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Abstract: Self-adaptive mechanisms are gaining momentum in industrial processes. It is understand-
able that as the complexity increases, the human work must be augmented. Considering this, the
authors have developed one such solution for the punch-forming process, using additive manu-
facturing, i.e., a 3D-printed punch, to draw into shape 6061-T6 aluminum sheets. This paper aims
to highlight the topological study used to optimize the punch form shape, the methodology of the
3D printing process, and the material used. For the adaptive algorithm, a complex Python-to-C++
bridge was created. It was necessary as the script has computer vision (used for calculating stroke
and speed), punch force, and hydraulic pressure measurement capabilities. The algorithm uses the
input data to control its subsequent actions. Two approaches are used in this experimental paper, a
pre-programmed direction and an adaptive one, for comparison purposes. The results, namely the
drawing radius and flange angle, were statistically analyzed using the ANOVA methodology for
significance. The results indicate significant improvements when using the adaptive algorithm.

Keywords: adaptive algorithm; Python-to-C++ bridge; computer vision; 3D-printed punch; topological
study

1. Introduction

When exceeding the yielding limit of the metallic material, residual strains occur.
Changes in the part’s shape appear after the forming forces act. Different specific factors and
parameters also influence the metal parts, resulting from various forming processes [1,2].
The deformation of any element can be described based on the β ratio between the
strains or the α ratio between the stresses. These ratios will be constant in the case of
proportional deformations [3].

The main influencing factors in the plastic forming processes of sheet metals are the
following: chemical composition and material structure; mechanical properties of the mate-
rial; equipment—tools, machines, devices; semi-finished part—geometry, surface quality;
the complexity of the finished part’s geometry—shape, dimensions; forming conditions—
forming operation, temperature, displacement rate, lubrication conditions [1,4,5].

The cold bending of sheet metal is an elastoplastic process with residual strains
appearing in the material during forming [4]. Depending on the part geometry and
processing techniques, bending can be performed in either a V or U shape, or freely
between the rollers.

The following relations give the principal strain in the case of bending:

ε1 = −ε3 = ln
(

1 +
1

(2R/t) + 1

)
6= 0, ε = 0 (1)
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The analysis of Equation (1) highlights that the sheet metals are thinning during
forming as the radius R decreases. As the radius R decreases, the principal strains ε1 and
ε3 increase, the sheet metal’s thinning t is more and more pronounced, and, in the end, the
failure occurs. This means of drawing the blank during bending creates a state of uneven
stresses on the thickness of the material, to which an uneven strain state corresponds.

The accuracy of the sheet metal parts obtained by bending and drawing depends
mainly on the following factors: the geometry of the parts, the quality of the materials and
semi-finished parts, the quality of the forming tools, and the forming conditions.

The most important phenomenon in the instability of the shape and dimensions of
the sheet metal parts, obtained by cold plastic forming, is the springback phenomenon
specific to both bending and drawing processes [1,2]. The springback in the cold plastic
forming of the sheet metals is given by the difference between the final shape of the part
and the shape obtained at the end of the punch stroke. After the withdrawal of the tools,
the formed part undergoes significant changes in shape, which means that springback
is an additional material deformation that occurs during rebound [6–8], as indicated in
Figure 1. The analysis of stress/strain diagrams leads to the conclusion that the intensity of
springback will increase with the material strength [9–13].
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the resulting part shape, to highlight the effect of the springback effect.

The rebound process is elastic, but a secondary plastic flow can also occur due to the
bending and straightening around the edges of the die and punch. When metal sheets are
bent, springback is manifested by the angle change and the formed part’s curvature [1,2,6–8].
The parameters that characterize the effect of springback are the springback angle θ and the
radius of curvature R after the rebound. These parameters depend on the following factors:

• the physical and mechanical properties of the material;
• the shape of the part and the thickness of the sheet metal;
• the bending radius, working scheme, and bending process used.

Unlike bending, where springback is expressed by an angle, or the modification of
the part’s curvature when drawing, the parameters of springback are the difference in the
height or the change in the radius of curvature. Generally, the springback is positive, but
negative values can be recorded in the case of a high clamping force, and the bending
radius of the part is less than that of the punch.

