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Abstract: Metallic nanoparticles are frequently applied to enhance the efficiency of photovoltaic cells
via the plasmonic effect, and they play this role due to the unusual ability of plasmons to transmit
energy. The absorption and emission of plasmons, dual in the sense of quantum transitions, in
metallic nanoparticles are especially high at the nanoscale of metal confinement, so these particles
are almost perfect transmitters of incident photon energy. We show that these unusual properties
of plasmons at the nanoscale are linked to the extreme deviation of plasmon oscillations from the
conventional harmonic oscillations. In particular, the large damping of plasmons does not terminate
their oscillations, even if, for a harmonic oscillator, they result in an overdamped regime.

Keywords: metallic nanoparticles; surface plasmons; anharmonicity of oscillations; damping
of plasmons

1. Introduction

One of the most promising methods to increase the efficiency of solar cells is to apply
metallic nano-components and take advantage of the mediation of the surface plasmons
in metallic nanoparticles in the absorption of incident sunlight. This effect is especially
noticeable in conventional p-n junction solar cells, such as Si-based cells or CIGS, where
a dilute surface semiconductor covered with metallic nanoparticles (Au, Ag or Cu) with
a diameter of 10–100 nm and surface concentration of only 108–9 /cm2 can increase the
photocurrent in the photodiode setup by a factor exceeding even 2 [1–10], leading to the
surpassing of the Shockley–Queisser efficiency limit [11]. The related increase in the final
efficiency of metallized solar cells is lower because not only photo-absorption contributes
to the gain in a cell, but it can still achieve up to several dozen percent for the relative
increase in the overall cell efficiency, as reviewed in [12]. The drawback of the applica-
tion of metallic components is the low durability of surface coverings (some additional
protective coatings should be applied, which, however, complicates the technology of cell
production and increases costs). In the case of chemical solar cells, metallic nanoparticles
can be incorporated into cell layers, and indeed, for hybrid chemical perovskite solar cells,
gold or silver nanoparticles can be admixed with the liquid precursors and positioned
in a controlled manner within the multilayered cell structure without perturbing their
morphologies [13–15]. The record for the efficiency increase in perovskite solar cells due
to metallization is 40% for the relative U-I overall gain [14]. Nevertheless, in perovskite
cells, the increase in photon absorption is not the dominant plasmonic effect responsible
for such large efficiency growth. This is due to the different operation scheme of perovskite
cells in comparison to p-n junction cells. In the latter, the excitons induced by plasmons
in the depletion region are instantly dissociated into separated electrons and holes by a
high p-n junction voltage (in Si, of the order of 1 V, which is ca. 10 times higher than
the binding energy of excitons, which does not exceed 100 meV). In perovskite cells (and
in other chemical cells), no p-n junctions exist, and the dissociation of excitons occurs at
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the interface between the perovskite layer and electron (or hole, depending on the cell
architecture) transport layer. The mutual shift of the conduction (or valence for holes) band
edges in two adjacent materials decouples e-h pairs at the interface, and electrons (holes)
are captured in the transport layer, resulting in a photocurrent. The lower the binding
energy of excitons, the more efficient this process. It has been demonstrated [16] that, by
applying metallic nanoparticles, one can reduce the binding energy of excitons induced by
plasmons by even 50%, which explains the observation of a 40% efficiency increase [14]
without an absorption increase [17]. This reveals the additional role of plasmons besides
strengthening the photo-effect (note that a reduction in exciton binding is unimportant in
p-n junction cells, because the junction voltage is one order of magnitude larger than the
exciton binding energy, and the reduction in the latter does not have any effect).

In all these plasmon-related photovoltaic phenomena, the specific properties of surface
plasmons in metallic nanoparticles are of primary importance. The conventional classical
approach to plasmons entails determining the solution of Maxwell equations for a bound-
ary problem of metallic nanoparticles (in a similar way to solving the Fresnel equation),
which allows for the identification of surface plasmon resonance in metallic particles, which
are then regarded as oscillators of localized dipoles (as the most important mode for surface
plasmons at the nanoscale is the dipole mode with a corresponding wavelength (for Au,
Ag or Cu) ca. one order larger than the confinement scale). Nevertheless, the simplified
treatment of surface plasmons in metallic nanoparticles as ordinary dipole harmonic os-
cillators can be insufficient to quantitatively model and simulate the plasmonic effects.
In particular, the above-mentioned plasmon-induced reduction in exciton binding in met-
allized perovskite cells is impossible to describe with the classical approach to plasmons
and needs a quantum method of the Fermi golden rule type applied to the coupling of
local plasmons with band electrons in the surrounding semiconductor (perovskite). This
coupling concerns plasmon dipole radiation in the near-field zone [18,19], which is not
translationally invariant and does not conserve the momentum of an electron during its
excitation from the valence band to the conduction band in perovskite. The excitons cre-
ated by plasmons are thus not diagonal in momentum, and the greater the difference in
momenta between the initial (hole) and final (electron) states at electron hopping induced
by plasmons, the lower the binding energies of excitons. This is in contrast to an ordinary
photo-effect, for which only a diagonal in momentum e-h pairs is created (this is frequently
called vertical optical interband electron transition in a semiconductor). The binding of
nondiagonal excitons is weaker, which is clear because the oppositely oriented momenta of
the hole and the electron tend to decouple the pair. This is, however, a purely quantum
effect, beyond the reach of the classical electrodynamic model of plasmons.

