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Abstract: Alumina is one of the most popular ceramic materials widely used in both tooling and
construction applications due to its low production cost, and high properties. However, the final
properties of the product depend not only on the purity of the powder, but also, e.g., on its particle
size, specific surface area, and the production technology used. These parameters are particularly
important in the case of choosing additive techniques for the production of details. Therefore,
the article presents the results of comparing five grades of Al2O3 ceramic powder. Their specific
surface area (via Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods), particle
size distribution, and phase composition by X-ray diffraction (XRD) were determined. Moreover,
the surface morphology was characterized by the scanning electron microscopy (SEM) technique.
The discrepancy between generally available data and the results obtained from measurements
has been indicated. Moreover, the method of spark plasma sintering (SPS), equipped with the
registration system of the position of the pressing punch during the process, was used to determine
the sinterability curves of each of the tested grades of Al2O3 powder. Based on the obtained results, a
significant influence of the specific surface area, particle size, and the width of their distribution at
the beginning of the Al2O3 powder sintering process was confirmed. Furthermore, the possibility of
using the analyzed variants of powders for binder jetting technology was assessed. The dependence
of the particle size of the powder used on the quality of the printed parts was demonstrated. The
procedure presented in this paper, which involves analyzing the properties of alumina varieties, was
used to optimize the Al2O3 powder material for binder jetting printing. The selection of the best
powder in terms of technological properties and good sinterability makes it possible to reduce the
number of 3D printing processes, which makes it more economical and less time-consuming.

Keywords: Al2O3; particle size; sinterability; specific surface area; SPS; 3D printing

1. Introduction

Alumina (Al2O3) is one of the most important engineering materials from the group
of oxide ceramics widely used in industry [1]. Depending on the intended application,
it is used both in its pure form and in combination with other materials [2]. The α-
Al2O3 from the crystallographic point of view consists of oxygen ions that form a close-
packed, almost hexagonal structure with aluminum ions filling the octahedral gaps [3,4].
Aluminum oxide attracts the attention of researchers due to its unique properties and high
functional parameters, e.g., high hardness and exceptional wear resistance. In addition,
it has remarkable mechanical properties at elevated temperatures and good chemical
and thermal stability [5,6]. It is an important material not only because of its excellent
properties but also because of its biocompatibility. Therefore, alumina ceramics have been
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widely used in the aviation, aerospace, automotive, medicine, and military industries [3,7].
Al2O3 can be used as a tool and as a construction material, which is characterized by a
high melting point, compressive strength, corrosion resistance, and a high modulus of
elasticity [8,9]. Alumina is also sometimes used by researchers as a material reinforcing the
properties of metal matrices, such as aluminum [10,11], copper [12,13], magnesium [14],
or titanium [15]. However, a certain limitation in the applicability of this material is its
brittleness [10]. It is well known that it is possible to sinter technical ceramics in the form of
alumina. Different techniques are used for Al2O3 production which allows for the control
of the desired properties of the final product through the changes in grain size, density,
or porosity [1]. The most commonly used methods for consolidating Al2O3 powders
are cold pressing with conventional sintering and hot pressing. However, Orlova [16]
showed that traditional methods were characterized by the limited efficiency of ceramics
compaction. For this reason, the idea of looking for alternative ways of ceramics production
that will allow for the formation of a homogeneous structure of high density becomes
very important. Particular attention should be paid to high-speed sintering methods by
passing high-power current pulses, for example, spark plasma sintering (SPS) [16]. The
SPS technique is widely used due to the rapid densification not only in the production
of ceramics but also for such materials as metals or composites [17,18]. Spark plasma
sintering combines a uniaxial mechanical load and constant or pulsed electrical current
to consolidate powder materials [19,20]. The SPS technique is based on the rapid heating
rates and short residence times of the powders in an inert ambient or in a vacuum by
applying a pulsed direct current to the sintered powder and the mold. The sintering
temperature is monitored by a thermocouple placed on the outer surface of the mold and
via a pyrometer [3,16]. The main advantages of the SPS method compared to conventional
sintering are the reduced sintering time and the ability to control the parameters of the
sintering process and the material microstructure [21,22]. The use of short residence times
and high heating rates prevent the excessive growth of crystallites. Therefore, due to the
possibility of compaction with limited grain growth, SPS has the potential to obtain dense
and fine microstructures with better mechanical properties [1,3,23,24]. Wang et al. [25]
showed that SPS is an effective method for producing fine-grained, high-density Al2O3
ceramics from a powder with a smaller particle size. This is facilitated by the use of
a high heating rate. However, this does not apply to large powder particles of about
20 µm. In this case, its driving force for densification is too low. For example, researchers
such as Rivero-Antúnez et al. [26] have used the SPS technique to obtain alumina matrix
composites reinforced with graphene oxide, which has significant potential to improve the
strength, electrical conductivity, or thermal stability of the product [27,28]. Most scientific
publications describe the optimization and testing of various sintering processes for powder
materials, but, generally, they were carried out for expensive materials. The best results in
terms of sintering efficiency were noticeable for Taimei’s TM-DAR powder. However, its
mass use for commercial applications is associated with high costs, which is unfavorable for
economic reasons. Therefore, cheaper alternatives are still sought [29]. Another important
issue is the geometry of the manufactured products. Ceramics with complex shapes are
difficult to produce by conventional methods due to the necessity to use molds, which
increases the time and cost of production [30–32]. Additionally, the machining of ceramic
elements is problematic due to their high brittleness and hardness. Defects such as cracks
can not only arise in ceramic parts. Cutting tools are also subject to severe wear [31]. These
problems can be eliminated by using additive manufacturing (AM) technology to fabricate
ceramic parts. AM is defined as the process of joining materials using the layer-by-layer
method according to the data from the three-dimensional (3D) model [33]. The 3D printing
of ceramics was first described by Marcus and Sachs in the 1990s [31]. Currently, ceramic
materials are processed by multiple additive manufacturing techniques. For ceramics
production, researchers use methods such as stereolithography (SLA) [34], fused deposition
modeling (FDM) [35], direct ink writing (DIW) [36], selective laser sintering (SLS) [37], and
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binder jetting (BJ) [38,39]. Compared to other techniques, binder jetting is considered a
suitable method to produce ceramic parts due to its ability to build complex geometries [25].