Because the phenomenon of springback is favored by the material’s elastic proper-
ties, any factor that decreases the ratio between elastic and plastic strain determines the
reduction in the springback intensity. Therefore, materials with a lower yield strength and
Young’s modulus, higher hardening, a normal anisotropy index, a higher clamping force
value, a different punch geometry, or a lubricated environment between the die and the
sheet metals can reduce the intensity of the phenomenon [1,2,6–9,14,15].

Therefore, the tools specific to the plastic forming process can be manufactured in a specific
way to satisfy the requirements to decrease the intensity of the springback effect [16–18]. A
different approach is that of producing some tools using additive manufacturing [19,20].

The term “additive manufacturing” or “rapid prototyping” describes the manufac-
turing of parts by successively adding layer-to-layer material. This method allows for the
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production of components with ready-assembled static and mobile elements in a single
manufacturing session [20–22].

The part is modeled in a digital format. Thus, it can be easily stored, copied, or
transferred to the system that ensures its construction. For this purpose, the virtual model
is sliced into horizontal parallel sections. Each of these sections is then materialized layer
upon layer with the help of specialized equipment that allows the transfer from the digital
format to the material form.

The materials used in additive manufacturing include numerous polymers, metals
(aluminum, steel, titanium, bronze, silver, gold), quartz, ceramics, and many composite
materials [20–24].

Unlike classical technologies, additive manufacturing has several significant advan-
tages, such as the following:

• it allows the fabrication of parts with complex structures that cannot be achieved by
other methods/means and offers the possibility of improving the performance and func-
tionality of the products, adapting the products to the individual needs of consumers;

• it allows the customization of any object made, covering, at the level of the production
method, both the production of series and personalized objects, thus addressing the
two major markets;

• it allows savings of material, energy, and human resources.

If, by classical technologies, in many cases, the part is made by removing material,
additive manufacturing involves the agglomeration of matter particles, thus using less
material. Thus, material not used during a manufacturing session can be reused in a
proportion of over 90%.

It is estimated that the fabrication of layer-by-layer parts can reduce material costs
and requirements by up to 90% [25]. The elimination of some stages in the production
chain (since the parts can be made as soon as they have been designed, without the need
to build parts or prototypes), the use of smaller quantities of material, and the creation
of lighter objects also imply a reduction in the amount of energy consumed during the
manufacturing procedure.

Additive manufacturing technologies allow for rapid adaptation to user needs and
the creation of new production options outside the factory, such as mobile production units
located near the material source.

The devices most used in additive manufacturing are grouped under the generic name
“3D printers”, and the most widespread groups of technologies used refer to photopoly-
merization, selective sintering, or extrusion.

One of the most widespread means of performing additive manufacturing is 3D
filament printing. This process requires a material to be extruded through a nozzle on
a specific Cartesian interpolated path, thus forming successive layers. The extrusion of
heated thermoplastic materials represents some variations of this process with a limited
dosage [20–22].

The process is an economic one compared to the other additive processes. The tech-
nology is clean and easy to carry out. Moreover, the parts have good structural properties.

This technology allows filaments made of thermoplastic materials for FFF or the supply
of flakes—through push screws—and liquids or slurries through plungers for FDM. Sys-
tems intended for material extrusion may also be fitted with one or more additional heads.
Thus, they can be fed simultaneously or in parallel with the primary and support materials.

2. Methodology
2.1. General Methodology

Punch-forming is used at an industrial scale for punching, slitting, forming, tapping,
or marking, with the punching tool usually manufactured from steel.

The adaptive punch-forming process proposed by the authors in this experimental
study seeks to highlight the use of an optimized 3D-printed punch along with a comparison
between a standard pre-programmed and an adaptive one. It implies deforming aluminum
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blanks while measuring the punch force, speed, stroke, clamping system pressure, drawing
radius, flange angle, and process time.

An initial 3D model was designed using the final shape of the deformed part from Figure 2.
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Using SolidWorks Simulation—Topology Study, the optimal shape for the punch
construction for the forming process was determined, as indicated in Figure 3a. It ex-
plores the design iterations of a component that satisfy a given optimization objective and
geometric constraints.
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Figure 3. (a) Topology study on the initial 3D punch model performed in gravitational field
(9.81 m/s2, indicated by the red arrow) and uniform distributed force on the contact surface (blue
arrows); (b) resulting optimized 3D model, and (c) 3D-printed punch.