In the present paper, we exemplify various problems related to plasmons (usable in
photovoltaics), which can be confusing to interpret which can be misinterpreted within
the classical approach with the classical approach, as it frequently relies upon numerical
methods for the solutions of Maxwell–Fresnel boundary equations using finite element
methods (using popular software packages, e.g., Comsol), and the models of plasmons that
are assumed as prerequisites are too simplified.

Nanoparticles of noble metals (such as Au, Ag and Cu) exhibit pronounced surface
plasmon resonance in the range of the visible light spectrum and therefore are suitable
to mediate the absorption of photons in metallized solar cells operating mostly within
the visible part of the sunlight spectrum. It has been demonstrated both experimentally
and theoretically that metallic nanoparticles deposited on top of conventional p-n junction
solar cells (e.g., Si-based cells or CIGS) cause a significant increase in cell efficiency due to
the coupling of surface dipole plasmons in the near-field zone in metallic components to
band electrons in semiconductor substrates (cf. for a review of experiments and theory,
see [12]). Simultaneously, it has been shown that the strengthening of the electric field of the
incident light wave near the curvature of metallic nanoparticles (an effect that is accounted
for by the solution of the Maxwell–Fresnel boundary problem in conventional classical
simulations using the finite method numerical solution of electrodynamic differential
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equations) provides only 5% of the efficiency increase, whereas 95% of the plasmonic
photovoltaic effect is caused by the quantum coupling of plasmon dipoles in the near-
field zone with electrons from the semiconductor substrate, accounted for by the Fermi
golden rule [20]. The inclusion of this quantum coupling is thus decisive in the explanation
of the experimentally observed plasmon photovoltaic effect: it is not of the geometry
type (classical Maxwell–Fresnel problem) but is related to the increase in the damping
of plasmons, which is impossible to account for by classical modeling with the dielectric
function of the Drude type [21] with the optical data measured in the bulk. In the case of
chemical solar cells, the reduction in exciton binding energy by plasmons is completely
beyond the reach of classical electrodynamics but is possible to assess by applying the
Fermi golden rule.

In the present paper, we will demonstrate how bulk optical data for the dielectric
function for classical simulations can differ from the actual optical parameters in the case
of the nanoscale confinement of a metal. This is particularly clear in the case of plasmon
oscillations in metallic nanoparticles, in which anharmonic oscillations occur with large
discrepancies in both the frequency and damping rate in comparison to the conventional
damped harmonic oscillator.

2. Microscopic Description of Plasmons in a Metallic Nanoparticle

Plasmons have been studied since the beginning of the XX century in the framework
of classical Maxwell electrodynamics based on the formulation of the Fresnel boundary
problem between a dielectric and metal [18,19,21]. For the case of a spherical or spheroidal
shape of this interphase border, analytical solutions have been found [22,23], provided
that the dielectric function of the metal, including the volume bulk plasmon, is in the
Drude form [21],

ε(ω) = 1−
ω2

p

ω2 + iγω
= 1−

ω2
p

ω2 + γ2 + i
γω2

p

ω(ω2 + γ2)
, (1)

where ωp =
√

e2n
ε0m (in SI, in Gauss units

√
4πe2n

m ) is the volume bulk plasmon frequency in
the framework of the oscillatory model of the dielectric function described by Lorentz [21]
(e is the electron charge, m is the electron mass, n = N/V is the concentration of free
electrons in the metal, and ε0 is the dielectric constant). γ defines the damping of plasmons
in the bulk metal caused by electron scattering on crystalline perturbations—admixtures,
lattice defects, phonons and other electrons—and is corrected for the nanoparticle geometry
by the scattering of electrons on the boundary of a particle [24–27],

γ =
1
τ0

=
vF

2λb
+

CvF
2a

, (2)

where a is the nanoparticle radius, C is the constant of unity order to account for the type
of electron scattering on the nanoparticle boundary, vF is the Fermi velocity of electrons,
and λb is the mean free path of electrons in the bulk metal.

The plasmon damping modeled by (2) is, however, underestimated, both in the case
of plasmon oscillations in metallic nanoparticles in dielectric surroundings and if plasmons
in a metallic nanoparticle are coupled in the near-field zone with some absorbing medium,
such as the semiconductor substrate on which metallic components are deposited (e.g.,
for metallized Si or CIGS solar cells [1–10]) or in which they are fully embedded (e.g., for
metallized perovskite cells [13–15]).

