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Abstract: FGH96 is a powder metallurgy Ni-based superalloy used for turbine disks of aero-engines.
In the present study, room-temperature pre-tension experiments with various plastic strain were
conducted for the P/M FGH96 alloy, and subsequent creep tests were conducted under the test
conditions of 700 ◦C and 690 MPa. The microstructures of the pre-strained specimens after room-
temperature pre-strain and after 70 h creep were investigated. A steady-state creep rate model was
proposed, considering the micro-twinning mechanism and pre-strain effects. Progressive increases
in steady-state creep rate and creep stain within 70 h were found with increasing amounts of pre-
strain. Room-temperature pre-tension within 6.04% plastic strain had no obvious influence on
the morphology and distribution of γ′ precipitates, although the dislocation density continuously
increased with the increase in pre-strains. The increase in the density of mobile dislocations introduced
by pre-strain was the main reason for the increase in creep rate. The predicted steady-state creep rates
showed good agreement with the experiment data; the creep model proposed in this study could
capture the pre-strain effect.

Keywords: P/M FGH96 superalloy; creep; pre-strain; micro-twinning

1. Introduction

Powder metallurgy (P/M) Ni-based superalloys have been extensively used as turbine
discs in modern aeroplane engines due to their excellent mechanical properties. Due to
the high requirements of reliability and durability of turbine discs, creep properties of
P/M superalloy are of great importance to the safety of the component [1–4]. Cold pre-
deformation is usually used in engineering practice to control residual stress, to improve
dimensional stability, and to improve the low cycle fatigue life of aero-engine discs [5,6].
However, pre-deformation also affects the creep properties of Ni-based superalloys at the
same time, which might reduce the creep resistance of the disc material [7–9]. Therefore,
the influence of pre-deformation on the subsequent high-temperature creep behaviour is a
topic of significant theoretical and practical interest.

The influence of pre-deformation on creep properties varies for different metallic
materials. The improvements in creep resistance after pre-straining were observed for some
polycrystalline Ni-based alloys. For example, Marlin et al. [10] found that the creep rate
at 760 ◦C may decrease with increasing pre-strain at the same temperature for an oxide-
dispersion-strengthened Ni-based alloy. Cairney et al. [11] reported that pre-strain at both
room temperature and elevated temperatures can decrease the creep strain at 520 ◦C for
single-crystal Ni3Al. However, a contrary effect was also observed in Ni-based superalloys
where the minimum creep rates were increased and the creep life was shortened with
increasing amounts of pre-strain. Zhang and Knowles [12] reported that the minimum
creep rate of a nickel-based C263 superalloy at 800 ◦C can be slightly enhanced with
increasing amounts of room-temperature pre-tension. Dyson [13,14] examined the creep
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response of Nimonic 80A at 750 ◦C after room-temperature pre-tension. The results showed
that the material suffered progressive losses of creep strength, life, and fracture ductility
as pre-strain increased. Concerning the microstructure, pre-strain increased the density of
mobile dislocations on the one hand, resulting in an increase in initial creep rate. On the
other hand, dislocations induced by pre-strain will increase the resistance to dislocation
movement, which may enhance creep resistance [7]. In addition, it is possible to increase
dislocation annihilation rates, which may lead to decreases in creep strain [7]. The density
of voids in the grain boundary region increases after pre-strain, which has adverse effects
on creep life [7,13,15]. Therefore, the influence of pre-strain on the creep behaviour varies
with different alloys. This is related to the temperature and amount of pre-strain, the
microstructure, creep testing temperature, stress, and the corresponding creep mechanism.
It remains necessary to study the pre-strain effects on creep behaviour for the FGH96 alloy
under specific creep test conditions.

Most existing creep models that consider the pre-strain effect are phenomenolog-
ical [16–19]. For example, the Norton law for creep was modified to relate the model
parameters with pre-strain and temperature [17]. A damage tensor controlled by pre-strain
was introduced into the creep damage tensor to reflect the accelerating effect of pre-strain
on void nucleation at grain boundaries [18]. Pre-strain effect was involved in internal stress
to affect the creep behaviours [19]. Creep mechanisms have not explicitly been included in
these models; therefore, feasible creep models considering both the creep mechanism and
pre-strain effect need to be established to quantify the creep response changes caused by
prior plastic deformation.