A topology study achieves the optimization of the nonparametric form of the parts.
Starting from a maximum design space—which represents the maximum size allowed for a
part—and considering all the applied loads, fasteners, and manufacturing constraints, the
optimization of the topology seeks a new arrangement of the material within the limits of
the maximum permitted geometry, by redistributing the material. The part thus optimized
meets all the mechanical and manufacturing requirements (Figure 3b).

In addition to the optimization objective, design constraints, such as the maximum
deformation, percentage of mass removed, and manufacturing processes, are defined to
ensure that the required mechanical properties are met. For a successful topology study,
the design proposal reached by the iterative optimization process meets all the structural
and manufacturing requirements introduced.

For the configuration of the study, the following characteristics were imposed.

1. The primary purpose of optimization leads to the optimization algorithm’s mathemat-
ical formulation. In this case, the best rigidity-to-weight ratio was chosen, where the
algorithm tries to minimize the overall conformity of the model, which is a measure
of the rigidity’s overall (mutual) flexibility. The sum of the deformation energies of all
elements defines the conformity.

2. Limiting constraints for solutions in the design space. In this case, the percentage of
the mass to be eliminated was chosen (max. 30%).
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3. Preserved areas excluded from the optimization process and retained in their final
form. Geometric features in which loads and fasteners are applied are preserved by
default. In this case, all the fixing holes of the punch on the dynamometer and the
contact surface with the metal sheets were preserved.

4. The geometrical constraints imposed by manufacturing processes ensure that the
optimized part is manufacturable. These constraints, such as the ejecting direction,
thickness control, or symmetry control, are not required in this case, the part being
constructed by additive manufacturing, as seen in Figure 3c.

Depending on the setting of the optimization objectivate, the manufacturing control,
the network of elements, and the loading and limiting conditions, the optimization process
results in a suitable design derivative of the initial maximum design space.

A schematic representation of the punch-forming process and part geometry is pre-
sented in Figure 4a,b. The material blank is retained between the holding plate and the
main body of the clamping system. Hydraulic pistons press on the holding plate, assuring
the required tightening pressure. The framework for this experimental study is related to
the structural behavior of tubular structure analyses at impact [26]. The authors’ previous
experimental research indicated that assembling the longeron from Figure 4b by welding
or adhesive is conditioned by the flange angle and drawing radius. It is evident that
considering the elastic springback, the part’s final shape differs from the ideal shape by a
certain amount; see Figure 4c. An improvement to the drawing process was needed, which
led to the development of the adaptive punch-forming algorithm (A.P.F.A.). Considering
the flange angle and drawing radius shape improvement, the material must flow with
specific amounts at any step in the punch-forming process.
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Figure 4. (a) Punch-forming setup cross-section, indicating the main components and their move-
ments (black arrows indicate linear displacement of the hydraulic press main column and red arrows
indicate angular displacement of the clamping system); (b) longeron assembly; (c) punch-formed
longeron component and measured parameters.

One aspect that emerges from this clamping system is the localization of high-stress
areas between the drawing radius and flange angle; as the punch deforms the material,
it can be stretched to the point at which shearing occurs in the direction of the formed
bending radius. Furthermore, the flange deformation and elastic springback are excessive
if no shearing occurs. One solution to this problem is allowing the material to flow by
regulating the clamping pressure with which the blank is held. Analyzing the process leads
to constructing a solution that allows automatic control of the hydraulic pressure of the
clamping system by considering, at any point in the process, the punching force, speed,
and stroke.

The punch-forming process, proposed by the authors in this experimental study,
seeks to highlight the use of a 3D-printed punch along with a comparison between a
standard pre-programmed and an adaptive one. It implies deforming 120 mm × 50 mm
aluminum 6061-T4 blanks (AMAG, Ranshofen, Austria, with the chemical composition and
mechanical properties given in Table 1) while measuring the punch force, speed, stroke,
clamping system pressure, drawing radius, flange angle, and process time.
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Table 1. Chemical composition and mechanical properties of 6061-T4 aluminum alloy.