To microscopically describe plasmons, we adopt the random-phase approximation
(RPA) model developed by Pines and Bohm [28] in 1952 to derive the frequency of bulk
plasmons. Using the second-order time derivative of the operator of the local density of
electrons in the Heisenberg picture, the oscillating mode of this density has been identified
from the term related to electron repulsion [28]. It is somewhat surprising that plasmons
in bulk metal exist due to the repulsion of electrons and not due to attraction to positive
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jellium. This means that the coherence in the oscillations of the charge density requires the
mutual interaction of electrons; otherwise, such oscillations cannot be organized. The gener-
alization of the quantum RPA method for a metallic nanoparticle was then performed [29].
The Heisenberg equation for local charge dynamics in a finite metallic particle gains addi-
tional structure because of the sharp rim of jellium (absent in bulk metal), which produces,
due to gradients in the Hamiltonian, some Dirac delta terms on the jellium rim in the
dynamic Heisenberg equation and a related new class of plasmon excitations called surface
plasmons. Thus, in nanoparticles, there occur two families of plasmons instead of a sole
mode in the bulk [29], related to Dirac delta terms in a dynamic equation and those without
any singularity.

The latter family consists of volume plasmons of the form for a local charge density
fluctuation δρ(r) in a spherical nanoparticle [29],

δρ(r) = n
∞

∑
l=1

l

∑
m=−l

∞

∑
i=1

Almi jl(klir)Ylm(Ω)sin(ωlit), for r < a, (3)

where n is the uniform equilibrium density of electrons, jl(ξ) =
√

π
2ξ Il+1/2(ξ) is the

spherical Bessel function, Ylm(Ω) is the spherical function, Ω is the conventional notation

for spherical angles, ωli = ωp

√
1 + x2

li
k2

TFa2 represents the frequencies of volume plasmon

self-oscillations, kTF =
√

6ne2

εF
is the Thomas–Fermi inverse length (εF is Fermi energy),

and xli represents the nodes of the Bessel function jl(ξ), with i = 1, 2, 3 . . . , kli = xli/a.
We see that the self-frequencies of these volume-type plasmon (for r < a) oscillations in a
metallic nanoparticle are ωli > ωp. The confinement increases the energy of volume-type
oscillations of the electron density.

The former class of plasmons consists of oscillations on the surface only (those related
to the Dirac delta on the jellium rim): these are the surface plasmons,

δρ(r) =
∞

∑
l=1

l

∑
m=−l

Blm
a2 Ylm(Ω)sin(ωl0t)δ(r− a), (4)

where ωl0 = ωp

√
l

2l+1 denotes the frequencies of surface electron self-oscillations; note
that ωl0 < ωp. The detailed derivation of (3) and (4) is presented in [12].

2.1. Excitation of Surface Plasmons

To illustrate the above-listed variety of plasmonic modes in a nanoparticle, let us
consider a metallic nanoparticle with the radius a ∈ (5, 100) nm located in a dielectric
medium with permittivity ε and exposed to the plane wave electro-magnetic field with
the frequency ω (the field of incident photons). The surface plasmon resonances ωl0 =

ωp

√
l

2l+1 of the multipole type (dipole type for l = 1, quadrupole type for l = 2, and so
on) have increasing frequencies with increasing l (but the rate of this growth gradually
diminishes as l increases). The smallest frequency, the dipole type for ω1 = ωp

1√
3

(the
second index 0 is suppressed here in ωl0, as it had been introduced to fit with the volume

plasmon spectrum ωli = ωp

√
1 + x2

li
k2

TFa2 , for which i is the number of zeros of the Bessel

function on the particle rim, and it attains values of 1, 2, 3, . . . ), changes in various materials

according to ωp =
√

4πe2n
m and kTF via the free electron concentration n. In metals, this

concentration varies with the density and the valency, but it is typically of the order of
the Avogadro number per 1 cm3. Thus, the photon wavelength corresponding to ω1
in Au, Ag or Cu is of the order of 500 nm, much larger than the size of the considered
nanoparticles. Hence, photons with a resonant frequency ω1 have an almost uniform
electric field distribution over the whole nanoparticle and can excite only the dipole mode
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of surface plasmons. The excitation of a quadrupole mode requires larger nanoparticles
(a > ∼75 nm for Au).

2.2. Dipole-Type Surface Plasmon

In medium-sized metallic nanoparticles, the dipole mode l = 1 of surface plasmons
can only be excited by photons (as described above, due to the space homogeneity of the
resonant e-m wave along the whole particle). The fluctuation of the charge density can
thus be represented as (acc. to Equation (4))

δρ(r, t) =


0, r < a,

1
∑

m=−1
Q1m(t)Y1m(Ω)δ(a− r + ε) r ≥ a, ε = 0+,

(5)

The limiting approach to the surface r ≥ a, r → a, is taken for mathematical rigor reasons
to properly define the Dirac delta inside some open set, cf. [29]. The l = 1 surface plasmon
oscillations can thus be represented by an oscillating dipole fixed to the nanoparticle center,

d(t) = e
∫

d3rrδρ(r, t) =
√

2π√
3

ea3
[

Q1,1(t), Q1,−1(t),
√

2Q1,0(t)
]

