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Abstract: Ceramic 3D printing is a promising technology that overcomes the limitations of traditional
ceramic molding. It offers advantages such as refined models, reduced mold manufacturing costs,
simplified processes, and automatic operation, which have attracted a growing number of researchers.
However, current research tends to focus more on the molding process and print molding quality
rather than exploring printing parameters in detail. In this study, we successfully prepared a large-
size ceramic blank using screw extrusion stacking printing technology. Subsequent glazing and
sintering processes were used to create complex ceramic handicrafts. Additionally, we used modeling
and simulation technology to explore the fluid model printed by the printing nozzle at different
flow rates. We adjusted two core parameters that affect the printing speed separately: three feed
rates were set to be 0.001 m/s, 0.005 m/s, and 0.010 m/s, and three screw speeds were set to be
0.5 r/s, 1.5 r/s, and 2.5 r/s. Through a comparative analysis, we were able to simulate the printing
exit speed, which ranged from 0.0751 m/s to 0.6828 m/s. It is evident that these two parameters
have a significant impact on the printing exit speed. Our findings show that the extrusion velocity of
clay is approximately 700 times faster than the inlet velocity at an inlet velocity of 0.001–0.010 m/s.
Furthermore, the screw speed is influenced by the inlet velocity. Overall, our study sheds light
on the importance of exploring printing parameters in ceramic 3D printing. By gaining a deeper
understanding of the printing process, we can optimize printing parameters and further improve the
quality of ceramic 3D printing.

Keywords: 3D printing; ceramics; material extrusion; fluid simulation

1. Introduction

Three-dimensional printing is an advanced material processing technology that has a
wide range of applications in the field of traditional ceramic materials. However, due to its
complicated preparation process, high consumption of consumables, long production cycle,
and high cost, it has been challenging to produce parametric structures with highly complex
geometric appearances and mechanical properties. This has hindered the development of
the formation and creation of ceramic materials [1]. Fortunately, in recent years, 3D printing
technology has become more mature and has demonstrated the dual characteristics of high
precision and high forming freedom. Its high printing precision overcomes the typical
geometric limitations of traditional ceramic manufacturing technology and allows ceramic
materials to be more closely combined with art and science [2].

For advancing the field of ceramic materials, 3D printing is a powerful tool. As the
technology continues to evolve, we can expect to see more breakthroughs in the creation
of complex ceramic structures, leading to new possibilities for artistic expression and
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innovative applications in various fields. Additive manufacturing technologies for produc-
ing three-dimensional ceramic parts include inkjet printing [3–5], selective laser sintering
(SLS) [6,7], stereolithography (SLA) [8,9], laminated object manufacturing (LOM) [10,11],
and direct writing extrusion-based technologies [4,12,13]. In the 3D printing process, the
3D ceramic molding process is transformed into a discrete accumulation process from point
to line, and from line to surface [14]. This involves slicing the three-dimensional model
into two-dimensional paths with specific shapes [15], and then stacking the ceramic mud
layer by layer along the paths to achieve three-dimensional molding [16]. The clay printing
unlike the materials used in conventional FDM printing technology [17], the unstable
nature of clay and the imprecise pressure from the air pump can lead to the insufficient
adhesion of printing materials and poor molding quality. This can result in a low printing
success rate. Therefore, the clay printing and molding process requires parameter testing
and numerical simulation of the printing equipment to ensure optimal performance. In
conclusion, 3D printing offers a unique approach for creating complex ceramic structures,
but it also presents some challenges that must be addressed. By continuously improving
and optimizing the printing process, we can unlock the full potential of 3D printing for
ceramic materials and expand its applications in various fields [18].