Chemical Composition wt.%

Al Si Fe Cu Mn Mg Cr Zn Ti Other
97.4 0.66 0.4 0.22 0.15 0.9 0.16 0.07 0.03 0.01

Rp0.2 N/mm2 Rm N/mm2 A %

156 267 21

Figure 5a–c highlight the general methodology from an industrial equipment per-
spective. A Hydramold hydraulic press (Hydramold, Ias, i, Romania) was used as base
equipment as its main control panel allows pre-programing and real-time control; a key
advantage is that the stroke can be digitally controlled and measured, being displayed on
a screen. On the upper plate of the hydraulic press, a Kistler 9272 dynamometer (Kistler
Holding AG, Winterthur, Switzerland) is mounted, which also acts as a fastening system
for the 3D-printed punch. The hydraulic clamping system is an integrated part of the
hydraulic press; a downside of the mechanism is that the pressure is manually controlled.
As the digital nature of the proposed solution implies real-time control of each parameter,
the hydraulic pressure is assured separately by an Ecoroll HGP 3.0 hydraulic pump (Ecoroll
AG, Celle, Germany); this configuration allows for digital control of the clamping system’s
hydraulic pressure, through a solenoid valve and hydraulic sensor.
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Figure 5. Experimental setup of the punch-forming process indicating (a) hydraulic press and
camera tripod system (indicated with the red arrows the linear displacement of the hydraulic press
main column); (b) dynamometer, 3D-printed punch, clamping system, and hydraulic sensor; and
(c) 7/3 mm markers.

Although the hydraulic press measures the stroke, this is an internal measurement
and does not offer the possibility of serial communication. Therefore, a computer vision
measuring system was developed based on the authors’ previous work [14]. As described
in the general methodology [14], the system tracks calibrated white-on-black 7/3 mm mark-
ers fixed on a plate that moves at the same pace as the clamping system. The measurement
technique was validated by comparing its results to the hydraulic press’ internal measure-
ment system; the maximum measurement error was 0.714%, representing a deviation of
0.2 mm for a 28 mm stroke.

The script, used for computer vision capabilities, is written in Python (Python Software
Foundation, Wilmington, Delaware, Statele Unite, 2022, version 3.7) and uses the OpenCV
library [27]. The markers were placed on a metal plate, and the center-to-center distance
was measured using a GOM Atos 3D measuring system. Thus, an auto-calibration function
was implemented to measure the marker’s distance and diameter, resulting in a calibration
coefficient. The program initiates with 1 bar pressure in the clamping system to ensure that
the blank is held while the punch is placed 0.1 mm above the material. In Figure 6a, the
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camera view is displayed using the red rectangle; the next step in the process is for the user
to select the region of interest (ROI), indicated in Figure 3b by a blue rectangle; until the
end of the script, only this region will be analyzed. The frames contained in the ROI are
transformed until the background is changed to white; at this stage, as in Figure 6c, the
circle boundary is determined (Ø1 and Ø2), and therefore the origin (C1 and C2) and its
coordinates (x1, y1, and x2, y2), in pixels and relative to the lower left part of the image. The
distance between C1 and C2 is calculated with Equation (2), and the result is converted
from pixels to mm using the calibration coefficient, as indicated in Figure 6d.

(C1, C2) =

√
(x2 − x1)

2 + (y2 − y1)
2 (2)
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Figure 6. (a) Experimental setup side view indicating the hydraulic press movement and marker
position (indicated with the red arrows the linear displacement of the hydraulic press main column);
(b) region of interest (ROI) user selection; (c) image transformation result, indicating the diameter
and center of circle coordinates; (d) software information of the auto-calibration coefficient, also used
for user interpretation.

Once the center-to-center circle distance is determined, the algorithm initiates the
control of the hydraulic press pump’s solenoid valve, thus controlling the punch stroke and
hydraulic pressure; if the system is on self-control, an additional function connects to the
Kistler’s data acquisition software DewesoftX (Dewesoft, Trbovlje, Slovenia, 2022, version 4)
and retrieves real-time force measurements. From this point on, only the lower marker’s
initial and actual position is used to keep track of its trajectory, as indicated in Figure 7a–c.
In addition, the output image information, such as the run number, elapsed time, stroke,
velocity, acceleration, punch force, and hydraulic clamping pressure, is displayed as it
changes in real time; these values are then stored in .csv files.
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Initial tests indicated that the forces needed to deform the aluminum blank reached
20 kN; as a result, the punch was subjected to high contact pressure. Therefore, ensuring the
structural integrity through all the tests implied using a tough material such as the BASF
Ultrafuse PLA PRO1 3D printing wire (BASF, Ludwigshafen am Rhein, Germany); the
mechanical properties of the material are indicated in Table 2, and the printing parameters
are indicated in Table 3.

