binder type significantly affect the characteristics of the produced feedstock.
Optimal powder loading, based on critical powder loading, is recommended when using
MIM to fabricate Ti and Ti alloy-based biomedical components. The powder particles
must be in void-free contact with one another for critical powder loading [199,200]. Unlike
critical powder loading, optimal powder loading uses fewer powder particles, significantly
decreases feedstock viscosity, greatly simplifies the MIM process, and produces products
with excellent mechanical properties and only minor distortions [201]. Higher powder
loadings complicate the mixing process and increase feedstock viscosity [202]. On the other
hand, higher binder content and insufficient powder loading in the feedstock cause higher
shrinkage in sintered components. Lower powder content significantly affects the density
of sintered components [203].

Powder particle size significantly affects critical powder loading during MIM. Smaller
powder particles have a larger surface area, which lowers critical powder loading [204]. As
such, many studies have examined multiple methods of determining the critical powder
loading for MIM. Aggarwal et al. [205] used a torque rheometer to calculate the critical
powder loading based on the rheological behavior of the feedstock. The powder loading
range at which dramatic transformations in rheological parameters, such as viscosity, power
law exponent, and flow activation energy, occurred was designated as the critical solid
loading. Kong et al. [206] used a twin-screw mixer to gradually increase the volume of
powder in the binder and a different strategy to determine the critical powder loading.
The mixing torque was found to increase drastically when the critical powder loading
was at a specific level. Mutsuddy and Ford [207], as well as Reddy et al. [208], gradually
added an oil binder to a powder to obtain a critical powder volume concentration. The
incremental addition of oil caused the torque to initially increase sharply before gradually
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decreasing until it reached a stable state. The critical powder loading was determined to be
when the torque increased to its highest. Optimal powder loading is critical to producing
defect-free MIM-processed Ti and Ti alloy components. This can be achieved by using
powder loadings that are 2 to 5 vol.% less than the critical powder loading [199].

As seen in Table 4, most MIM studies used powder loadings of 50 and 67 vol.% for
Ti and Ti alloys, while others used powder loadings of 70 vol.% and higher. De Freitas
Daudt et al. [73] produced extremely porous MIM-processed Ti and reported that it was
difficult to obtain open surface porosity and to retain the shape during debinding and
sintering. The study examined the use of three different powder loadings: 72, 75, and
80 vol.%, and found that MIM components with 72 vol.% powder loading entirely collapsed
(Figure 9b), 75 vol.% yielded less shape deformation (Figure 9c), and 80 vol.% powder
loading yielded the best shape retention post-thermal debinding and sintering (Figure 9d).

Table 4. Powder loading for titanium and titanium alloys (years: 2013–2022).

Materials Particle Size (µm) Powder Loading (vol.%) References

Ti 19.1 72, 75, 80 [73]
75 58 [154]

<45 69 [156]
<45 67 [157,158]
45 60 [159]

26.5 65.6 [160]
28.4 67 [173]

HDH Ti 45 61 [46]
29 53 [68]

<77 55 [161]
Ti-12Mo HDH Ti: ≤45, hydrogen reduced Mo: ≤25 65 [163]

Ti-Nb Ti: 32.95, Nb: 30.15 50 [168]
Ti: <14, Nb: <36 60 [169]

Ti-6Al-4V 13.4 60 [19]
25.5 64 [173]
18 65 [174]

HDH Ti-6Al-4V 51.8 55, 60 [47]
70 55, 60 [147]

Ti-6Al-4V/HA Ti-6Al-4V: 19.61, HA: 20 68, 69, 70 [209]
Ti-6Al-4V: 19.54, HA: 61.95 68 [175]

Ti-6Al-4V: 19.6, HA: 5 78.21 [176]
Ti-6Al-4V/WA Ti-6Al-4V: 19.54, WA: 10.10 67 [177]

Ti-16Nb-(0-4) Sn Ti: 23.81, Nb: 14.98, Sn: 20.19 50 [178]
Ti-24Nb-4Zr-8Sn <45 65 [113]