Revelo [19] utilized direct ink writing (DIW) technology to 3D print ceramics made
from kaolin clay. The printed samples underwent compression, thermal stability, and
density testing, as well as Weibull analysis, to assess their quality and performance. More-
over, the rheological behavior of the slurry during the printing process, along with the
process parameters, was studied to comprehend key manufacturing factors and optimize
production processes. Benedikt et al. [20] conducted a study on the influence of ceramic
clay formula parameters (alumina) on the characteristics of ceramic paste and green bodies.
They determined the optimal printing and sintering parameters based on their findings.
Abhinav et al. [21] used a ceramic clay printer to investigate the feasible parameter area
for ceramic 3D printing using extrusion. They studied the effects of extruder height, layer
thickness, printing speed, and air pressure on the surface quality of the printed samples.
Zhang Min’s group [22] conducted parameter simulation research on screw extrusion
and direct writing extrusion. They used velocity distribution, shear rate, and pressure
distribution simulations to conclude that direct writing 3D printing is suitable for printing
high-viscosity materials, while screw extrusion is beneficial for printing multiple materials.
He Mingteng et al. [23] simulated the extrusion molding process of clay using ANSYS CFX.
They identified the main and secondary factors that affect the stress state in the extrusion
blank, such as the length of the shaping section, inlet pressure, moisture content, and
extrusion cone angle. They also obtained the optimal combination of these influencing
factors. Salah-Eddine et al. [24] investigated the effects of printing conditions and annealing
on the Z-directional porosity and tensile behavior of a 3D-printed polyetherimide material.
Through their experiments, they demonstrated that printing speed is the most significant
factor affecting the tensile properties and density of Z-directional, 3D-printed parts. Anouar
El Magri [25] systematically studied nozzle temperature (T), printing speed (S), and layer
thickness (L), and optimized the output responses of Young’s modulus, tensile strength,
and crystallinity. As ceramic 3D printing technology continues to advance, we strive to
achieve finely crafted ceramic devices with desired structures and qualities through the
meticulous control of the ceramic forming process. However, accomplishing this goal
requires a quantitative characterization of the printing parameters and quality testing [26].
Currently, research on the printing materials and models for ceramic 3D printing has
matured, but there are still gaps in the study of these printing parameters. The print mold-
ing quality can be significantly impacted by various factors during the printing process,
such as the type of 3D printer, printing speed, printing path, extrusion flow rate, nozzle
shape, and size, among other factors [27]. Chen et al. [28] conducted experimental and
numerical studies to investigate the impact of layer spacing and nozzle distance on the
interlayer bonding strength of 3D-printed limestone and calcined clay-based materials.
Their findings suggest that prolonging the time interval between two layers leads to a
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reduction in bonding strength, while increasing the nozzle distance has only a limited
effect on it. Mehdi’s group [29] investigated the influence of three process parameters
(distance between nodes on the printing path, nozzle-to-substrate distance, and delay
time) on the interlayer bonding strength of clay-based materials produced via additive
manufacturing. Their study revealed that the periodic manipulation of the nozzle distance
functions similarly to compaction in traditional concrete pouring techniques, resulting in
a 41% increase in the average interlayer bonding strength under shear stress, ultimately
enhancing the quality of the printing. Compared with other printing materials, the flow
state of ceramic clay is more uncertain, and the control of the finished product quality is
still unstable. Therefore, systematic experimentation and simulation are needed to obtain
the optimal mechanical parameters with regard to forming quality, where the inlet speed
and mechanical screw speed of ceramic clay are the two core parameters. The inlet speed
pertains to the velocity at which materials enter the printing area through the extruder’s
feed port. If the inlet speed is too swift, it can result in defects on the printed object’s
surface or to nozzle blockage. Conversely, if the inlet speed is too sluggish, it may lead to an
extended printing time and higher expenses. Thus, controlling the inlet speed accurately is
crucial in producing high-quality printed objects. Additionally, the mechanical screw speed
configuration can impact the printing speed, the surface quality of the printed object, and
other factors. The mechanical screw plays a vital role in 3D printers by feeding materials
from the printer’s feeder to the nozzle. A mechanical screw speed that is too high may
cause uneven material extrusion or nozzle clogging. On the other hand, a mechanical screw
speed that is too slow can result in a slower printing speed and increased costs. Therefore,
it is essential to set the inlet speed and mechanical screw speed appropriately during 3D
printing and adjust them according to different materials and printer models to achieve
optimal printing outcomes.