In this study, pre-tension of the FGH96 superalloy was carried out at room temperature,
and creep tests were subsequently conducted. The influence of pre-strain on the steady-state
creep rates and the influencing mechanism are discussed. Based on the micro-twinning
mechanism, a calculation model for the steady-state creep rate was established with the
pre-strain effect involved. The numerical results were compared with experimental data to
verify the effectiveness of the model.

2. Materials and Methods

The chemical composition (in wt. %) of the FGH96 alloy was: 12.9% Co, 15.7% Cr,
4% Mo, 4% W, 2.1% Al, 3.7% Ti, 0.7% Nb, 0.05% C, 0.03% B, 0.05% Zr, and balanced Ni. The
FGH96 alloys were prepared using the powder metallurgy method. The powders were
consolidated by hot isostatic pressing (HIP) (1100–1200 ◦C,120–140 MPa, 3–5 h). Then, the
HIPed ingot was hot-extruded and isothermally forged at subsolvus temperatures. After
forging, the pancake was heat-treated at 1160 ◦C for 4 h to obtain a solid solution, and then
aged at 760 °C for 16 h followed by air cooling.

Uniaxial creep test specimens were subsequently cut from the aged ingot along tan-
gential direction and machined to the specimen dimension (Figure 1). Then, the creep
test specimen was pre-strained at room temperature using an INSTRON tensile machine
at a crosshead speed of 0.25 mm/min. An extensometer was used to measure the strain
during loading and unloading of the tension process. The measured plastic strains after
pre-tension were 0.33%, 0.34% 0.35%, 0.43%, 0.47%, 0.48%, 0.60%, 0.61%, 0.63%, 1.01%,
1.05%, 3.01%, and 6.04%, respectively. After pre-tension, the creep tests were carried out at
700 ◦C and 690 MPa with a duration time of 70 h.

The metallographic structure was observed by optical microscopy (OM) and the
distribution of γ′ precipitates was examined by scanning electron microscopy (SEM: LEO
Gemini 1525) before and after pre-tension. The SEM samples were ground, polished, and
electro-etched at 3.5 V, 2 A for one second at room temperature. Transmission electron
microscopy (TEM) observation foils were sliced from the standard gauge area of the creep
test specimen sectioned 90◦ to the stress axis. The foils were prepared by twin-jet thinning
in a solution of 10 vol% HClO4 + 90 vol% C2H5OH at −20 ◦C. The microstructure of
pre-strained and 70 h crept specimens was examined using a JEOL JEM 2100F electron
microscope with an operating voltage of 200 kV.
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3. Creep Model with Pre-Strain Effect
3.1. Micro-Twinning-Based Creep Model

Previous studies [1–4,20,21] on FGH96 superalloys indicated that slip-induced micro-
twinning was the dominate creep mechanism at creep temperatures of 650–750 ◦C and
stress of 690–810 MPa. Therefore, the micro-twinning mechanism was considered in the
creep model.

According to the micro-twinning mechanism [22], after the movements of two a/6<112>
partial dislocations, twins were induced in the γ matrix and pseudo-twins (PTs) were
induced in the secondary γ′ matrix. The PTs exhibited an orthorhombic structure which
involved Al–Al nearest neighbours, are differently from those remaining in the secondary
γ′ with the L12 structure. These PTs have high energies and impede the movements
of a/6<112> dislocations. Diffusion-mediated reordering near the {111} planes yielded
twinned parts with the ideal L12 structure. The rearranged atomic lattice formed a mirror-
image relationship with the original lattice before the PT formation, which meant that true
twins (TT) were formed. The transformation from high-energy PTs to low-energy TTs made
the a/6<112> dislocations slip again, leading to continuous creep deformation. Therefore,
the formation of PTs was induced by the shear of dislocations, while the formation of TTs is
thermally mediated.