(6)

which satisfies the RPA dynamic equation [12,29],[
∂2

∂t2 +
2
τ0

∂

∂t
+ ω2

1

]
d(t) =

a34πe2ne

3m
E(t) = εa3ω2

1E(t). (7)

where E(t) is the time-oscillating homogeneous equation for where E(t) is the time-
oscillating, homogeneous over the whole particle, electric field of incident e-m radiation.
the whole particle electric field of incident e-m radiation. Equation (7) is of the harmonic
oscillator type (damped and forced). Note that this equation is nontrivial, as the frequency
ω1 originates from the electron repulsion needed to synchronize the oscillations of all elec-
trons, similar to ωp identified in the bulk using the RPA method by Pines and Bohm [28,30].
This equation for a finite nanoparticle must, however, include an additional term related to
the damping of plasmons due to the Lorentz friction of an oscillating dipole [18,19], which
is absent in the bulk. Oscillating charges themselves emit an e-m wave, which absorbs the
energy of plasmons and eventually quenches the oscillations. The effect is small for a single
electron but grows proportionally to the number of electrons participating in the collective
synchronized oscillations, as in the case for plasmons. In ultra-small clusters of metals,
the total number of electrons is still small, and the Lorentz friction is negligible for a < 5
nm. However, with an increase in a, the number of electrons grows with a3 and quickly
attains a large value, so the role of the Lorentz friction starts to be important. The Lorentz
friction must be added to the dynamic equation (Equation (7)) as an additional electric field

term EL = 2
3c3

∂3d(t)
∂t3 [18,19] on the right-hand side of the equation, so the dynamic equation

attains the form [
∂2

∂t2 +
2
τ0

∂

∂t
+ ω2

1

]
d(t) = εa3ω2

1E(t) + εa3ω2
1EL, (8)

or, in a more explicit form, limited to the case when E = 0 (the homogeneous differential
equation for self-frequencies),[

∂2

∂t2 + ω2
1

]
d(t) =

∂

∂t

[
− 2

τ0
d(t) +

2
3ω1
√

ε

(
ωpa

c
√

3

)3 ∂2

∂t2 d(t)

]
. (9)

Because of the third-order time derivative of the dipole in the Lorentz friction term,
the dynamic equation is not of the harmonic oscillatory type. It is still a linear differential



Materials 2023, 16, 3762 6 of 14

equation but of the third order: its solution will still describe oscillations, but they are
different from those for the harmonic oscillator second-order differential equation.

3. Anharmonicity of Dipole Surface Plasmons

To assess the deviation from harmonicity due to the Lorentz friction for plasmons, we
must solve Equation (9). This can be completed analytically by using the Fourier transform,
i.e., assuming d(t) ∼ eiΩt. The third-order differential equation has three (complex in
general) solutions for Ω,

Ω1 = − i
3l −

i21/3(1+6lq)
3lA − iA

21/33l = iα ∈ Im,

Ω2 = − i
3l +

i(1+i
√

3)(1+6lq)
22/33lA + i(1−i

√
3)A

21/36l = ω + i 1
τ ,

Ω3 = −ω + i 1
τ = −Ω∗2 ,

(10)

where A =
(

2 + 27l2 + 18lq +
√

4(−1− 6lq)3 + (2 + 27l2 + 18lq)2
)1/3

, q = 1
τ0ω1

and

l = 2
3
√

ε

(
aωp

c
√

3

)3
.

We see that the solutions given by Ω2 and Ω3 are of the oscillating type with damp-
ing (iΩ2 and iΩ3 are mutually conjugated, and thus, Ω2 and Ω3 have real parts with the
opposite sign, whereas for the same imaginary parts, the latter is positive, displaying the
damping rate). The solution Ω1 (pure imaginary) is an unstable and exponentially rising
solution (for a negative sign of α). This unstable solution is the well-known artifact in
Maxwell electrodynamics [19], which corresponds to the infinite self-acceleration of the free
charge by the Lorentz friction force—the solution of the equation mv̇ = const.v̈. This arti-
fact is associated with the formal renormalization of the field mass of the charge—infinite
for point-like charge and canceled in an artificial manner by an arbitrary assumed nega-
tive infinite non-field mass, resulting in the ordinary mass of, e.g., an electron, which is,
however, not properly defined mathematically. The unphysical singular solution Ω1 must
be discarded. The other oscillatory-type solution Ω2 (or the Ω3 equivalent via conjuga-
tion) resembles the solution of the ordinary damped harmonic oscillator, though with a
different attenuation rate and frequency and a different mutual relation between ω and τ.
The harmonic type for this relation, ω = ω1

√
1− 1

(τω1)2 , is not maintained here.