Overall, research on the parameters for ceramic 3D printing is an active area of
investigation, as this research is critical to achieving high-quality printed products. By
understanding the effects of various parameters on the printing process, we can optimize
the process and develop new applications for ceramic 3D printing. The simulation of the
internal flow and pressure field state of the nozzle can help us to understand the behavior
of the clay material during the printing process, and the gradient control of the inlet velocity
and screw speed can optimize the printing parameters and improve the molding quality.
By analyzing the point velocity parameters of the printing outlet, the study can provide
insights into how the printing speed affects the adhesion and accuracy of the printed
layers. Overall, this study can contribute to the advancement of 3D printing technology
for ceramic materials and expand the possibilities of artistic and functional applications of
ceramic products.

2. Experimental Section
2.1. Experimental Principle

The 3D printing equipment used in this study combines extrusion direct writing
technology (DIW) [30] with FDM technology to create an air pump screw extrusion direct
writing technology specifically designed for clay. The enhanced pottery clay printing and
molding equipment, in combination with FDM technology [17], utilizes an air pump to
compress the clay into a pipeline for storage before extruding it through a mechanical
screw pressure bar. By designing the nozzle size to have varying diameters, the pottery
clay can be extruded while maintaining a certain level of adhesiveness and toughness.
The implementation process is depicted in Figure 1. The digital design printing program
converts the three-dimensional model slice into a two-dimensional path, and the printing
nozzle moves along this path to build the ceramic mud stack and create the desired ceramic
mud blank. The specific implementation steps are as follows: (1) The clay 3D printer
identifies the modeling slice file and creates a printing path program [15]. (2) Air pressure
from the air pump pushes the clay into the pipeline, where it is stored. (3) The screw rotates
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to drive the extrusion of the clay. (4) The pipe diameter gradually decreases, and the clay is
extruded in strips. (5) The program path is followed to stack and mold the clay.
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2.2. Experimental Process
2.2.1. Three-Dimensional Printing Experiments

The operation of the clay 3D printer can be divided into five steps: (1) The preparation
of the clay raw materials involves mixing clay with water in a specific ratio to achieve the
desired water content. (2) Establishing a printing model requires the use of SolidWorks
(Dassault Systemes SolidWorks Corporation, Waltham, MA, USA) or similar software to
design and control the size and details of the model [31]. The 3D model can be created from
scratch or imported from an existing design file. The slicing software Cura is used to set the
slicing and printing parameters [32]. In this study, the basic printing parameters included
a layer thickness of 0.6 mm, a printing speed of 30 mm/s, a nozzle temperature of 0 ◦C
(referring to the temperature of the applied heat source), and a nozzle diameter of 1.5 mm.
(3) The slice file is imported into the printer to carry out the steps of leveling, connecting,
mud discharging, speed regulation, and so on, until the mud discharging is stable. (4) A
quality inspection is performed to ensure that the ceramic mud is evenly discharged and
the finished product has clear lines and complete details. (5) Drying and glazing: once the
printing is complete, the printed object needs to be dried before it can be fired in a kiln. The
drying process can take several hours or even days, depending on the size and complexity
of the object. After the object is dried, it can be sanded, smoothed, or glazed to achieve
the desired finish. The finishing step is important for improving the aesthetic appeal and
durability of the printed object. Figure 2a,b demonstrate how the extrusion speed is greatly
affected by both the water content and air pump input pressure, resulting in noticeable
differences in the molding quality of the printed clay.

2.2.2. Sintering Process

The heating curve is shown in Figure 3. We developed a sintering method that
corresponds to the TG-DTG curve. The temperature ranged from 25 to 150 ◦C in the drying
stage, while it was 150–350 ◦C in the initial drainage and evaporation stage. Between 350
and 500 ◦C, we exclude large water molecules, with 400 ◦C being the point where the clay
was most susceptible to cracking. The temperature range of 500–800 ◦C was where we
removed the crystallization water molecules. At 800 ◦C, burning off water molecules in the
clay’s molecular structure causes the clay body to shrink due to water removal. Between
800 and 900 ◦C, organic matter oxidizes and combusts, and the same occurs between 900
and 1000 ◦C. At 1000–1080 ◦C, sintering begins, while at 1080–1150 ◦C, the glaze starts to
melt and crystals start to preliminarily react. Between 1150 and 1230 ◦C, we could see the
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reaction of glaze crystals and high-temperature synthesis. The sintered product was then
cooled in the furnace.
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2.2.3. Material Characterization