Ti-27.5Nb-8.5Ta-3.5Mo-2.5Zr-5Sn 6.08 65 [55]
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3.4. Rheological Properties

The rheological characteristics of the feedstock, which closely correlate with viscosity,
shear rate, and shear stress, can be analyzed to optimize the injection molding process.
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A capillary rheometer is typically used to measure rheological properties. At a specific
molding temperature, a shear rate of 102 to 105 s−1 and a viscosity of less than 1000 Pa·s
are best for Ti- and Ti alloy-based feedstocks to flow into the mold cavity [19,176,199]. The
different rheological behaviors that a fluid exhibits when flowing are a critical factor. When
shear thickening or dilatant flow occurs, the viscosity increases as the shear rate increases,
which increases the likelihood of powder-binder segregation during MIM [200]. Conversely,
when shear thinning or a pseudo-plastic flow occurs, the viscosity decreases as the shear
rate increases, which is desirable for MIM as it helps fill the mold cavity effectively and
faultlessly as well as maintain the shape of MIM parts [68,151,175,199]. Hayat et al. [157]
produced MIM-processed Ti components using pure Ti powder by ensuring that the formu-
lated feedstocks exhibited pseudo-plastic behavior during rheological analysis (Figure 10).
According to Thavanayagam et al. [147], as some feedstocks that exhibit pseudo-plastic
behavior may also exhibit dilatant flow behavior when subjected to high shear rates, it is
necessary to thoroughly evaluate the rheological properties across a range of shear rates.
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B, (c) Feedstock C, and (d) Feedstock D, reused with permission from Elsevier [157].

Equation (1) depicts the interdependence of viscosity η and shear rate Y in non-
Newtonian fluids [210]:

η = KYn−1 (1)

where K is a constant and n is the flow behavior index. In general, n provides a clear
understanding of the shear sensitivity and flow behavior of the powder-binder mixture.
When n > 1, the feedstock exhibits dilatant behavior. Conversely, the feedstock exhibits
pseudo-plastic behavior when n < 1 [176,177,210]. Temperature-dependent viscosity is
another significant factor affecting the rheological behavior of a powder-binder mixture.
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Equation (2) depicts the flow activation energy E, which correlates with the Arrhenius
equation and, generally, depicts how temperature affects feedstock viscosity [211]:

η(T) = ηo exp (E/RT) (2)

where ηo, R, and T are the viscosities at the reference temperature, gas constant, and
temperature, respectively. E can be obtained from the slope of the plot of ln(η) against 1/T.
The smaller the E, the less susceptible the viscosity was to temperature changes, which
prevented unpredictable flows throughout the MIM [202,212].

Rheological measurement is a pivotal step in MIM. Multiple studies have analyzed the
rheology of Ti and Ti alloy feedstocks, with most of them conducting MIM with feedstocks
that exhibit pseudo-plastic behavior [19,154,159,176,177]. An optimal powder loading and
a feedstock that exhibits pseudo-plastic behavior could produce crack-free components.

3.5. Metal Injection Molding Process

The second step of MIM is to mold the prepared Ti and Ti alloy feedstocks into the
desired shape. Molding parameters significantly affect the characteristics of the injected
pieces, with defects frequently occurring during MIM. Defects that emerge during the
final phases of MIM typically cannot be eliminated. Short shots, flashing, jetting, powder-
binder segregation, and cracks are the most common defects that occur during MIM. While
some of these flaws are easily observable, others can only be found during debinding
and sintering. However, proper injection molding parameters, such as injection pressure,
holding pressure, melt and mold temperature, and injection duration, can be used to correct
these defects.