As shown in Figure 2, in order to establish the theoretical creep model, it was assumed
that the secondary γ′ had a cubic morphology and was uniformly distributed in the γ

matrix; the tertiary γ′ was ignored due to its much smaller size and lower volume fraction.
The energy for the formation of twins in the matrix in a unit cell is expressed as:

Gtm = Γtm

(
L2 − d2

2

)
(1)

where Γtm is the formation energy of two-layer true twins in matrix, d2 is the cubic length
of the secondary γ′, and L is the length of the unit cell.
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The energy for the formation of twins in the secondary γ′ consisted of two parts. One
was the energy for the formation of true twins, written as

Gtt = Γttd2
2 (2)

where Γtt is the formation energy of the two-layer true twins. The other one is the energy
required for reordering to accomplish the transformation from PTs to TTs, Gord, which can
be related to the time needed for the formation of true twins, expressed as [23,24]:

Gord = ∆Γ exp(−Kttwin)d2
2 (3)

where ∆Γ = Γpt − Γtt, Γpt is the formation energy for the two-layer PTs. K denotes the
reordering rate expressed as K = Dord/x2, with Dord being the diffusion coefficient for
the reordering and x being the short range diffusion length, usually obtained as x = 2btp,
where btp is the magnitude of the Burgers vector [23,24].

Similarly to the model developed by Karthikeyan et al. [25], considering the move-
ments of a/6<112> dislocations in two-layer {111} planes, the energy balance at the steady-
state stage can be expressed as:

2|τα|btpL2 = Gord + Gtt + Gtm (4)

where τα is the effective resolved shear stress in a α slip system. The above equation
indicates that the work performed by external force is used for the formation of true twins
in matrix and secondary γ′, and the energy for the reordering. The energy for reordering
should be positive; therefore, a requirement for the stress is written as 2|τα|btpL2 > Γttd2

2 +
Γtm
(

L2 − d2
2
)
, which is also equivalent to 2|τα|btp > Γtt f 2 + Γtm

(
1− f 2) with f = d2/L.

Combining Equations (1)–(4) yields:

ttwin =
1
K

ln
f 2∆Γ

2btp|τα| − f 2Γtt − Γtm + f 2Γtm
(5)

Using the Orowan equation [26], the shear rate is expressed as [25]

.
γ

α
= ρα

tpbtpvα = ρα
tpbtp

btp

ttwin
(6)

where ρα
tp is the mobile dislocation density, and vα is the average dislocation velocity

which is obtained considering the time for the formation of true twins in secondary γ′ and
ignoring the time for dislocation slip.

Combining Equations (5) and (6), the shear rate is obtained as:

.
γ

α
=

ρα
tpb2

tpDord/x2

ln
[

f 2∆Γ/
(
2btp|τα| − f 2Γtt − Γtm + f 2Γtm

)] (7)

If the dislocation density is assumed to be unchanged in the steady-state creep stage,
the shear rate can be expressed as:

.
γ

α
=

.
γ

α
0

ln
[

f 2∆Γ/
(
2btp|τα| − f 2Γtt − Γtm + f 2Γtm

)] (8)

where
.
γ

α
0 = ρ0

tpb2
tpDord/x2 is the initial shear rate, which is related to the initial dislocation

density (ρ0
tp).

For uniaxial creep, considering multiple slip, the relationship between uniaxial creep
rate and shear rate can be written as [27,28]:

.
ε

cr
=

1
M

.
γ

α (9)
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where M is the Taylor factor [29].
In addition, the resolved shear stress can be expressed as [29,30]:

τα =
σ

M
(10)

where σ denotes the uniaxial stress.
Combining Equations (8)–(10), the uniaxial creep rate is obtained as:

.
ε

cr
=

ρ0
tpb2

tpDord/x2

M · ln
[

f 2∆Γ/
(
2btp

σ
M − f 2Γtt − Γtm + f 2Γtm

)] (11)

The above equation relates the steady-state creep rate to the uniaxial stress. The strain
rate is proportional to the initial density a/6<112> partial dislocations and average diameter
of secondary γ′.