The X-ray diffraction (XRD) design of the samples was measured using a Cu radiation
diffractometer (40 kV and 15 mA) from 20◦ to 80◦ (2θ) at a scan rate of 2◦/min with
0.02◦ steps. The component ratios of the raw materials for pottery clay were as follows:
kaolin accounted for 41%; feldspar accounted for 35%; washed kaolin accounted for 10%;
potassium feldspar accounted for 8%; and quartz accounted for 6%. XRD analysis was
carried out on the mixed raw materials for pottery clay. Figure 4 shows that the main
components present were SiO2, Al2O3, Fe2O3, MnO2, BaO2, and CaCO3.

The samples were measured using a 449F5 thermal analyzer instrument (Netzsch, Sta,
Selb, Germany) for thermogravimetric analysis (TGA) in the temperature range from 25 to
1400 ◦C with a heating rate of 3 ◦C/min under an air atmosphere. The TG-DTG curve of
the clay is presented in Figure 5. Based on the analysis of the curve, it can be observed that
the clay exhibited an exothermic peak at approximately 400 ◦C, leading to a mass loss of
4.37% on the TG curve. As a result, insulation was required during the 400 ◦C stage. Once
the temperature reached 690.5 ◦C, the mass of the ceramic body remained relatively stable,
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indicating that the moisture in the clay had completely evaporated before this temperature
was reached. To prevent defects such as cracking and collapse during the sintering process
of the ceramic body, it is crucial to meticulously adjust the heating rate and insulation time
for each stage, ensuring that each stage lasts for around 1 h.
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2.2.4. Simulation Process

Firstly, we observed the nozzle structure entity, disassembled the parts and tested
the parameters, and used an electronic vernier caliper to measure the size and model.
Using SolidWorks modeling software, two parts, the nozzle and the rotating screw, were
established for coaxial assembly. The three-dimensional diagram and specific parameters
of the model are shown in Figure 6a–c. A flow simulation plug-in was used for fluid
simulation. We set the basic parameters of clay as follows: the density was 1285 kg/m3;
the consistency coefficient was 1.2 Pa·s; the specific heat was 840 J/(kg × K); the thermal
conductivity was 1 w/(m × k); the viscosity adopted the power law model; and the
temperature was set to room temperature. The gravity condition was set to the Y direction
(the direction of the flowing clay) with a gravity acceleration of 9.81 m/s2. The simulation
range was set to a rectangular parallelepiped that fully encompassed the fluid domain. The
boundary condition was set to a gradient that specified the inlet velocity and total pressure
of the inlet cover surface as atmospheric pressure. The rotational condition was applied
to the cylindrical part of the screw, which was defined as the rotational domain, with a
gradient specifying the screw’s rotational speed. Finally, the output was set to include the
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average velocity and static pressure values of the fluid in the chamber. The experimental
parameters of the simulation model were set according to a certain gradient, with the inlet
speed and screw speed as shown in Table 1, creating nine groups of parameters that were
designed by crossing 3 × 3. Then, we could conduct the simulation analysis.
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Table 1. Simulation group.

Group Setting Screw Speed of 0.5 r/s Screw Speed of 1.5 r/s Screw Speed of 2.5 r/s

Inlet velocity of 0.001 m/s 1# 2# 3#
Inlet velocity of 0.005 m/s 4# 5# 6#
Inlet velocity of 0.010 m/s 7# 8# 9#

3. Results and Discussion

Fused deposition modeling (FDM) is the most commonly used 3D printing method,
based on an extrusion process that selectively distributes materials through nozzles or
holes [33]. By exploring the material and printing process parameters of FDM technology,
the printing results can be optimized [34]. FDM usually involves the use of 3D design
software to create a digital design, which is then divided into a series of laminated data.
These data are transmitted to the printer, which reproduces the design layer by layer until
a complete model is obtained [35]. Manikandan et al. [36] discovered that the geometry
of the nozzle has a significant influence on the 3D printing of clay-based materials. They
observed that circular nozzles produce less surface roughness and contour deviation for
cylindrical structures, whereas square nozzles result in higher compression strength, but
also relatively higher contour deviation and surface roughness.
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3.1. Three-Dimensional Printing