Binder jetting is the process of creating three-dimensional objects using powdered
materials, which are based on inkjet technology. The process consists in spreading the
powder layer by layer and selectively depositing binder droplets to create an object. The
next step is burning off the binder, and then subjecting the green parts to a sintering or
infiltration process in order to obtain the desired mechanical properties. The BJ method
provides ease of scale-up and is characterized by a high building rate and compatibility
with a wide range of materials compared to other AM technologies [40,41].

In the case of ceramic powders used for the binder jetting process, their mechanical
properties, such as bulk density and flowability, are particularly important. These properties
will be influenced by the geometrical properties of the powder, such as particle shape and
size distribution. Currently, researchers for printing use ceramic powders of irregular and
spherical shapes. The flowability of ceramic powders affects their printability. Even the
distribution of the powder layer will result in a complete structure. In the case of the lower
flowability of the powder, it will be less evenly distributed, which may lead to reduced
properties. The shape of ceramic powders determines their flowability, packing density,
and pore structure. Spherical particles are characterized by a higher bulk density and
better flowability compared to irregular particles [40]. Oropeza et al. [42] showed that the
use of irregularly shaped powders in AM resulted in lower powder bed densities than
for spherical powders. This is due to both poorer particle packing as well as increased
intermolecular friction. Typically, such powder beds not only have a low packing density
but also show cracks and defects. As a result, for angularly shaped and weakly flowable
powders, the bed roughness is usually higher [41,43]. This is confirmed by the results
obtained by Chen et al. [43]. The shape of the ceramic particles has a significant influence
on sinterability [44]. Powders with large particle sizes, compared to finer powders, show
better flowability, but worse sinterability. The finer particle size (especially <20 µm), due
to their high surface area and higher energy state, leads to higher densities and a faster
sintering process [40,41,43]. In contrast, studies by Suwanprateeb et al. [29] showed that
the printed parts from the irregular powders had higher density, bending strength, and
modulus than those obtained from spherical powders [40].

The experience of the research team shows that often the properties of powders, e.g.,
particle size, specific surface area, or even composition, in the delivery state significantly
differ from the properties depending on the production batch or supplier in relation to their
parameters described in the material data sheets. Therefore, the article presents the results
of a comparison of five grades of Al2O3 ceramic powder, taking into account sinterability
and final product properties, in order to assess the possibility of their subsequent use in
classic or additive manufacturing technology. Additionally, 3D printing tests of one of the
tested powders were carried out, which was characterized by the most optimal parameters
for subsequent use in the serial production of ceramic elements.