Table 2. Mechanical properties of BASF Ultrafuse PLA PRO1 3D printing wire, obtained by tensile
and Charpy impact tests.

Rm N/mm2 EPLA N/mm2 A % K kJ/m2 (Unnotched)

48 267 21.9 20.4

Table 3. The 3D printing parameters of the punch, BASF Ultrafuse PLA PRO1.

Layer
Height mm

Initial Layer
Height mm

Line
Width mm

Wall
Thickness mm

Top
Thickness mm

0.15 0.2 0.375 1 1

Bottom
thickness mm

Horizontal
expansion mm

Infill
density %

Infill
pattern

Infill
overlap %

1 −0.015 50 triangles 15

Flow % Build plate temperature ◦C Print speed
mm/s

Wall print
speed mm/s

102 60 75 37.5

Printing time Part weight g
8 h:59 m 164

2.2. Software Solution and Experimental Plan

A high degree of confidence in the accuracy of the software solution was required
so that the hydraulic press and pump could be controlled with minimal or no human
intervention. Therefore, the adaptive punch-forming algorithm (A.P.F.A.) had to be verified
from the point of view previously described while offering improvements to the process.
The following modes were implemented to compare and understand how to compile the
algorithm: manual data input with constant process parameters and variable data input
with variable process parameters. The first case implies a pre-programmed process with a
specific experimental plan, as indicated in Figure 8; data are directed in one direction, a
command is given, and a measurement is made.
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The proposed algorithm offers further functionality, as the communication is bidirec-
tional (Figure 9); the measurements determine the commands to keep the punch force and
hydraulic clamping pressure as constant as possible, considering the stroke increase. It
can be noted from Figures 8 and 9 that there are lower and upper limits for the hydraulic
clamping system, stroke, and punch speed. Previous tests indicate in the case of the hy-
draulic pressure that pressure of less than 5 bar does not offer enough clamping force, while
pressure above 8 bar results in shearing of the parts. A stroke of 22 mm is required for
the part to be drawn in shape, while a value above 28 mm leads to excessive punch forces.
A speed of 0.3 mm/s is the minimum speed of the hydraulic press, and 2 mm/s is the
maximum that it can offer. Therefore, considering this limitation and the results obtained
from the manual data input for the deformed parts, the A.P.F.A. was constructed to adjust
each process parameter as the speed, pressure, stroke, and punch force are mathematically
correlated. The correlation was implemented following the results obtained by analyzing
the manual data input using the variance analysis (ANOVA) methodology. The plan pro-
posed for this experimental study is, in consequence, tailored for each data input mode.
In the case of the manual data input, 20 parts were analyzed, while, for the variable data
input, we used 9.
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2.3. Measurement Methodology

The GOM Atos II 400 3D measuring system (Carl Zeiss GOM Metrology, Braunschweig,
Germania) was used to measure the flange angle and drawing radius. Figure 10a–f highlight
the measurement methodology used for this experimental study. The parts were sprayed
with an anti-reflexive coating MR Chemie 2000 (MR Chemie GmbH, Unna, Germania) to
avoid shiny spots on the parts and gaps in the measured area. The markers were cleaned,
and the part was rotated between 5 and 8 angles for one complete measurement. With
the help of the measuring system’s software, the scanned geometry was cleaned, purged,
and transformed into a mesh. Taking as a reference the plane on which the parts were
positioned, parallel planes were constructed transversally and longitudinally, keeping a
constant distance between them. The intersection between these planes and the parts
resulted in intersection lines, as indicated in Figure 10e. Each value is, therefore, an average
of three measurements.
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(f,g) represent the measured areas.