3.2. Creep Model with Pre-Strain Effect

In order to capture the increase in mobile dislocation density with the increase in
pre-strain, the Kocks–Mecking [31,32] relationship was adopted to describe the evolution of
dislocation densities with time, considering the working hardening and dynamic recovery
mechanisms, expressed as [33]:

∂ρ

∂ε
= M(k1

√
ρ− k2ρ) (12)

where ρ is the dislocation density, ε is the applied strain, and M is the Taylor factor. k1 is a
temperature-independent parameter reflecting the dislocation accumulation, and k2 is a
temperature-dependent parameter describing the dislocation annihilation [34].

Assuming that the dislocation density can be uniquely determined by pre-strain in
the pre-tension process, the relationship between dislocation density and pre-strain can be
obtained by integrating Equation (12), and is written as:

ρ

ρ0
=

{
1 +

(
k1

k2
ρ−1/2

0 − 1
)[

1− exp
(
−Mk2

2
ε

)]}2
(13)

Combining Equations (11) and (13), the steady-state creep rate model with the pre-
strain effect could be given as:

.
ε

cr
=

ρ0
tpb2

tpDord/x2

M·ln[ f 2∆Γ/(2btp
σ
M− f 2Γtt−Γtm+ f 2Γtm)]

ρ0
tp

ρ0
tp−pre

=

{
1 +

(
k1
k2

(
ρ0

tp−pre

)−1/2
− 1
)[

1− exp
(
−Mk2

2 εpn

)]}2 (14)

where εpn denotes the pre-strain, and ρ0
tp−pre is the mobile dislocation density without pre-strain.

4. Result and Discussion
4.1. Influence of Pre-Strain on the Creep Behaviour

Figure 3a shows the creep strain curve of specimens with different amount of pre-
strain. It can be seen that the 70 h creep strain continuously increased with the increase
in pre-strain. For specimens with the same amount of pre-strain, the 70 h creep strain
exhibited certain dispersity, which might be caused by the variations in the microstructure
and internal stress of the specimen. The amount of creep strain at the primary stage and
the duration of primary creep stage increased with the increase in pre-strain, while the
steady-state stage still dominated. Compared with that of the unstrained specimen, the
creep strain of pre-strained specimens accumulated rapidly in the first few hours, and then
crept at a higher steady-state rate. For the specimen with 6.04% pre-strain, the creep strain
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exceeded 0.2% in the first 5 h, far more than the creep strain after 70 h of specimens that
had pre-strain less than 0.6%.
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As shown in Figure 3b, the steady-state creep rate increased with the increasing
amount of pre-strain. Even a small amount of pre-strain had a clear impact on the steady-
state creep rate, indicating that the creep rate of FGH96 alloy at 700 ◦C/690 MPa was
sensitive to room-temperature pre-strain. For the specimen with 3% pre-strain, the steady-
state creep rate was more than 10 times greater than that of unstrained specimen, which
means that a large amount of pre-strain will result in a significant loss of creep resistance.

4.2. Influence of Pre-Strain on Microstructure

The grain morphology and distribution of γ′ precipitates before and after pre-tension
are shown in Figure 4. The unstrained and 6.04% pre-strained specimens had a similar grain
morphology with an average grain size of approximately 40 µm. The morphology and
distribution of both secondary γ′ and tertiary γ′ showed no obvious differences. Most of
the secondary γ′ particles were spherical or cuboid in shape, with concave faces, similarly
to the results of previous studies [4,35]. For unstrained and 6.04% pre-strained specimens,
the volume fractions of secondary γ′ of were 39% and 41%, and the average diameters
were 162 nm and 148 nm, respectively. This indicated that room-temperature pre-tension
within 6.04% plastic strain had no obvious influence on the morphology and distribution
of γ′ precipitates.