In the field of injection molding, a short shot, a defect that occurs when the powder
loading, mold temperature, and injection pressure are incorrect, is a potential hindrance.
Moghadam et al. [68] observed short-shot defects in injection-molded Ti components
(Figure 11). As seen in Figure 11a–e, although the green parts were manufactured using
injection processes at temperatures of 150 to 165 ◦C, short shot defects were only prevented
when a feedstock temperature and powder loading of 165 ◦C and 53 vol.%, respectively,
were used. As such, the study examined the best method of regulating feedstock tempera-
ture and powder loading to produce flaw-free components. Flashing is another common
defect that occurs during injection molding. Urtekin et al. [19] produced MIM-processed
cortical-bone screws with Ti-6Al-4V powders and binders and reported that the green
component maintained its geometry at a pressure of 120 MPa (Figure 12). As seen in
Figure 12, challenges, including ejection from mold and flashing, occurred when the pres-
sure exceeded 120 MPa. These issues were believed to arise due to high injection pressures.
Therefore, flash-free components could be produced by using the correct injection pressure
and properly clamping the mold during injection molding.

In summary, it is crucial to obtain defect-free green Ti and Ti alloy components during
injection molding. As such, the injection molding parameters should be correctly adjusted
to produce flawless parts for debinding and sintering.

3.6. Debinding Process

Solvent and thermal debinding are debinding methods that are frequently used in MIM
studies. Solvent debinding, which involves immersing injection-molded components in a
liquid solvent and conducting the procedure at a specific temperature, can be used to extract
soluble binders from a multi-component binder system [39,73,170]. Diffusion is commonly
used to eliminate the soluble binder. Yang et al. [213] schematically outline the various
stages of the solvent extraction process (Figures 13 and 14). As seen in Figures 13 and 14, the
diffusion of solvent molecules into the binder marks the beginning of the solvent extraction
process, which causes a swelling gel to form. The soluble binder dissolves into the solution
due to sufficiently potent interactions between the solvent and the soluble binder that
counteract the intermolecular forces [214]. The pore size increases as the insoluble binder is
kept in the contact area. This open-pore structure accelerates the thermal extraction process
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and facilitates the quick removal of the insoluble binder [215]. Table 5 lists the parameters
that extant studies have used to solvent debind a variety of injection-molded Ti and Ti
alloy components.
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Figure 12. Injection-molded components in high-pressure applications [19].

Table 5. Solvent debinding parameters utilized for titanium and titanium alloys (years: 2013–2022).

Materials Solvent Temperature (◦C) Time (h) References

Ti Hexane 50 24 [73,153]
Water 50 35 [154]

Hexane 50 20 [156]
Water 40 28 [157]
Water 50 – [159]

HDH Ti Hexane 50 20 [46]
Heptane 45, 60, 75 6.5 [68]



Materials 2023, 16, 3991 15 of 33

Table 5. Cont.

Materials Solvent Temperature (◦C) Time (h) References

Ti-12Mo Heptane 50 15 [163]
Ti-Nb Hexane 40 20 [166,167]

Heptane 60 8 [168]
Heptane 50 20 [169]
Hexane 40 20 [170]

Ti-6Al-4V Water 60 24 [19]
– 40 15 [171]

Heptane 60 6 [174]
Ti-6Al-4V/HA Heptane 60 6 [175]
Ti-6Al-4V/WA Heptane 60 6 [177]

Ti-16Nb-(0-4) Sn Heptane 60 8 [178]
Ti-24Nb-4Zr-8Sn Hexane 40 20 [113]
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Figure 13. Schematic diagrams demonstrating the distributions of binder in (a) as molded and
(b) preliminary stages of solvent debinding on the basis of water extraction, reused with permission
from Elsevier [213].