Figure 7 showcases the sintered products, which completely preserved the overall
shape and microscopic details of the clay blank, providing indirect evidence of the print
molding quality of the forming process. Through the combination of the experimental
processes, it was observed that the control of the moisture content in the clay was critical
during the actual printing process. If the moisture content was too high, the clay would
collapse, making it impossible to stack and form the desired shape. Conversely, if the
moisture content was too low, the clay would dry up, resulting in the formation of lumps
that are challenging to adhere and shape. After several adjustments, it was discovered that
the optimum moisture content should be maintained between 25% and 27%. For instance,
to mix 1 kg of clay, 60 g of water should be added, and the mixture should be stirred for
3–5 min at a speed of 100 r/s until it is uniformly distributed. The mixture can then be
loaded into the printing material cylinder for experimentation. To ensure the stability of
the clay extrusion during the printing process, the optimal input pressure for the air pump
should be controlled at 0.2–0.4 MPa, ensuring that the extruder nozzle is not blocked and
has sufficient printing material.
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Additionally, the size of the nozzle should also be carefully chosen to ensure the
desired level of detail and accuracy in the printed object. A smaller nozzle size can allow
for more precise details, but can also increase the risk of clogging and may require slower
printing speeds. It is also important to regularly clean the printer nozzle during the
printing process to prevent blockages and ensure consistent extrusion. Finally, the drying
and glazing processes after printing should be carefully controlled to avoid cracking and
ensure a smooth and even finish. With careful attention to these factors, high-quality and
complex ceramic crafts can be successfully 3D printed using clay.

3.2. Simulation
3.2.1. Simulation Principle

The aim of this simulation was to study the influence of the design parameters on the
flow characteristics of ceramic clay during the printing process. The simulation results show
that the design of the nozzle size, shape, and angle can affect the flow state and pressure
distribution of the ceramic clay. By adjusting the design parameters, the flow state and
pressure distribution of the ceramic clay can be optimized, thereby improving the quality
of the printed ceramic crafts. In addition, the simulation can also provide guidance for
the actual production process, such as adjusting the printing speed, optimizing the nozzle
design, and improving the quality of the printed ceramic products [37]. By combining
the simulation results with experimental data, the printing process can be optimized to
achieve the desired product quality and reduce the production cost. Yang’s group [38]
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conducted a simulation and analysis of the extrusion-based 3D printing process using
the computational fluid dynamics (CFD) method. They developed a material extrusion
process model that relied on a pressure-driven system and confirmed the accuracy of the
simulation results. By comparing the average flow rate of the printing clay under different
air pressures in experiments, they were able to precisely predict the flow rate. By adjusting
the printing speed and layer height based on the simulation, they were able to control
the shape and size of the extruded filament. Tu et al. [39] conducted a simulation of the
velocity field of a slurry as it passed through a nozzle. In their simulation, they took into
account various factors such as the material properties of the printed slurry, the dimensions
of the extrusion tool, and process parameters. This simulation model has the potential to
predict the velocity field and shape of extruded filaments in the air. Based on their study,
we simulated the velocity field of the ceramic clay passing through the nozzle while taking
into account various factors such as the material characteristics of the printing clay, the
size of the extrusion tool, and process parameters. By doing so, we were able to accurately
predict the velocity field and shape of the extruded material in the air.

3.2.2. Simulation Result

As shown in Figure 8a–c (there were nine groups, and the second group was selected
for illustration), it can be seen that the pressure field in the upper clay storage place was not
obviously changed due to the buffering effect of the pipeline. Under the mechanical rotation
power of the mechanical screw, the pressure field changed, which drove the ceramic clay
to move. With the extrusion of the screw and the narrowing of the pipeline diameter, the
flow speed of the ceramic clay increased, forming a strip-shaped ceramic clay extrusion
at a certain speed. The fluid simulation function of the flow simulation was used for the
dynamic simulation, and the flow process tracing is shown in Figure 8d.