Figure 5 shows the dislocation distribution in the FGH96 alloy after various degrees
of room-temperature pre-strain. After 0.33% pre-strain, independent dislocations appeared,
and the dislocations were mainly located in the matrix (Figure 5b). After 1.01% pre-strain,
a large number of dislocations were found both in the matrix and the γ′/γ interface
(Figure 5c). The dislocation density was much higher than that of the 0.33% pre-strained
specimen. When the pre-strain reached 6.04%, continuous dislocation lines appeared and
the dislocation lines were parallelly distributed (Figure 5d). At this point, significant plastic
deformation and strain strengthening occurred. The dislocation density inside the alloy
significantly increased.
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The creep deformation of the Ni-based superalloy involved two parts: dislocation
slipping in the matrix channel and dislocation cutting through γ′ particles. In the primary
stage of creep, creep deformation was mainly provided by dislocation slip in the matrix
channel. The change in dislocation density under different amounts of pre-strain will
affect the creep behaviour of FGH96 alloys to varying degree. For the 0.3% pre-strained
specimen, pre-strain-induced dislocations slipped in the matrix channel at the beginning
of creep. Compared with the unstrained specimen, the existence of pre-strain-induced
dislocations reduced the time for dislocation formation and accelerated the progression
of dislocation slip in the primary creep stage. For specimens with 1.01% and 6.04% pre-
strain, the mobile dislocation densities increased significantly, which further accelerated
dislocation movement and increased the strain rate during primary creep stage. In addition,
the release of misfit stress, caused by the formation of interface dislocations during room-
temperature pre-deformation, could reduce the hindrance to dislocation movement to some
extent. This might also be a factor contributing to the increase in creep rate.

According to the Orowan equation [26], two competing effects can be introduced
by pre-strain in terms of the creep strain rate. On the one hand, the dislocation density
induced by room-temperature pre-strain impedes dislocation movement, thereby reducing
the average moving velocity of dislocations and resulting in a decrease in creep rate, namely,
the creep weakening effect. On the other hand, the dislocations induced by pre-strain also
remain mobile, thus leading to an increase in creep rate, namely, the creep enhancement
effect. The effect of pre-deformation on the creep rate mainly depends on which of these
two competing factors dominates. It can be seen from the experimental results that creep
enhancement effect dominated. The increase in mobile dislocation density caused by
pre-strain was the main reason for the increase in primary creep rate of the FGH96 alloy.

Figure 6 shows the microstructure of the FGH96 alloy after 70 h creep. Compared
with the microstructure before creep, the dislocation density after 70 h creep was much
higher. For the 0.34% pre-strained specimen, the dislocation density was significantly
increased during creep and a large number of dislocations were entangled at the γ′ and γ

interface (Figure 6a). For the 1.0% pre-strained specimen, continuously distributed stacking
faults were found after 70 h creep (Figure 6b). This was a result of the interaction between
dislocations and γ′ particles. It was obvious that greater creep deformation occurred for the
1.0% pre-strained specimen. The numerous dislocations induced by pre-strain accelerated
the creep.
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The influence of pre-strain on the creep rate depends on the creep mechanisms. The
creep mechanism mainly included three types: dislocation gliding along the slip plane
induced by thermal activation at a high stress level, dislocation movement induced by
vacancy diffusion at a medium stress level, and diffusion creep controlled by atom diffusion
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at a low stress level. The creep mechanism was dependent on the testing temperature, stress,
amount of pre-strain, and the resultant microstructure. According to existing experiments
on FGH96 superalloys in the literature [1–4,20,21], slip-induced micro-twinning is the
dominate deformation mechanism at 700 ◦C/690 MPa. An increase in pre-strain increases
the dislocation density, thus resulting in a higher steady-state creep rate.