As seen in Table 5, solvent debinding was mostly conducted at temperatures between
40 and 60 ◦C, and heptane and hexane were the preferred choices of solvent. Temperature
is crucial in solvent debinding, as higher temperatures have been found to improve soluble
binder and solvent interactions by transforming the solubility and the binder diffusion
coefficient [216]. Often, very little soluble binder remains in components after solvent
debinding. During the thermal debinding process, this can be eliminated along with
the insoluble binder. It is important to produce solvent-debound components that are
crack-free. As seen in Table 5, Moghadam et al. [68] examined the use of three different
solvent debinding temperatures of 45, 60, and 75 ◦C on injection-molded Ti components
or green parts. Although a temperature of 75 ◦C removed the binder very quickly, the
solvent debinding process was halted immediately after 60 min as cracks began to form
(Figure 15). This is believed to have occurred due to the extremely rapid extraction rate and
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the potential softening of the low-density polyethylene backbone. Components that were
solvent debound at 45 and 60 ◦C were defect-free. These results indicate the importance of
debinding temperature in solvent debinding. Therefore, defect-free solvent debound com-
ponents can be produced by using the correct solvent type, solvent debinding temperature,
and time.
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Figure 14. Schematic diagrams demonstrating the distributions of binder in (a) intermediary and
(b) final stages of solvent debinding on the basis of water extraction, reused with permission from
Elsevier [213].
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atures, reused with permission from Elsevier [68].

Thermal debinding is commonly used to eliminate insoluble binders from injection-
molded components. In the early stages of thermal debinding, the binder degradation rate
determines how quickly the binder flows from inside the component to its surface. As the
polymer degradation process progresses, pores near the surface open and help dispel the
burnout gases of the binder via interconnected pore channels [199,217]. Due to polymer
losses during thermal debinding, the component typically weakens immediately. As such,
thermally debound components must be handled with care. According to Hamidi et al. [2],
thermally debound components experience thermal, gravitational, and residual stresses,
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which could cause defects or cracks to form as the polymer degrades. Furthermore, the
subsequent sintering process will aggravate the microscopic defects that formed during
thermal debinding. As such, the thermal debinding schedule must be designed properly
to overcome these issues. Table 6 lists the parameters that extant studies have used to
thermally debind Ti and Ti alloy components. As seen in Table 6, temperatures between
500 and 700 ◦C were the best for the given thermal extraction durations.

Table 6. Thermal debinding parameters for titanium and its alloys (years: 2013–2022).

Materials Thermal Debinding Schedule References

Ti 500 ◦C for 2 h [73,153]
450 ◦C for 1 h [75,160]
550 ◦C for 1 h [156]
570 ◦C for 2 h [158]

HDH Ti 550 ◦C [46]
350 and 550 ◦C at 3 ◦C/min [68]

Ti-12Mo 700 ◦C for 2 h [163]
Ti-Nb 200–400–600 ◦C at 2 ◦C/min for 2 h [168]

250 ◦C for 2 h and 450 ◦C for 2 h [169]
Ti-6Al-4V 700 ◦C at 2, 5, and 10 ◦C/min [173]

550 ◦C for 4 h [174]
Ti-6Al-4V/ HA 500 ◦C [175]

320 ◦C at 3 ◦C/min for 1 h and 500
◦C at 5 ◦C/min for 1 h [176]

Ti-6Al-4V/WA 500 ◦C at 5 ◦C/min for 1 h [177]
Ti-24Nb-4Zr-8Sn 500 ◦C [113]

Ti-27.5Nb-8.5Ta-3.5Mo-2.5Zr-5Sn 500 ◦C for 2 h [55]

3.7. Sintering Process

Sintering, the last stage of the MIM process, transforms debound components into a ro-
bust mass and significantly affects the physical and mechanical properties of the produced
component. The sintering temperatures are typically 70 to 90% of the melting temperature
of the metal [2,218]. Vacuum, air, argon, hydrogen, and reduced nitrogen/hydrogen atmo-
spheres are commonly used during sintering. The exterior surface of the powder particles
undergoes remarkable chemical changes and atomic diffusion when the sintering tempera-
ture increases from one-half to two-thirds of the melting point of the metal. Thermolysis
occurs as the temperature increases, which burns out the remaining binders [2,39]. Sinter-
ing uses several mechanisms, such as lattice diffusion, surface diffusion, grain boundary
diffusion, plastic flow, evaporation-condensation, and viscous flow, for mass transport [219].
These mechanisms encourage the growth of necks between particles, which improve the
strength of the consolidated powders [39,150]. Table 7 lists the parameters that extant
studies published between 2013 and 2022 have used to sinter Ti and Ti alloy components.
As seen in Table 7, a temperature range of 1100 to 1500 ◦C, a heating rate of 3 to 10 ◦C/min,
a duration of 1 to 8 h, and a vacuum or argon atmosphere were preferred.