The research conducted in this work was aimed at improving the procedure for
selecting a material for 3D printing using powder bed fusion technology. The detailed
characterization of both chemical, physical, and technological properties of powders is
important in terms of their potential applications. The correct selection of powder for
incremental manufacturing technology is important from an economic point of view. The
3D printing process itself is energy-intensive and time-consuming. Therefore, choosing the
optimal powder material for additive manufacturing not only saves costs and 3D printing
time but also increases the chance of obtaining high-quality parts.

2. Materials and Methods

Five types of Al2O3 powders supplied by the manufacturer ALMATIS GmbH
(Ludwigshafen, Germany) and marked as A16SG, CT3000SG, CT1200SG, CT530SG, and
CL370 were used in the research. The chemical composition of the powders is shown in
Table 1. Alumina powders have a high purity of more than 99.5%. They contain impurities
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such as Na2O, MgO, SiO2, CaO, and Fe2O3, in amounts not exceeding 0.1% each. The impu-
rity with the highest proportion is Na2O, which is the result of a powder manufacturing tech-
nique in which NaOH is added to Al2O3. The presence of sodium in alumina can adversely
affect the density and microstructure of the material. MgO, on the other hand, is often
introduced either as an inhibitor of abnormal grain growth or as a sintering additive. The
addition of Mg2+ and Fe3+ promotes a denser structure. Both Na+ and Mg2+ significantly
increase viscosity. In general, impurities affect slip viscosity [45]. Keeping the viscosity of
ceramic powders as low as possible is important for obtaining printed parts of high quality
and accuracy [46].

Table 1. Chemical composition of Al2O3 powders.

Powder Grade
A16SG CT3000SG CT1200SG CT530SG CL370

Chemical
composition [%]

Na2O 0.07 0.08 0.06 0.09 0.10
MgO 0.05 0.07 0.07 0.04 -
SiO2 0.03 0.03 0.05 0.03 0.03
CaO 0.02 0.02 0.04 0.03 0.03

Fe2O3 0.02 0.02 0.02 0.02 0.03
Al2O3 balance balance balance balance balance

Diffraction tests were carried out on a PANalytical Empyrean X-ray diffractometer
(Malvern, UK) with a copper anode lamp (λCu Kα1 = 1.5419 Ǻ), a nickel filter, and a
PIXcel3D counter. Measurements were carried out in the angular range of 10–110◦ with
a measuring step of 0.013◦ and an exposure time of 0.5 s/step. The phase analysis of the
powders was carried out on the basis of measurements made in the Bragg–Brentano geom-
etry, using the PANalytical High Score Plus software (version: 4.8, Malvern Panalytical B.V.,
Almelo, The Netherlands) integrated with the ICDD PDF4 + 2020 crystallographic database.

The analysis of particle size distribution was carried out using the laser diffraction
method on the BECKMAN COULTER LS ™ 13 320 MW device (Brea, CA, USA) at ITS
Science Sp. z o.o. sp. k. In order to obtain optimal dispersion, the Al2O3 powder was
investigated in wet mode using 20 mL of 2% sodium polyphosphate solution. The mea-
surement time of the sample was 90 s including polarized intensity differential scattering
(PIDS) technology, and the obscuration was set at 4%. Each grade of powder was tested in
three repetitions.

The specific surface area was determined as a function of relative pressure with the BET
(Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda) methods, using a physical
sorption analyzer, Quantachrome Autosorb iQ-MP (Anton Paar Company, Graz, Austria).
The sample degassing process was carried out at three temperatures: 80 ◦C for 30 min,
120 ◦C for 30 min, and 350 ◦C for 300 min. Measuring cells with an outer diameter of ø 6 mm
(wall thickness 1 mm) were used, without a filler rod. Volume measurements of nitrogen
adsorption and desorption were carried out at relative pressures (p/p0) in the range from
1·10−6 ÷ 0.995 for 67 measuring points. The pore volume and the average pore size were
determined by nitrogen adsorption/desorption using the BJH (Barrett–Joyner–Halenda)
technique [47]. The results were analyzed using the ASiQwin software (version 5.21).

Particle morphology observations were performed using the JSM 6460LV scanning
electron microscope (SEM) from Jeol (Tokyo, Japan). The samples were placed on conduc-
tive carbon adhesive tape and covered with gold.