The functions ω and 1
τ given by Equation (10) (in dimensionless units, i.e., divided by

ω1) are plotted in Figure 1 versus the nanosphere radius a for illustration. The deviation
from the harmonic damping oscillator dependence ω = ω1

√
1− 1

(τω1)2 is very large and

visualized in Figure 1 (right panel).
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Figure 1. Imaginary and real parts of the solution of Equation (9), i.e., the damping rate and the
self-frequency of the dipole mode of surface plasmon resonance in a metallic nanoparticle (Au), given
by Equation (10), versus the radius of the nanosphere a ( 1

τ and ω in units of ω1). The resonances in
a vacuum (ε = 1) and in dielectric surroundings with ε = 2 are compared. The decrease in 1

τ0
with

a acc. to Equation (2) is also plotted in the left panel (zoom of the cross-over region from the left is
shown in the central panel). In the right panel, the frequency for the harmonic damped oscillator,
ω = ω1

√
1− 1

(τω1)2 , is also plotted (upper curve) for comparison with the exact anharmonic solution.
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In Figure 1 (left panel) (and from the solution in (10)), we see that the scattering
of electrons ( 1

τ0
, which decreases with a acc. to Equation (2)) is important for plasmon

damping for a < 10 nm, whereas, for larger nanoparticles, the damping of the dipole surface
plasmon is dominated by the extremely high Lorentz friction: it attains its maximum at
ca. a ' 57 nm (Au in a vacuum) and decreases again to the small value in the bulk. At its
maximum, the damping due to the Lorentz friction is two orders of magnitude greater than
that caused by electron scattering (for data from Table 1).

Table 1. Nanosphere parameters assumed for calculation of damping rates for surface plasmons.

Material Au Ag

Bulk plasmon energy, h̄ωp 8.57 eV 8.56 eV
Bulk plasmon frequency, ωp 1.302× 1016 s−1 1.3× 1016 s−1

Mie dipole plasmon energy, h̄ω1 4.94 eV 4.93 eV
Mie frequency, ω1 = ωp/

√
3 0.752× 1016 s−1 0.75× 1016 s−1

Constant in Equation (2), C 1.4 1.4
Fermi velocity, vF 1.396× 106 m/s 1.4× 106 m/s
Bulk mean free path (room temp.), λb 53 nm 57 nm

Therefore, if one takes the Drude-type dielectric function within the Lorentz harmonic
oscillatory model (1) with γ = 1

τ0
in the numerical classical simulation of plasmon reso-

nance (by solving Maxwell equations with predefined oscillatory-type dielectric functions),
the error can be induced by neglecting the Lorentz friction for nanoparticles with a radius
larger than ca. 10 nm (the largest is around a ∼ 57 nm for Au at ε = 1, though vanishing
in the bulk). Plasmons are not self-consistent solutions of Maxwell equations but are con-
ditioned by the inter-electron repulsion, not included explicitly in the Maxwell–Fresnel
problem, which makes room for phenomenological modeling, which must be, however,
performed with care (as a metallic nanoparticle is a different plasmonic material from the
bulk metal).

4. Anharmonicity for Plasmon-Polaritons

In the case of synchronized surface plasmon oscillations in the periodic linear align-
ment of metallic nanoparticles (nano-chains), strong radiation due to Lorentz friction in
particular segments of the chain completely disappears. This astonishing phenomenon is
caused by the coupling of dipoles oscillating on chain segments in a synchronized manner,
resulting in the wave-type propagation of a plasmon-polariton [31–36]. The interaction
of dipoles in consecutive segments of the chain can be expressed by the electric field cre-
ated around the metallic nanoparticle with an oscillating dipole of surface plasmons (the
magnetic field does not contribute significantly to this interaction) [18,19],

E(r, r0, t) = 1
ε

(
− ∂2

v2∂t2
1
r0
− ∂

v∂t
1
r2

0
− 1

r3
0

)
D(r, t− r0/v)

+ 1
ε

(
∂2

v2∂t2
1
r0
+ ∂

v∂t
3
r2

0
+ 3

r3
0

)
n0(n0 ·D(r, t− r0/v)),

(11)

where r0 is the vector linking r—the position of the dipole center—to an arbitrary point
outside the nanosphere; n0 = r0

r0
; v = c√

ε
is the light velocity in the surrounding medium;

and D(r, t − r0/v) = D0(r)eiω(t−r0/v) is the dipole of the surface plasmon located on
the nanoparticle with a center in r (including relativistic retardation). The terms with
denominators of r3

0, r2
0 and r0 are usually referred to as the near-field, medium-field and far-

field components of the oscillating dipole field, respectively.
Using (11), one can extend the dynamic equation (Equation (8)) for dipole oscillations

in the metallic nanosphere, including impacts from all other segments in the chain [12]; the
segments can be numbered by consecutive integers l, and the span between neighboring
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segments is denoted by d. Hence, dipole oscillations on the l-th sphere must satisfy
the equation[

∂2

∂t2 +
2
τ0

∂
∂t + ω2

1

]
Dα(ld, t)

= εω2
1a3

m=∞
∑

m=−∞, m 6=l
Eα

(
md, t− |l−m|d

v

)
+ εω2

1a3ELα(ld, t) + εω2
1a3Eα(ld, t),

(12)

where α = z denotes the longitudinal polarization of dipole oscillations with respect to the
chain orientation (in the z-direction), and α = x(y) is the transverse polarization. The first
term on the r.h.s. of Equation (12) describes the dipole-type coupling between nanospheres,
and the other two terms correspond to the contributions to plasmon attenuation due to
the Lorentz friction and the forcing field due to an external electric field. According to
Equation (11), we have

Ez(md, t) = 2
εd3

(
1

|m−l|3 +
d

v|m−l|2
∂
∂t

)
Dz(md, t− |m− l|d/v)

Ex(y)(md, t) = − 1
εd3

(
1

|m−l|3 +
d

v|m−l|2
∂
∂t +

d2

v2|m−l|
∂2

∂t2

)
Dx(y)(md, t− |m− l|d/v).