3. Results

From an industrial point of view, a part can enter production when the required
dimensions, deviations, surface finish, and material hardness are within their tolerance
ranges. When a part is at the first article inspection (F.A.I.) stage, changes must be made to
the manufacturing process so that the part respects the design requirements. Therefore, con-
stant changes to the process parameters are consistently correlated with part measurements.
It is a common practice in any production process for these adjustments to be performed.
As manufacturing time is a critical factor in any industrial process, any additional step is
unwanted, but, if necessary, it must be as short as possible.

The Results section highlights the algorithm’s utility and is divided into pre-programmed
and A.P.F.A. modes. The ANOVA methodology was conducted using the Design Expert
v.12 software to determine if a mathematical connection between the process parameters
and the result could be established. The results are relevant for determining a significant
link between the input and output process parameters and understanding the direction
that the A.P.F.A. algorithm should take.

In terms of an ANOVA analysis, statistical analysis is performed. The interpretation of
the outcome is related to terms such as the following:

• F-value (calculates the variance between means that differ significantly, indicating that
the results did not occur by chance);

• p-value (correlated to the F-value; a value lower than 0.05 indicates the statistical
significance of the observed results);

• R-squared (R2; values higher than 0.9 indicate high confidence in the model’s capacity
to predict a valid response) and its variations:

# Adjusted R2 (Adj-R2)—the amount of variation about the mean indicated by
the model;

# Predicted R2—measures how the model predicts a response.

In terms of experimental precision, the adjusted R2 and predicted R2 difference should
not be greater than 0.2, as indicated by the official documentation [28].

Another critical aspect is the signal-to-noise ratio; it is evaluated by the adequate
precision coefficient (Adeq. Precision), with a ratio greater than 4 being desirable.
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3.1. Pre-Programed Controlled Process Results

The pre-programmed process follows a predictable path in terms of input process
parameters. Indicated in Table 4 is the experimental plan along with the related measure-
ments (maximum punching force, drawing radius, flange angle, and process time). The
design factors are the clamping pressure (5, 6, 7, 8 bar), punch velocity (0.3, 0.866, 1.433,
2.0 mm/s), and stroke (22, 24, 26, 28 mm).

Table 4. Pre-programmed process experimental plan and measurements.

Part Number Pressure Bar Velocity mm/s Stroke mm Max. Punch
Force N

Drawing
Radius mm Flange Angle ◦ Process Time s

1 8 0.866 24 21,839 30.96 24.46 27.7
2 6 0.866 28 19,878 34.08 34.66 32.3
3 8 0.866 24 19,245 31.06 20.265 27.7
4 5 0.3 26 13,646 34.3 31.885 86.6
5 5 2.0 28 18,689 33.38 21.2 14.0
6 6 0.866 22 13,984 33.4 23.13 25.4
7 8 0.3 28 20,116 33.02 33.655 93.3
8 7 1.433 22 20,316 31.85 23.19 15.3
9 6 2.0 24 20,117 31.08 22.635 12.0
10 5 1.433 22 14,501 31.85 19.265 15.3
11 8 2.0 28 21,741 31.25 28.86 14.0
12 6 2.0 24 21,466 31.36 23.785 12.0
13 7 1.433 26 19,584 34.04 31.29 18.1
14 6 0.866 28 19,663 33.68 28.86 32.3
15 6 0.3 24 13,708 32.51 27.625 80.0
16 7 0.3 26 14,972 33.7 31.26 86.6
17 8 2.0 22 20,250 32 23.195 11.0
18 7 1.433 26 19,096 32.8 28.59 18.1
19 7 0.3 22 11,811 31.97 23.295 73.3
20 7 1.433 26 20,951 31.9 28.645 18.1

Measurements were introduced into the Design Expert software (State-Ease, Minneapo-
lis, MN, USA, 2022, version 12), and analyzed. The first step in the data validation process
is the predicted vs. actual data plots from Figure 11, which visually interpret the predicted
data in correlation with the measured ones. A 45◦ reference line indicates well-predicted
values; the prediction is less accurate as the distance from the reference line increases. The
data for the reaction force, drawing radius, and flange angle are near the reference line,
indicating that the overall mathematical model can accurately make predictions.
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The ANOVA analysis indicates that each model is significant. Table 5 shows the
p-value for each factor model, which is less than 0.05, indicating that the data were not
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obtained by chance; thus, the mathematical connection is reliable. Furthermore, each input
process parameter (pressure, velocity, and stroke) is significant for the outcome.