4.3. Validation of the Creep Rate Model

The parameters used in the model can be categorised as material constants, microstruc-
ture information, and fitted parameters. The material constants are listed in Table 1,
including the magnitude of the Burgers vector (btp), the formation energy of two-layer
PTs in secondary γ′ (Γpt), the formation energy of two-layer TTs in secondary γ′ (Γtt),
the formation energy of two-layer TTs in the γ matrix (Γtm), the diffusion coefficient for
reordering (Dord), and the diffusion length (x). Reordering involves the diffusion of Ni
and Al atoms; a definite value of Dord was still unavailable. The diffusion coefficient of Al
atoms in Ni3Al was obtained as [36]:

D∗Al = 5.05× 10−7 exp(−243 KJ/mol
RT

)m2/s (15)

where R is the ideal gas constant (8.314 J ·mol−1 ·K−1) and T is the thermodynamic temperature.
The self-diffusion coefficient of Ni atoms in Ni3Al was obtained as [37]:

D∗Ni = 3.59× 10−4 exp(−303 KJ/mol
RT

)m2/s (16)

In the simulation, Dord was set as the average value of the two diffusion coeffi-

cients [25], i.e., Dord =
D∗Al+D∗Ni

2 . The diffusion length, x, was taken as twice the value
of btp [25].

The volume fraction and diameter of the secondary γ′ were obtained from the exper-
iments. As shown in Section 2, pre-strain within 6% did not have obvious effects on γ′

precipitations; therefore, the volume fraction and diameter of γ′ in the sample without pre-
strain were adopted, which means that the volume fraction, φ, was 40%, and the average
diameter, d2, was 162 nm. The parameter f was obtained according to the volume fraction,
expressed as f = φ1/3. The Taylor factor, M, was 3.06; this is commonly adopted in FCC
materials [30]. The values of ρ0

tp−pre, k1, and k2 were calibrated by experimental data; their
values are listed in Table 2. These three parameters were determined as follows. According
to Equation (11), ρ0

tp−pre was determined using the steady-state strain rates of the sample
without pre-strain. Then, the values of k1 and k2 were calibrated according to Equation (13)
using the steady-state strain rates of the pre-strained samples. Finally, Equation (14) was
adopted to calculate the creep rates using the parameters shown in Tables 1 and 2.

Table 1. Parameters of the material constants.

btp

(Å)
Γpt

(J/m2)
Γtt

(J/m2)
Γtm

(J/m2)
Dord at 973 K

(m2/s) x

1.44 [38] 0.7 [25] 0.02 [25] 0.03 [39] 3.24 × 10−20 2 btp [25]

Table 2. Fitted parameters.

ρ0
tp−pre (m−2) k1 (m−1) k2

8.27 × 1011 1.7490 × 108 41.83

As shown in Figure 7, the predicted steady-state creep rates increased with the increase
in pre-strains and finally reached saturation value, which was related to the evolution
of dislocation densities because the creep rate was proportional to dislocation density.
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According to Equation (14), the saturation dislocation density can be obtained as
(

k1
k2

)2
;

it was equal to 1.75 × 1013 m−2. Pre-strains of 6% had no obvious influence on the
morphology and distribution of γ′ precipitates and pre-strains mainly affected the density
of a/6<112> dislocations; therefore, an exponential function of dislocation density was
adopted to identify the pre-strain effect.

Materials 2023, 16, x FOR PEER REVIEW 10 of 13 
 

 

adopted in FCC materials [30]. The values of 0
tp preρ − , k1, and k2 were calibrated by experi-

mental data; their values are listed in Table 2. These three parameters were determined as 
follows. According to Equation (11), 0

tp preρ −  was determined using the steady-state strain 
rates of the sample without pre-strain. Then, the values of k1 and k2 were calibrated ac-
cording to Equation (13) using the steady-state strain rates of the pre-strained samples. 
Finally, Equation (14) was adopted to calculate the creep rates using the parameters 
shown in Tables 1 and 2.  

Table 1. Parameters of the material constants. 

btp 

(Å) 
Γpt 

(J/m2) 
Γtt 

(J/m2) 
Γtm 

(J/m2) 
Dord at 973 K 

(m2/s) x  

1.44 [38] 0.7 [25] 0.02 [25] 0.03 [39] 3.24 × 10−20 2 btp [25] 

Table 2. Fitted parameters. 