(13)

Due to periodicity, one can propose the wave-type solution

Dα(ld, t) = Dα(k, t)e−ikld,
0 ≤ k ≤ 2π

d .
(14)

Thus, the Fourier picture of Equation (12) related to the exponent in (14) attains the form(
−ω2 − i 2

τ0
ω+ ω2

1

)
Dα(k,ω)

= ω2
1

a3

d3 Fα(k,ω)Dα(k, ω) + εa3ω2
1E0α(k,ω),

(15)

with:

Fz(k, ω) = 4
∞
∑

m=1

(
cos(mkd)

m3 cos(mωd/v) + ωd/v cos(mkd)
m2 sin(mωd/v)

)
+2i

[
1
3 (ωd/v)3 + 2

∞
∑

m=1

(
cos(mkd)

m3 sin(mωd/v)

−ωd/v cos(mkd)
m2 cos(mωd/v)

)]
,

Fx(y)(k, ω) = −2
∞
∑

m=1

(
cos(mkd)

m3 cos(mωd/v) + ωd/v cos(mkd)
m2 sin(mωd/v)

−(ωd/v)2 cos(mkd)
m cos(mωd/v)

)
−i
[
− 2

3 (ωd/v)3 + 2
∞
∑

m=1

(
cos(mkd)

m3 sin(mωd/v) + ωd/v cos(mkd)
m2 cos(mωd/v)

−(ωd/v)2 cos(mkd)
m sin(mωd/v)

)]
.

(16)

The Lorentz friction contributes to the imaginary parts of Fz and Fx(y) (the terms∼ i 2
3 (ωd/v)3).

The argument ω for each k (complex, in general) will define the frequency of the plasmon-
polariton Reωk and its damping Imωk. ImFz (and ImFx(y)) will define radiation losses
beyond the scattering damping 1

τ0
. One can calculate these imaginary parts by direct

analytical summations [37] (using trigonometric relations sinα + sinβ = 2sin α+β
2 cos α−β

2

and cosα + cosβ = 2cos α+β
2 cos α−β

2 in (16)),
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∞
∑

m=1

sin(mz)
m = π−z

2 , for 0 < z < 2π,
∞
∑

m=1

cos(mz)
m2 = π2

6 −
π
2 z + 1

4 z2, for 0 < z < 2π,
∞
∑

m=1

sin(mz)
m3 = π2

6 z− π
4 z2 + 1

12 z3, for 0 < z < 2π.

(17)

This leads to a surprising result,

ImFz(k, ω) ≡ 0 and ImFx(y) ≡ 0, for 0 < kd±ωd/v < 2π, (18)

which means that the plasmon-polariton does not radiate any energy in the chain, despite
each of its segments separately exhibiting extremely high Lorentz friction losses. In the
chain, the ransfer In the chain, the gain of energy due to dipole coupling of energy due to
dipole coupling between all segments completely balances the individual Lorentz friction
losses. This effect is inaccessible to numerical simulations of the classical electrodynamic
response for a chain, unless the anharmonic Lorentz friction term is accurately included.
The absence of the e-m signature of the plasmon-polariton is the pronounced manifestation
of the anharmonicity of plasmon oscillations. The property in (18) can serve as the exact
sum rule for the verification of numerical simulations of plasmon-polariton kinetics.

The possible application of synchronized plasmon-polaritons in periodic arrays of
metallic nanostructures in photovoltaics has not been explored as of yet, but because of the
qualitative change in the radiation properties of plasmons in separated nanoparticles in
comparison to periodic arrays with w plasmon-polaritons in the metallic nanostructures, it
may offer new scenarios for the better harvesting of sunlight. The wave-type guidance of
plasmon-polaritons in metallic nanochains, almost perfect, without radiation losses, may
serve to transport energy to the inside of a photovoltaic structure, increasing the range of the
plasmonic photovoltaic effect to an arbitrary size. A problem may be encountered, however,
in the manufacturing of appropriate nanoparticle chains embedded inside photovoltaic
cells, but we suggest some experimental trials (perhaps easier in perovskite cells, where
metallic components can be admixed with liquid chemical precursors of solid layers). Note
that, presented above, perfect wave-guide plasmon-polariton properties are maintained
even for very short chains (of ca. 10–20 nanoparticles because of the very quick convergence
of the series in Equation (17)).