It is important to mention that Ti and Ti alloys have a profound affinity for impurities,
notably O and C [193]. O reduces the stress corrosion resistance, fatigue strength, and
tensile ductility of the MIM-processed sintered Ti and Ti alloy components [179]. According
to Luo et al. [220], the ultimate tensile strength and yield strength of the unalloyed Ti
increased, but tensile ductility decreased as the O content increased (Figure 16). The initial
powder, binder system, and sintering environment are the primary contributors to O
contamination in the MIM process. Usually, with careful selection of powder and binder as
well as precise control over the injection, debinding, and sintering processes, O content can
be kept lower than 0.3 wt.% for commercially pure Ti components [179]. On the other hand,
in order to prevent the development of TiC in structure, which could reduce corrosion
resistance, weaken the elongation and fatigue properties, and increase the Young’s modulus
of sintered parts, the C content must be kept to less than 0.08 wt.% [221].
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Table 7. Sintering parameters used for titanium and its alloys (years: 2013–2022).

Materials Sintering
Temperature (◦C) Time (h) Heating Rate

(◦C/min)
Sintering

Atmosphere References

Ti 1200 3 – Vacuum [73,153]
1250 2 – Argon [75]
1320 2 – Argon [154]
1250 2 8 Argon [155]

1150, 1250, 1300 – – – [156]
1300 2 – – [157]
1150 2 – Vacuum [160]

HDH Ti 1100–1300 2 – Vacuum [46]
1350 2 6 Argon [68]
1150 2 – Vacuum [161]

Ti-Mn 1100 8 – Vacuum [164,165]
Ti-Nb 1500 4 – Vacuum [166]

900–1500 2 5 Vacuum [167]
1500 4 10, 5 Vacuum [168]
1400 4 – Argon [169]
1500 2 – – [170]

Ti-6Al-4V 1350 2 – Vacuum [171]
1200, 1250, 1300 1, 2, 3 3, 4, 5 Vacuum [174]

Ti-6Al-4V/HA 1350 3 – Vacuum [175]
1100, 1200, 1300 2 – Vacuum [176]

Ti-6Al-4V/WA 1100, 1200, 1300 5 3 Vacuum [177]
Ti-16Nb-(0-4) Sn 1250, 1400, 1550 2 10, 5 Vacuum [178]
Ti-24Nb-4Zr-8Sn 1400, 1500 2, 4 – Vacuum [113]
Ti-27.5Nb-8.5Ta-
3.5Mo-2.5Zr-5Sn

1000, 1100, 1200,
1300, 1400 8 – Vacuum [55]

During the MIM process, it is essential that sintered components exhibit the desired
mechanical properties. Mechanical properties are significantly influenced by sintering pa-
rameters, particularly sintering temperature. Table 8 summarizes the mechanical properties
of the Ti and Ti alloy components that sintered at different temperatures between 2013
and 2022.

Table 8. Mechanical properties of the sintered Ti and Ti alloy components (years: 2013–2022).

Materials Sintering Temperature
(◦C)

Young’s Modulus
(GPa)

Tensile Strength
(Mpa) Elongation (%) References

Ti 1250, 1300 7.80, 22 – – [156]
1300 – 617 – [157]
1150 99 542 – [160]

HDH Ti 1250 – 395 12.5 [46]
Ti-8Mn 1100 87 – – [165]
Ti-9Mn 1100 89 1046 4.7 [165]

Ti-12Mn 1100 96 – – [165]
Ti-13Mn 1100 99 – – [165]
Ti-15Mn 1100 98 – – [165]
Ti-17Mn 1100 103 – – [165]
Ti-16Nb 1500 80 667 – [167]