0
tp preρ −  (m−2) k1 (m−1) k2 
8.27 × 1011 1.7490 × 108 41.83 

As shown in Figure 7, the predicted steady-state creep rates increased with the in-
crease in pre-strains and finally reached saturation value, which was related to the evolu-
tion of dislocation densities because the creep rate was proportional to dislocation density. 

According to Equation (14), the saturation dislocation density can be obtained as 
2

1

2

k
k

 
 
 

; 

it was equal to 1.75 × 1013 m−2. Pre-strains of 6% had no obvious influence on the morphol-
ogy and distribution of γ′ precipitates and pre-strains mainly affected the density of 
a/6<112> dislocations; therefore, an exponential function of dislocation density was 
adopted to identify the pre-strain effect. 

0 2 4 6 8 10
0.0

0.4

0.8

1.2

1.6

2.0

2.4

Volume fraction: φ=40%
Diameter: d2=162 nm

St
ra

in
 ra

te
 (1

0−8
 s

−1
)

Pre-strain (%)

 Strain rate

0 2 4 6 8 10
0.0

0.4

0.8

1.2

1.6

2.0

Volume fraction: φ=40%
Diameter: d2=162 nm

D
is

lo
ca

tio
n 

de
ns

ity
 (1

013
 m

−2
)

Pre-strain (%)

 Dislocation density

(a) (b) 

Figure 7. Predicted (a) steady-state creep rates and (b) dislocation density under different pre-
strains. 

The comparisons between numerical calculated creep rates and experimental data 
are shown in Figure 8. The steady-state creep rates increased with the increase in pre-
strain, and predicted data showed good agreement with experiment data, which indicated 
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Figure 7. Predicted (a) steady-state creep rates and (b) dislocation density under different pre-strains.

The comparisons between numerical calculated creep rates and experimental data are
shown in Figure 8. The steady-state creep rates increased with the increase in pre-strain,
and predicted data showed good agreement with experiment data, which indicated that
the creep model proposed in this study could capture the pre-strain effect, considering the
micro-twinning mechanism. The difference between the predicted results and the experi-
mental data may result from the variations in microstructure, such as the volume fraction
and the average diameter of γ′ precipitates. The pre-strain effects were included into the
creep models by extrapolating the damage variable, internal stress, or strain rates from
the literature [7,17–19]. Although creep resistance or creep enhancement effects induced
by pre-strain could be captured in these models, they did not explicitly consider the creep
mechanisms. In this study, the increase in dislocation density induced by pre-strain was
reflected, and the steady-state creep rates were obtained by explicitly considering the slip-
induced micro-twinning mechanism. The proposed model showed good applicability in
micro-twinning-induced creep deformation, and provided an effective means for predicting
the steady-state creep rates of materials with pre-strain.
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5. Conclusions

Pre-tension experiments with various plastic strains at room temperature and subse-
quent creep tests at 700 ◦C/690 MPa were conducted for FGH96 alloys, and the microstruc-
tures after room-temperature pre-stain and high-temperature creep were analysed. Based
on the micro-twinning mechanism, a steady-state creep rate model was established; the
density of mobile dislocations evolved with pre-strain. The calculated steady-state creep
rates were compared with the experimental data, and good agreement could be obtained.
The main conclusions can be drawn as follows:

(1) The steady-state creep rate and 70 h creep strain continuously increased with the
increase in pre-strains. Compared with an unstrained specimen, the creep strain
of pre-strained specimens accumulated rapidly in the first few hours, followed by
a higher steady-state creep rate. For specimens with more than 1% pre-strain, the
steady-state creep rate was more than 10 times greater than that of the unstrained
specimen.

(2) Room-temperature pre-tension within 6.04% plastic strain had no obvious influence
on the morphology and distribution of γ′ precipitates, whereas the dislocation density
continuously increased with the increase in pre-strains. The increases in mobile
dislocation density after pre-strain were the main reasons for the increase in creep
rates of FGH96 alloys.

(3) The predicted steady-state creep rates showed good agreement with the experimental
data; the creep model proposed in this study could capture the pre-strain effect while
considering the micro-twinning mechanism.
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