The sinterability of the powders was analyzed with the spark plasma sintering (SPS)
system, type FCT HP D5 produced by FCT Systeme GmbH (Frankenblick, Germany).
The powders were sintered in graphite matrices at a temperature of 1500 ◦C for 10 min
under an argon atmosphere. During sintering, a pressure of 35 MPa was used between the
punches. The heating and cooling rate was 100 ◦C/min. During each process, the value
of the pressing punch shift was recorded, and, on this basis, the sinterability curves of the
materials were then determined.
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The samples after sintering using the SPS method were subjected to the apparent
density test in accordance with [48]. Young’s modulus of materials was determined us-
ing the ultrasonic method on the basis of the measured values of the velocity of prop-
agation of the longitudinal and shear waves and the density of materials according
to dependence:

E = ρC2
T

3C2
L − 4C2

T
C2

L − C2
T

Symbol explanation:
E—Young’s modulus,
ρ—density,
CL—velocity of longitudinal wave propagation,
CT—velocity of shear wave propagation.
The analysis was carried out with the use of the Panametrix EPOCH-3 ultrasonic

flaw detector (Waltham, MA, USA), and the calculations were performed with the
Modulus 1.0 software.

A laboratory shaker Ø300 mm LPzE-3e (MULTISERW-Morek, Brzeźnica, Poland) with
meshes of 1000, 600, 500, 250, and 100 µm was used to sieve the agglomerated powders.
Then, 3D printing tests using the Innovent+® (ExOne, North Huntingdon Township,
PA, USA) 3D printer, were carried out on individual fractions powders, which showed the
ability of printing without prior preparation. The binding material was Aqueous Binder
(BA005) from ExOne, containing ethynediol and 2-butoxyethanol in amounts ranging
from 2–20%. The following printing parameters were used: saturation 85%, recoat speed
150 mm/s, roller speed 300 rpm, and layer thicknesses were twice the mesh size of the
sieve. Cube-shaped samples with a side of 10 mm were produced. The powdered material
was spread on the working area layer by layer and selectively bonded using a binder. Each
layer was heated to about 50 ◦C to bind the powder. After the printing process, the samples
were annealed in a laboratory dryer (BINDER FD 56, Germany) at 210 ◦C for 4 h to cure
the binder. The final process is sintering in a high-temperature oven to obtain maximum
strength properties.

All measurements were performed with at least three repetitions. The repeatability of
the result of measurement was below 5%.

3. Results and Discussion

Figure 1 shows X-ray diffraction (XRD) patterns of five investigated grades of
ceramic powders.
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Regardless of the grades of Al2O3 powder, the recorded XRD patterns showed the
highest peaks at 2θ of 26◦, 35◦, 38◦, 43◦, 57◦, 61◦, 66◦, 68◦, 77◦, and 95◦, which are indexed
as α-Al2O3. The formula confirms that the detected reflections concerned the Miller
indices (012), (104), (110), (113), (116), (018), (214), (300), (119), and (226), respectively
(Card No. 04-015-8995 from the ICDD database). Chen et al. [49] and Álvarez et al. [36]
in their works adjusted the α-Al2O3 phase to the diffraction effects appearing at similar
angular positions.

The measurement results of the particle size distribution by the laser diffraction
method, as well as specific surface area, pore volume, and average pore diameter deter-
mined on the basis of physical sorption measurements, depending on the Al2O3 powder
grade were presented in Table 2.

Table 2. Particle size distribution, specific surface area, and porosity of investigated Al2O3

powder grades.

Powder Grade
A16SG CT3000SG CT1200SG CT530SG CL370

The particles size
distribution

D(3,2) [µm] 0.634 0.459 1.550 0.707 1.086
D(4,3) [µm] 5.840 1.865 2.049 3.351 4.518
D10 [µm] 0.236 0.216 0.945 0.241 0.490
D50 [µm] 1.340 0.560 1.652 2.023 3.448
D90 [µm] 19.640 4.816 3.435 7.515 9.552

Moda [µm] 0.326 0.326 1.451 2.787 4.444
Span (D90–D10)/D50 14.481 8.214 1.507 3.596 2.628

Specific surface area [m2/g]—BET 9.298 8.477 3.403 4.619 2.913
Specific surface area [m2/g]—BJH 9.233 8.698 3.573 4.983 3.057

Pore volume [cm3/g] 0.019 0.017 0.006 0.008 0.005
Pore average diameter [nm] 8.338 8.180 7.435 7.258 7.217