Ti-Nb 1500 100 – – [168]
Ti-17Nb 1400 76 – – [169]

Ti-6Al-4V 1350 – 824 – [171]
1200 – 934.33 – [174]

Ti-6Al-4V + Gd 1350 – 749 – [171]
Ti-6Al-4V/HA 1300 44.26 – – [176]
Ti6Al4V/WA 1100–1300 14.57–18.10 – – [177]

Ti-24Nb-4Zr-8Sn 1400 54 656 – [113]
Ti-27.5Nb-8.5Ta-
3.5Mo-2.5Zr-5Sn 1100 98 1154 – [55]
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Figure 16. Tensile properties of unalloyed titanium versus O content: (a) elongation to fracture, (b) ul-
timate tensile strength, and (c) yield strength. Samples were produced through powder metallurgy,
MIM, and additive manufacturing routes and reused with permission from Elsevier [220].

Based on Table 8, a sintering temperature range of 1100 to 1500 ◦C was employed by
the researchers to obtain a Young’s modulus of 7.80 to 103 GPa and a tensile strength of
395 to 1154 MPa. Dehghan-Manshadi et al. [156] examined the optimal MIM parameters
for porous Ti scaffolds. Figure 17 depicts the SEM micrographs of components sintered
at 1250 ◦C. However, the sintered components contained a few big and irregular-shaped
pores that were 150 to 200 µm in size (Figure 17a) as well as microsized pores (Figure 17b)
due to the elimination of the space holder and binder as well as the sintering of the
Ti particles. The optimal pore size for body fluid transportation and mineralized bone
growth ranges between 100 and 300 µm [222,223]. The study found that the rough interior
walls of the big pores were better suited for new bone tissue ingrowth. An EDS of the
sintered components revealed that the microstructure did not contain chlorine or potassium
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(Figure 17c); therefore, all the space holders had been completely removed during water
immersion. Furthermore, components that had been sintered at 1250 ◦C had a Young’s
modulus of 7.80 GPa. The Young’s modulus increased to 22.0 GPa at 1300 ◦C when the
porosity decreased. Bootchai et al. [160] found that MIM-processed Ti components sintered
at 1150 ◦C had a Young’s modulus and tensile strength of 99 GPa and 542 MPa, respectively.
A close tensile strength of 617 MPa was obtained by Hayat et al. [157], who sintered Ti
components at 1300 ◦C.
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Figure 17. (a,b) SEM image of titanium sintered at 1250 ◦C. The micron-size pores are indicated by
arrows, and (c) energy-dispersive X-ray spectroscopy (EDS) analysis of the scaffold [156].

Dehghan-Manshadi et al. [46] identified the best processing parameters to fabricate
MIM-processed HDH Ti with minor deformations. Spherically dispersed and small-sized
pores were observed in the sintered sample (Figure 18a). A closer examination revealed
that an almost non-porous, thin surface layer had formed (Figure 18b) in contrast to the
central section of the component (Figure 18c). As seen in Figure 18d, the number of pores
significantly decreased and the average pore size increased as the sintering temperature
increased. Furthermore, changes in pore size and distribution due to increasing the sin-
tering temperature may directly affect the mechanical properties of sintered components.
Components sintered at 1250 ◦C had a tensile strength and elongation of 395 MPa and
12.5%, respectively.