5. Anharmonicity of Plasmons in Metallic Nanoparticles If They Are Coupled with
Nearby Absorption Medium

In the case of metallized solar cells, surface plasmons in metallic nanoparticles couple
in their near-field zone of radiation with the band electrons of substrate semiconductors.
This strong coupling significantly modifies the dielectric functions of both the metallic
components and the semiconductor substrate. They are not the same as those for separated,
uncoupled subsystems. To account for this coupling quantitatively, one must utilize the
Fermi golden rule, because this effect is purely quantum and cannot be properly described
with conventional macroscopic plasmonics (via a solution of Maxwell equations for the
multicomponent system). The Fermi golden rule, in this case, takes the form for the
probability w (per time unit) of the interband electron transition in the semiconductor
induced by the perturbation due to surface plasmons in metallic nanoparticles deposited
on top of the substrate semiconductor:

w(k1, k2) =
2π

h̄
∣∣< k1|w+|k2 >

∣∣2δ(E(k1)− E(k2) + h̄ω), (19)
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where we assume that Bloch states in the conduction and valence bands are planar waves
(for the sake of simplicity),

Ψk1 = 1
(2π)3/2 eik1·R−iE(k1)t/h̄, Ψk2 = 1

(2π)3/2 eik2·R−iE(k2)t/h̄,

E(k1) = −
h̄2k2

1
2m∗p
− Eg, E(k2) =

h̄2k2
2

2m∗n
,

(20)

(the indices n and p refer to electrons from the conduction and valence bands, respectively,
and Eg is the forbidden gap). The plasmon-induced perturbation is caused by the near-
field part of the dipole plasmon electric field (11), which, conserving only terms with r3

0
denominators, attains the form Eω = 1

εr3
0
[3n0(n0 ·D0)−D0] (for the near-field zone, one

can neglect the time retardation, and the Fourier picture of (11) has been taken). For such
an electric field, one can find the potential, which enters the Hamiltonian of electrons in a
semiconductor, w+ = e

εr2
0
n0 ·D0, such that −∇r0 w+ = eEω (e is the electron charge).

First, one can find (via integration) the matrix element < k1|w+|k2 > for the functions
in (20); the analytical calculation [12] gives the result

< k1|w+|k2 >=
1

(2π)2
e
ε

D0 · q
q2

sinqa
qa

, (21)

where q = k2 − k1.
Next, summation over all initial and final states in both bands must be performed to

obtain the total probability of the interband electron excitation, i.e.,

δw =
∫

d3k1

∫
d3k2[ f1(1− f2)w(k1, k2)− f2(1− f1)w(k2, k1)], (22)

where f1 and f2 represent the temperature-dependent distribution functions (Fermi–Dirac
distribution functions) for the initial and final states, respectively. Emission and absorption
are included, but for room temperature, one can assume that f2 ' 0 and f1 ' 1, which gives

δw =
∫

d3k1

∫
d3k2 · w(k1, k2). (23)

The integration in the above expression gives

δw = 4
3

µ2(m∗n+m∗p)2(h̄ω−Eg)e2D2
0√

m∗nm∗p2πh̄5ε2

∫ 1
0 dx sin2(xaξ)

(xaξ)2

√
1− x2

= 4
3

µ2√
m∗nm∗p

e2D2
0

2πh̄3ε2 ξ2
∫ 1

0 dx sin2(xaξ)
(xaξ)2

√
1− x2,

(24)

where µ =
m∗nm∗P

m∗n+m∗p
is the reduced effective mass in the semiconductor. In limiting cases, one

ultimately obtains

δw =


4
3

µ
√

m∗nm∗p(h̄ω−Eg)e2D2
0

h̄5ε2 , for aξ � 1,

4
3

µ3/2
√

2
√

h̄ω−Ege2D2
0

ah̄4ε2 , for aξ � 1,
(25)

where the parameter ξ =

√
2(h̄ω−Eg)(m∗n+m∗p)

h̄ and is related to the semiconductor material
parameters. It is easy to notice that for nanoparticles with size a ∈ (10, 100) nm, the lower
case holds.

Note that the above formulae are fundamentally distinct from the ordinary photo-
effect [38]:

δw0 = 4
√

2
3

µ5/2e2

m∗2p ωεh̄3

(
εE2

0V
8πh̄ω

)
(h̄ω− Eg)3/2. (26)
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With the estimation of the probability for the excitation of band electrons in the semi-
conductor substrate by plasmons from the metallic nanoparticle, one can find the related
damping of plasmons and also the correction to the imaginary part of the dielectric function
for a semiconductor, as the energy from plasmons is transferred to the semiconductor. This
leads to the final form of the plasmon damping term due to coupling with the absorbing
semiconductor [12],

1
τ′ω1

=


4βµ
√

m∗nm∗p(h̄ω1−Eg)e2a3

3h̄4ε
, for aξ � 1,

4βµ3/2
√

2
√

h̄ω1−Ege2a2

3h̄3ε
, for aξ � 1.