It is well known that laser diffraction results are usually reported on a volume basis,
so the volume mean D(4,3) can be used to define the central point of the particle distribution.
However, the median value (D50) defined as the value where half of the population is
located above, and half below this point is more frequently used using this technique. When
the result in the software will be converted to a surface area distribution, the mean value
displayed is the surface mean, D(3,2). The mode is the peak of the frequency distribution,
the highest peak on the distribution curve. Moreover, for symmetric distributions, all
central values, mean, median, and mode, will be equivalent. The symbol D90 means that
90 percent of the distribution lies below this value, and similarly, D10 means that 10 percent
of the population lies below this value. On the basis of the obtained results, it was found that
the CT3000SG grade had the smallest D50 particle size—0.560 µm. An almost three times
larger powder particle size was measured for A16SG and CT1200SG, D50 was 1.340 µm
and 1.652 µm, respectively. The biggest D50 particle size had CL370—3.448 µm. The studies
also showed that 90% of the size of CT3000SG and CT1200SG particles do not exceed 5 µm,
while the CT530SG and CL370 grades are not larger than 10 µm. The A16SG powder was
characterized by the largest particles D90—19.640 µm. Moreover, the CT1200SG powder—
span 1.507 showed the narrowest distribution width, and it increased successively for the
CL370, CT530SG, and CT3000SG powders. Furthermore, the width of the distribution of
the A16SG powder was almost ten times that of the CT1200SG and almost twice that of
the CT3000SG.

It is well known that the driving force of the sintering process is the surface energy of
the powder, which is closely related to the powder particle size. Generally, the finer particles
have a higher sinterability compared to the coarser particles. Thus, by using a coarser
powder, it is possible to reduce sintering shrinkage. However, the use of powders with
mean particle sizes above 50 µm can cause recoating problems in additive manufacturing
techniques [50,51]. Moghadasi et al. [52] confirmed in their work that larger particles
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improve the powder flowability, which causes a slight increase in the density of the samples.
At the same time, larger powders reduce their sinterability, which ultimately leads to a
decrease in density. On the other hand, the use of finer powder particles increases the
mechanical strength of the printed and sintered samples. Moreover, it was found that the
A16SG and CT3000SG powders had the highest specific surface area, regardless of the
method used for their determination, amounting to 9.298 m2/g and 8.477 m2/g, respectively.
On the other hand, CL370 and CT1200SG powders had almost three times the lower specific
surface area. Smith et al. [50] for alumina powders measured a slightly higher specific
surface area value of 12.05 m2/g. While the green sample compressed from the powder
gave a value between 8.8 m2/g to 12.0 m2/g. The difference between these values is
attributed to the particle-particle interfaces. It is expressed as the ratio of the particle-
particle contact area to the total particle area [50]. In the work of Bechteler et al. [51], the
CT3000SG and CT1200SG powders appeared. The information on the BET specific surface
area for these materials was consistent with the results obtained for the analyzed five
grades of Al2O3 powders. Moreover, powders with a high specific surface area, A16SG,
and CT3000SG, were characterized by the largest pore volume share, almost three times
higher than the other tested Al2O3 powder grades. However, this relationship did not
have a significant impact on the mean pore diameter, which, regardless of the grade of the
analyzed powder, ranged from 7.2 nm to 8.3 nm.

Figure 2 shows representative examples of the particle morphology of the investigated
five grades of Al2O3 powders.
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The SEM observation confirmed that the variability of particle size of Al2O3 powders
depends on the grade. Moreover, it has been disclosed that the powders, as supplied, tend
to form agglomerates.

It is well known that the powder morphology determines the flowability and packing
density of the powder. Irregularly shaped powders are beneficial for powder pressing,
which also has an impact on the kinetics of powder densification during sintering [41,52].
Kim et al. [53] reported that the sintered parts, which consisted of spherical particles,
were characterized by a microstructure independent of the observed direction. In contrast,
the sintered parts made of the flake-shaped powders had a different microstructure in
the pressing direction and another in the direction perpendicular to the pressing direc-
tion. Moreover, in the case of fine powder particles, adhesive forces play an important
role. Depending on the synthesis temperature, the particles in the soft agglomerates
sinter and form harder aggregates. Agglomerates are weakly bound particles that stick
together under the van der Waals forces. A certain amount of aggregation can be useful
to increase the flowability of the fine powder. However, if the agglomerates do not dis-
integrate during densification, their size can determine the sintering kinetics and cause
microstructural heterogeneity [54].