As a prospective low-cost material, Santos et al. [165] fabricated Ti-Mn alloy compo-
nents through MIM that had been sintered at 1100 ◦C for biomedical applications. Figure 19
depicts the optical micrographs of Ti-Mn alloys containing 8 to 17 mass% of Mn. The
average grain diameter, which was 69.8 ± 6.1 µm, did not significantly differ between the
alloys. As seen in Figure 19, each alloy contained large, interconnected pores and small,
closed pores, with most of the pores (ellipses) located at the grain boundaries. An evalua-
tion of the mechanical properties of the examined alloys indicated that the Ti-9Mn alloy
had the best combination of tensile strength (1046 MPa) and elongation (4.7%). Figure 20
depicts the SEM fractographs of the tensile-tested components. As seen in Figure 20a–c,
the Ti-9Mn and Ti-12Mn alloys had larger regions of concentrated cleavage-like structures
and dimples than the Ti-8Mn alloy. Figure 20e,f depict the unique massive trans-granular
cleavage-like structures found in the Ti-15Mn and Ti-17Mn alloys. The study also found
that the Ti-8Mn to Ti-17Mn alloys had higher Young’s moduli. The Young’s moduli of the
Ti-8Mn, Ti-9Mn, Ti-12Mn, Ti-13Mn, Ti-15Mn, and Ti-17Mn alloys were 87, 89, 96, 99, 98,
and 103 GPa, respectively.

The mechanical properties of Ti-Nb alloys make them viable bioactive implants.
Zhao et al. [167] fabricated MIM-processed Ti-16Nb alloys and observed microstructural
changes in components sintered at four different temperatures: 900, 1100, 1300, and 1500 ◦C
(Figure 21). As seen in Figure 21, the component sintered at 900 ◦C contained Ti and Nb
particles that matched their primeval particle morphologies. Although Ti particle diffu-
sion had begun, boundaries were clearly visible between the Ti and Nb particles. It was
difficult to observe the Ti particle boundaries in the Ti-16Nb alloy sintered at 1100 ◦C as it
mostly contained irregular-shaped residual pores. Unlike Ti-16Nb alloys sintered at 900
and 1100 ◦C, the removal of observable Nb particles and the existence of thin needle-shaped
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precipitates were the most clearly observable microstructural characteristics in Ti-16Nb
alloys sintered at 1300 and 1500 ◦C. The porosity was also found to decrease from roughly
25 to 6% as the sintering temperature increased. The ultimate tensile strength and the
Young’s modulus of the Ti-16Nb alloy sintered at 1500 ◦C were 667 MPa and 80 GPa, respec-
tively. Bidaux et al. [169] sintered Ti-17Nb alloys at 1400 ◦C that had a Young’s modulus
of 76 GPa. In comparison to Zhao et al. [167] and Bidaux et al. [169], a higher Young’s
modulus of 100 GPa was obtained by Yılmaz et al. [168], who carried out the sintering of
MIM-processed Ti-Nb alloys at 1500 ◦C.
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microstructure of the similar specimen; (c) at the center of the specimen; and (d) number of pores and
average pore size as a function of sintering temperature, reused with permission from Elsevier [46].
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Nor et al. [174] fabricated Ti-6Al-4V components on the grounds of MIM. The optimum
sintering temperature was determined to be 1200 ◦C. Ti-6Al-4V alloys sintered at 1200 ◦C
had tensile strengths of 934.33 MPa. Holm et al. [171] fabricated Ti-6Al-4V components with
Gd powder and sintered them at 1350 ◦C. Adding Gd was found to increase the porosity
of the Ti-6Al-4V alloys from 3.6 to 5%. However, the addition of 1 wt.% of Gd decreased
tensile strength from 824 to 749 MPa. Therefore, Ti-6Al-4V + Gd components had higher
porosity but lower tensile strength than Ti-6Al-4V components. Arifin et al. [176] examined
the viability of fabricating PIM-processed Ti-6Al-4V and hydroxyapatite (HA) composites
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sintered at 1100, 1200, and 1300 ◦C. Figure 22 depicts the components sintered at different
temperatures. As seen in Figure 22, residual HA particles were detected between the gaps
of the Ti particles, and the Ti particles were covered in partially decomposed HA. Some HA
groups were observed on the surface at 1100 ◦C; however, they were not detected when
the sintering temperature increased significantly. The presence of Ti atoms accelerates
the formation of titanium oxide (TiO2) and HA dehydroxylation [224,225]. Inter-diffusion
occurred at the Ti-HA interface due to the migration of HA towards Ti bulk and Ti atoms to
O and HA atoms. As O is an interstitial atom, it diffuses into the Ti lattice until saturation.
The Ti was then oxidized, which slowed O diffusion. Composites sintered at 1300 ◦C had a
Young’s modulus of 44.26 GPa, which is very close to that of human bone. Ramli et al. [177]
reported that Ti-6Al-4V and bioactive wollastonite (WA) were excellent for implantation
applications. The PIM-processed Ti6Al4V/WA composites sintered at 1100, 1200, and
1300 ◦C had Young’s moduli of 18.10, 15.62, and 14.57 GPa, respectively.
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Kafkas and Ebel [113] fabricated Ti-24Nb-4Zr-8Sn components based on MIM. Com-
ponents sintered at 1400 ◦C yielded the highest tensile strength (656 MPa) and Young’s
modulus (54 GPa). Increasing the sintering temperature from 1400 to 1500 ◦C did not
significantly affect strength. On the other hand, Suwanpreecha et al. [55] fabricated novel
Ti-27.5Nb-8.5Ta-3.5Mo-2.5Zr-5Sn components sintered at 1000 to 1400 ◦C. Sintering at
1000 ◦C did not adequately sinter the components, while sintering at 1100 ◦C yielded the
best tensile strength (1154 MPa) and the highest elastic modulus (98 GPa).