Table 5. Partial ANOVA results in terms of p-value, R2, Adj-R2, predicted R2, and adequate precision.

Factor Maximum Punch Force Drawing Radius Flange Angle

Model
p-value (significant if less than 0.05)

3.35 × 10−5 (significant) 0.004564 (significant) 2.93 × 10−5 (significant)
Pressure (A) 0.000547 0.002147 0.223187
Velocity (B) 8.81 × 10−6 0.00637 0.002118
Stroke (C) 0.000573 0.039428 3.81 × 10−6

R-squared
0.902 0.879 0.878

Adj-R2

0.846 0.746 0.821

Predicted R2

0.708 0.561 0.721

Adeq. precision
11.869 7.341 12.852

From a statistical point of view, the data indicate that the maximum punch force
F-value of 15.95 implies that the model is significant. There is only a 0.01% chance that an
F-value of this size could occur due to noise. Regarding the drawing radius, the model
F-value of 6.58 implies that the model is significant. There is a 0.46% chance that an F-value
of this size could occur due to noise. The flange angle indicates the same tendency, as an
F-value of 15.60 indicates that the model is significant. The data suggest a 0.01% chance
that it can occur due to noise.

Extensive statistical data analysis involves considering the input values’ interaction
with the outcome. The maximum punch force p-value is 3.35 × 10−5, less than 0.05,
indicating that the model terms are significant. A, B, C, BC, and AB2 are significant model
terms in this case. The punch velocity model p-value is 0.004564, indicating that the model
terms are significant. The factors and their interaction A, B, C, AC, A2, B2, C2, A2C, and AB2

are significant model terms. For the flange angle, the calculated p-values of 2.93 × 10−5

also indicate significant model terms. B, C, AB, BC, and A2 are significant model terms
in this case.

Another essential aspect of the analysis is the lack of fit F-value; a non-significant lack
of fit is good, as it indicates that the model fits. In the case of the maximum punch force,
punch velocity, and stroke, this value is 1.46, 0.23, and 0.36, implying that the lack of fit is
insignificant relative to the pure error. For all the factors, there is a 35.08%, 8.93%, and 9.88%
chance, respectively, that a lack of fit F-value of this magnitude could occur due to noise.

The Adj-R2 and predicted R2 need to be 0.2 units apart in correlation with the ANOVA
statistical analysis indications. The adjusted R2 values are in reasonable agreement with
the predicted R2, as indicated by Table 5 for the maximum punch force (0.7089 and 0.8464),
punch velocity (0.5614 and 0.7461), and punch stroke (0.7214 and 0.8217). Each factor’s
(maximum punch force, punch velocity, and stroke) signal-to-noise ratio is greater than 4,
indicating an adequate signal. Thus, the model can be used to navigate the design space.

These mathematical models’ predictions are accurate as the models are significant, as
the R2 values are close to 0.9. The correlation functions are indicated in Equations (2)–(4)
as second-degree polynemes for each factor: maximum punch force, drawing radius, and
flange angle. The equations are a starting point in the design of the adaptive algorithm.
Moreover, they are used to generate the model graphs for the reaction force (Figure 12),
drawing radius (Figure 13), and flange angle (Figure 14).
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F = −21823.2− 12.05P− 4592.4V + 1384.5S + 4461.3PV − 695.5VS + 11950V2 − 2089.2PV2 (3)

R = −1282.1 + 269.4P− 155.9V + 65.9S− 22.3PV − 10.7PS− 18.5P2 − 67.9V2 − 0.5S2 + 0.7P2S + 9.6PV2 (4)

A = −73.1 + 15.03P + 4.5V + 2.4S + 2.01PV − 0.8VS− 1.3P2 (5)
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Figure 12. Reaction force by velocity, pressure, and stroke (indicating part of the input data with
red dots and the distribution of values by color range, where blue is the minimum predicted value
and red is the maximum; the numbering adjacent to the red dots indicates the number of center
points replication).