The registration of the position of the pressing punch during the SPS process allowed
for the determination of sinterability curves for each of the investigated grades of Al2O3
powder (Figure 3). Generally, all grades of the analyzed powders showed good sinterability
at 1500 ◦C. On the basis of the obtained results, it was found that the highest sintering
shrinkage was recorded for the CT3000SG and A16SG powders, respectively. On the other
hand, CL370 and CT530SG powders showed more than 50% less shrinkage.
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A detailed analysis of the displacement curves as a function of heating allowed to
determine the initial stage of the sintering process for all investigated grades of Al2O3
powders (Figure 4).
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The CT3000SG and A16SG grades from all of the investigated powders were charac-
terized by the lowest sintering temperature, respectively, 980 ◦C and 1050 ◦C. On the other
hand, the remaining analyzed grades of Al2O3 powder showed higher and very similar
sintering start temperature values, amounting to 1100–1120 ◦C.

It is generally known that the sintering process takes place by atomic diffusion via
grain boundaries, surfaces, and lattice. Surface diffusion is considered a non-densifying
mechanism. However, it may contribute to densification in the initial stage of sintering.
In the intermediate and final stages of the sintering process, densification takes place by
diffusion at the grain boundary and lattice diffusion. The diffusion at the grain boundary
predominates at relatively low temperatures. Therefore, such a mechanism will likely take
place during the sintering of Al2O3 below 1500 ◦C, taking into account its high melting
point (Tm = 2072 ◦C) and the slow lattice diffusivity of Al and O [55,56]. The sintering
temperature determined on the basis of the performed tests is consistent with the results
obtained by other researchers. For example, Yang et al. [56] investigated sintering with a
constant heating rate and two-step sintering of ultrafine α—Al2O3 nanopowders at different
heating rates. The researchers obtained a high sintering rate, high sintering activity, and a
low sintering temperature of around 1000 ◦C.

The results of the apparent density and Young’s modulus of sintered Al2O3 by the SPS
method for each of the investigated powder grades were presented in Table 3.

Table 3. Density and Young’s modulus of sintered Al2O3 depending on the grade of powder used.

Powder Grade
A16SG CT3000SG CT1200SG CT530SG CL370

Density [g/cm3] 3.95 3.96 3.96 3.96 3.95
Young modulus [GPa] 380 385 389 390 386

On the basis of the obtained results, it was found that, regardless of the grade of
Al2O3 powder, the sinters were characterized by a density similar to the theoretical one,
amounting to 99.1–99.3%. Moreover, the measured value of Young’s modulus did not show
significant differences between the variants of the analyzed sinters and was consistent with
the guidelines specified in [57].
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In order to assess the influence of the powder particle size and specific surface area
on the beginning of the sintering temperature, depending on the type of the used Al2O3
powder grade, the values determined during the tests were presented in Figure 5.
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On the basis of the obtained results, it was confirmed that alumina powder grade
characterized by smaller particle sizes with a simultaneous greater specific surface area
tends to initiate sintering processes at a lower temperature. On the other hand, the width of
the particle size distribution affects the kinetics of the sintering process. Stolyarov et al. [9]
showed that the wider the particle size distribution, the more intensively the compaction
of the material in the initial sintering phase occurs, but at the end of the process, it slows
down significantly.

It is well known that the process of printing in binder jetting technology is carried
out in a layer-by-layer manner in the working area. The first step to start the printing
process is to evenly apply a thin layer of powder from the ultrasonic hopper. The powder
passes through a sieve of a certain size and falls on the working field of the printer. Then
it is evenly distributed with a roller. However, due to the tendency of powders to absorb
moisture from the environment and thus their agglomeration, and their different shape and
size, not all powders meet the criterion for even layer formation and thus their use in this
technology. Therefore, the first printing attempts from powders as supplied, regardless of
the grade of the tested powder, failed. Despite the use of maximum ultrasonic parameters
as well as the use of a sieve with the largest mesh, it was not possible to cover the working
area with an even layer of powder. Therefore, for further tests, the powders were first
sieved into different size fractions (Table 4) and then annealed.

Table 4. Al2O3 fractions after sieving depending on the grade of powder.