4. Concluding Remarks and Future Directions

MIM is an exemplary manufacturing approach for fabricating small and intricate
components for the biomedical industry at a low cost. This present study reviewed the
MIM parameters that extant studies have used to fabricate Ti and Ti alloy biomedical
products over the past 10 years. Ti and Ti alloys outperform other biocompatible metals,
such as stainless steel and Co alloys, in long-term implantation due to their low Young’s
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modulus, strong fatigue resistance, and chemical inertness. The drawbacks of the Ti-6Al-4V
and other α + β-type Ti alloys have been mostly resolved by β-type Ti alloys. Due to
containing β-stabilizing elements such as Zr, Nb, Mo, and Ta, the Young’s moduli of β-type
Ti alloys are closer to those of human bone, which could impede the loosening of implants
and the resorption of bone from stress-shielding. Moreover, Ti with a porosity between 60
and 70% is regarded as a viable material for bone implants due to its remarkable Young’s
modulus. In this review paper, we acknowledge the extensive usage of Ti and Ti alloys as
biomedical implants.

A crucial step in the MIM process is choosing the appropriate powder particle size.
Although most studies used microsized instead of nanosized powder particles for Ti and
Ti alloys, further research using fine particles could be useful to comprehend the impact
of such particles on different stages of the MIM process. When preparing feedstock, the
majority of researchers chose to employ high powder loading, but this often makes the
process of mixing powder and binder challenging and is responsible for the incomplete fill-
ing of the mold cavity during the injection molding process. Therefore, it is recommended
to use optimal powder loading. The MIM process is dramatically streamlined by optimal
powder loading since it requires fewer powder particles compared to critical powder load-
ing, substantially reduces the viscosity of feedstock, and yields products with superior
mechanical properties and minimal deformations. Cracks, short shots, jetting, and flashing
are common defects for injection-molded components. Some of these imperfections can be
seen instantly, but others are only revealed during the debinding and sintering processes.
Defects that arise during the injection process can be avoided by selecting the injection
molding parameters appropriately. The debinding process is known to be a sensitive stage,
as parts remain extremely fragile during this period. It is preferable not to employ an
excessively high solvent debinding temperature during the solvent debinding process
to achieve crack-free components. This review paper demonstrated the competence of
MIM researchers to produce sintered Ti and Ti alloy biomedical components. Basically, the
sintering temperature has an immense effect on the mechanical properties of the sintered
components. Finally, a doorway into the future of biomedical applications may be opened
by the production of multi-functional biomedical products using Ti and Ti alloy materials
along with other metal- or ceramic-based materials through the two-component metal
injection molding (2C-MIM) process.
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