(27)

For nanospheres of Au deposited on a Si layer, we obtain

1
τ′ω1

=

 44.092β(a[nm])3 µ
m

√
m∗nm∗p
m , for a� 0.15

√
m/(m∗n + m∗p) [nm],

13.648β(a[nm])2( µ
m
)3/2, for a� 0.15

√
m/(m∗n + m∗p) [nm],

(28)

where for light (heavy) carriers in Si, m∗n = 0.19(0.98) m and m∗p = 0.16(0.52) m, with m

being the bare electron mass; µ =
m∗nm∗p

m∗n+m∗p
; and Eg = 1.14 eV, ε = 12 and h̄ω1 = 2.72 eV

(β ∼ h2

a2 ∼ 10−3 for a ∼ 50 nm, and h is the effective range of the near-field coupling).
For these parameters and for nanospheres of radius a in the range of 5–50 nm, the second
case of Equation (28) applies.

The damping rate given by Equation (27) or Equation (28) greatly exceeds 1
τ0ω1

, and
it is also larger than the damping of plasmons due to the Lorentz friction in dielectric
surroundings. To fit with the experimentally observed efficiency increase in Si-type photo-
diode setups (as listed in Table 2, taken from [12]), the inclusion of the damping rate (27) is
necessary, as demonstrated in [20]. The reason for such a strong increase in the damping
of plasmons due to coupling with band electrons in the substrate semiconductor is the
allowance of oblique interband transitions of electrons because, for near-field coupling
with plasmons, the quasi-momentum of band electrons is not conserved (the matrix el-
ement (21) is not diagonal in k, contrary to the ordinary photo-effect [38]). The latter
property is the reason for the strong increase in the efficiency of solar cells covered with
metallic nanoparticles.

Table 2. Examples of the measured values of the photocurrent enhancement in silicon solar cells and
silicon photodiodes with deposited metallic nanoparticles.

Metal Size (nm) Concentration 1/cm2 Enhancement Ref.

Au 50 6.6× 108 18% [1]

Au 100 9.9× 108 2.8% [4]

Au 100 3.2× 108 3.3% [3]

Au 100 3.5× 108 3.3% [2]

Au ∼20 1.3× 1011 20% [5]

Au 65 10× 108 18% [6]

Ag 40 124× 108 127% [8]

Ag 12 - 19% [7]

Al 22 : 81 40% of surface 21% [39]

6. Conclusions

The deviation from harmonicity in the case of plasmons in metallic nanoparticles is
surprisingly large for medium-sized particles. For small particles with a radius a < 5 nm,
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the anharmonic effect is negligible, and the same applies to large particles with a > 300 nm.
A pronounced anharmonic effect occurs, however, for a ∈ (10, 100) nm (for Au in a vacuum,
slightly shifted in response to the permittivity of surroundings ε, and similarly for Ag or
Cu). The damping of plasmons related to the Lorentz friction exceeds the scattering losses
1
τ0

by two orders of magnitude, and its maximum occurs for a ' 57 nm (Au in a vacuum,
38 nm for ε = 2). The dependence of the resonant frequency of surface plasmons versus the
nanoparticle radius a is also significantly different from that for the conventional harmonic
oscillator. Hence, the modeling of plasmons with the solution of the classical Maxwell–
Fresnel equation (in both the analytic approach, called Mie approximation, and numerical
studies using the finite element method for the solution of differential equations, e.g., with
commercial systems such as COMSOL) is burdened by a large systematic error if the
prerequisite for calculations is the dielectric function for the metal in the Drude form
with the optical parameters measured in the bulk. Thus, reliable classical simulations of
plasmonic effects, including those addressed by the plasmon-admixture-induced increase
in the efficiency of photovoltaic cells, cannot be carried out with the dielectric function for
the metal as in the bulk.

The convincing effect caused by the anharmonicity of plasmons is the absence of
the e-m signature of plasmon-polaritons in metallic nano-chains. This is an exact result
(of the sum rule type) of the perfect balance of Lorentz friction losses with the energy
transfer of Lorentz friction losses with the energy gain due to dipole interactions between
chain segments, including the near-, medium- and far-field zone radiation of all dipoles,
regardless of the size of the nanospheres and their separation in a chain.

The large anharmonic damping of plasmons in metallic nanoparticles plays, however,
a very important role. Due to the universal symmetry between absorption and emission
for quantum transitions (known, e.g., from optical transitions), one can conclude that
strongly emitting plasmons similarly strongly absorb light. This explains, in particular,
the experimental observations that even a very sparse layer of metallic nanoparticles (with a
surface concentration of 108–9 particles per cm2) on a semiconductor can absorb a large part
of incident photons and then transfer the energy via a very effective channel to the band
electron system in the substrate semiconductor in an ultra-short time, thereby increasing
the overall absorption of photons. Such modified materials can serve as both very effective
absorbers and emitters of light. We pointed out the large discrepancy between simplified
classical assumptions about plasmon oscillations and their true quantum behavior, which
is of significance for the reliability of the modeling of plasmonic effects.
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