Powder Grade
A16SG CT3000SG CT1200SG CT530SG CL370

Percentage
depending on the
screen size used

>1000 [µm] 0.92 0.75 0.65 1.35 1.85
1000–600 [µm] 13.20 10.20 12.55 10.02 11.10
600–500 [µm] 5.30 14.55 18.95 6.45 6.60
500–250 [µm] 53.45 41.35 37.80 50.35 52.15
250–100 [µm] 22.50 28.95 22.75 25.00 23.50

<100 [µm] 4.63 4.20 7.30 6.55 4.80
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The results presented in Table 4 show that for each of the agglomerated alumina
powder grades, the largest fraction was 250–500 µm, followed by 100–250 µm. For A16SG,
CT3000SG, CT530SG, and CL 370 powders, more than 70% of the particles were smaller than
500 µm. Using the particle fraction in the range of 250–500 µm, for each of the tested grades
of aluminum powder, the attempts to evenly distribute its layer on the print bed area were
repeated. It was only possible for powder CT3000SG. Therefore, only this powder grade
was selected for further research. However, it was observed that the printing parameters
had to be modified depending on the delivery batches of the powder. A comparison of
particle size (D50, D90) and specific surface area from three different production batches
with the catalog data sheet showed significant divergence (Figure 6). It was found that
between deliveries, the particle size was twice or even four times larger than it should be,
and the specific surface area was almost twice as small as expected.
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As shown in Table 4, the most significant volume fractions of the powder were obtained
from the range 500–250 µm and 250–100 µm. In order to analyze the influence of the applied
particle agglomerate size on the quality of the printout, the printing process from both
fractions was carried out. The view of the printed samples was presented in Figure 7.

It has been observed that the size of the particles used has a significant impact on the
print quality. Samples made of larger particles were characterized by an inhomogeneous
and rougher surface compared to prints made of a finer powder fraction. Moreover, it
was found that the increase in the dimensional precision of the printout and the quality
of the geometry of the shape of the samples compared to the designed computer model
was obtained after using smaller particles of Al2O3 powder. Furthermore, with the increase
in the size of the Al2O3 powder particles used, not only the roughness of the sample, but
also its porosity should increase. Therefore, if the key feature will be the need to control the
porosity of the product, and the edges of the sample will not play a crucial aspect or can be
modified in post-processing operations, this method should allow control of this parameter.
This can be particularly useful for some applications, such as in the chemical industry
or medicine.
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Figure 7. Samples printed from CT3000SG powder agglomerates by binder jetting technology from
the fraction range (a) 500–250 µm, (b) 250–100 µm, (c) view of a representative sample made of
powder with a larger fraction on the left side, and a smaller fraction on the right side.

4. Conclusions

The presented results clearly indicate that both the particle size and the specific surface
area had a significant impact on the sintering process of the Al2O3 powder grades. The
lowest sintering temperature was characteristic for CT3000SG and A16SG powders, while
the highest was for CT1200SG powder. Generally, the greater the surface development
and the smaller particle size of the Al2O3 powder and the wider their distribution, the
lower the temperature of the initial stage of the sintering process. These results could be
crucial for the correct design of the classical sintering process for Al2O3 powders materials
produced by die-forming as well as by additive processes. Differences between the catalog
data sheet and the results of the measurements were also determined. Due to the specificity
of the printing process, it was shown that not all of the analyzed Al2O3 grades of powder
were suitable for use in this technology. Moreover, it was necessary to properly prepare
the powder, by sieving and annealing, before the printing process. On the basis of the
obtained results, it was found that by selecting the appropriate powder fraction, it was
possible to control the quality of the printout, defined as the accuracy of shape geometry,
surface roughness, and porosity. Controlling these characteristics can be crucial for various
industrial applications. In the future, it is planned to focus research on the analysis of
parameters and the method of sintering printed samples, depending on the powder fraction
used. This should allow for controlling the final properties of Al2O3 products produced by
the additive binder jetting method.

Summarizing the results obtained for the Al2O3 powders analyzed, the best experi-
mental results were obtained for the CT3000SG grade. Among all powders, CT3000SG had
the smallest particle size of D50—0.560 µm, and consequently this powder has a relatively
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high specific surface area of 8.477 m2/g. In addition, the CT3000SG grade had the lowest
initial sintering temperature. This powder was the only one among the five variants that
distributed well on the printer’s working area through its small particle size. This indicates
that it could become a potential material for additive manufacturing of ceramic parts using
Binder Jetting technology.
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