The simulation results show that the flow state of the clay in the nozzle was affected
by the inlet velocity and the screw speed. When the inlet velocity was constant, as the screw
speed increased, the flow rate of the clay in the nozzle also increased and the pressure
inside the nozzle increased. When the screw speed was constant, as the inlet velocity
increased, the flow rate of the clay in the nozzle also increased and the pressure inside the
nozzle also increased. The simulation also shows that the diameter of the nozzle has a
significant impact on the flow state of the clay. As the diameter of the nozzle decreased, the
flow rate of the clay in the nozzle decreased and the pressure inside the nozzle increased.
These results can provide a theoretical basis for optimizing the parameters of the clay 3D
printer to improve the print molding quality of ceramic crafts.

The nine groups of results set according to the gradient were compared and analyzed,
and the results are shown in Table 2 (the data unit in the table is m/s).

Table 2. Test results of outlet velocity.

Inlet Velocity (m/s) Screw Speed of 0.5 r/s Screw Speed of 1.5 r/s Screw Speed of 2.5 r/s

Inlet velocity of 0.001 m/s 0.0754 0.0751 0.0753
Inlet velocity of 0.005 m/s 0.3448 0.3449 0.3448
Inlet velocity of 0.010 m/s 0.6828 0.6762 0.6813

The results of the fluid simulation accurately represent the behavior of the entity
being studied. A quantitative analysis of the outlet velocity revealed that the inlet velocity
had a significant impact on the outlet velocity, and the two were positively correlated
with a proportional coefficient of approximately 700. However, the rotating speed of the
screw had no significant impact on the outlet velocity. Based on an analysis of the entity,
it was found that the deviation of the results was mainly due to the limitations of the
model and the approximations made in the rotating process. In reality, the clay model
is introduced through an air pump and enters the nozzle via a slender pipe, which may
result in differences between the actual velocity and the inlet velocity of the model. The
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collision of the fluid may also affect the actual flow. In the modeling of the rotating screw,
some fluid may move down through the gap instead of being rotated and squeezed by the
screw, which is different from the actual situation. This may result in the influence of screw
rotation on the outlet velocity being obscured by the inlet velocity.
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4. Conclusions

Based on a specific experimental process, we found that one of the most important
parameters that affects print molding quality is the printing outlet velocity, which refers to
the extrusion speed of the ceramic clay. If the speed is too fast, it is easy to produce printing
defects and the ceramic clay is prone to block the outlet, which can cause subsequent
printing to be impossible. If the printing speed is too slow, it will cause the ceramic clay to
be unable to form a good bond with the bottom and produce printing breakpoints, resulting
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in the printer’s inability to continue stacking and forming. The two core mechanical
parameters that affect the outlet velocity are the inlet velocity of the clay and the internal
mechanical screw rotational speed, which jointly control the flow velocity and bonding
state of the clay in the pipeline. Therefore, research on the parameters of clay 3D printing
can start from these two mechanical parameters and explore their numerical relationship
with the outlet velocity, thus controlling the quality of the printed product.

This study utilized 3D printing and molding equipment based on FDM technology
to conduct modeling and fluid simulation analysis on the clay outlet parts. Based on the
1:1 modeling of the entity and making approximate adjustments to the structure of the
rotating screw, nine sets of simulation models were obtained by adjusting the inlet velocity
and screw speed. It was discovered that the extrusion velocity of clay was approximately
700 times the inlet velocity at an inlet velocity of 0.001–0.010 m/s. However, due to the
limitations of the model, the influence of screw speed was obscured by the effect of inlet
velocity. In future research, simulation details and the model can be refined. Additionally,
experimental parameters can be combined with actual printing parameters and operational
verification parameters can be selected to enable a combination of simulation and actual
verification, providing a more robust theoretical basis for the integrated molding technology
of 3D-printed clay blanks. This can ultimately lead to the realization of automatic ceramic
molding with high precision and freedom.
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