A color gradient representation of the interaction of the factors concerning each
outcome visually highlights the result (blue being used for low-intensity outcomes while red
is for the extreme ones). As expected, the punching force directly depends on the punching
stroke, velocity, and clamping pressure. When analyzing the graphs from Figure 10, for the
24, 26, and 28 mm strokes, the bending radius tends to increase as the clamping pressure
decreases. In the case of the 22 and 24 mm strokes, the extreme values of the punch velocity
lead to similar results. A lower punch velocity, in combination with average clamping
pressure, offers high flange angles. The ideal shape of the part would be with lower values
of the drawing radius and flange angle. An overall view is formed from these experimental
data, as the algorithm should control the punch force, and, considering each step of the
stroke, it should decrease the punch velocity and clamping pressure.
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3.2. Adaptive Punch-Forming Algorithm-Controlled Process Results

As indicated in Figure 6, the A.P.F.A. data input script logic uses variable process pa-
rameters. It tries to find the optimum solution (parameters) at each stroke step, considering
the mathematical models implemented from the pre-programmed analysis. Table 6 shows
that the average pressures and velocities that the algorithm uses vary around 7.44 bar and
0.238 mm/s, respectively. The stroke value tends to be higher than defined, with an average
of 0.174 mm, but this is due to the system’s inertia; nevertheless, in each case, the average
error is 1%. In the case of the drawing radius and flange radius’ average values obtained
with the pre-programmed process, the data indicate a minor improvement of 1.8% for the
radius and 27.05% for the angle; this comes with less punch force, a 36% drop, from an
average of 18.27 kN to 11.66 kN, while there is an increase in the processing time from
35.6 s to 107.6 s.

Table 6. A.P.F.A. average process parameters—experimental plan and measurements.

Part Number Avg. Pressure
Bar

Avg. Velocity
mm/s

Stroke
mm

Max. Punch
Force N

Drawing
Radius mm Flange Angle ◦ Process Time s

1 7.45 0.261 22.199 6431 31.97 18.66 85.0
2 7.46 0.263 22.194 8591 32.29 27.93 84.4
3 7.67 0.275 22.247 18,109 32.43 23.37 81.0
4 7.12 0.257 25.168 7250 32.81 18.77 97.8
5 7.20 0.241 25.186 14,196 32.20 19.05 104.6
6 7.14 0.221 25.193 8265 31.57 22.52 114.1
7 7.05 0.204 28.130 13,483 31.60 19.81 138.2
8 8.85 0.210 28.200 21,184 31.14 24.43 134.6
9 7.08 0.217 28.054 7471 31.40 13.09 129.0

Figures 15–17 show the relationships between the stroke and the clamping pressure,
the speed of the punch, and the punch force, respectively.
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Regardless of the stroke, the graphs’ general shapes are similar, indicating that the
system reacts concerning the three elements analyzed.

In the case of the 22 and 28 mm strokes, the system adjusts the clamping pressure
of the blank in stages. Firstly, the pressure increases to some maximum value; once the
blank is stretched and forming is initiated, the pressure decreases to the level set by the
system. Moreover, the strain rate decreases from the maximum value of 1.2 mm/s with the
increased distance traveled by the punch. The trend is kept relatively constant until the
end of the process.

Regarding the 24 mm stroke, the system adjusts the holding pressure in four stages;
these are shorter in duration. The transition from one level to another is within roughly the
same range as in previous cases. The situation is similar for the 26 mm stroke.

This phenomenon can be explained by the fact that the system needs more information
accumulation at an overly low or high value of the stroke. Therefore, there is a delay in
triggering the command to change the clamping force. It can be correlated with the data
acquisition speed and the data processing speed of the system setup.

Graphically, the punch speed decreases parabolically since the clamping force must
decrease following the desire to keep the strain ratio constant as a function of the forming
stroke. It occurs similarly regardless of the forming mode.

With the increase in the forming depth, the inevitable increase in resistance to defor-
mation occurs, caused by material hardening. This fact causes the forming force to increase,
as shown in Figure 17.

4. Discussion

Given that the factors that decisively influence the plastic-forming processes of sheet
metals are among the most varied, ranging from the chemical composition and structure
of the material to the geometry of the parts, equipment, and the deformation conditions,
this study proposes the use of an adaptive algorithm to control work equipment. Tools
indispensable to the forming process have been obtained through additive manufacturing,
thus providing additional freedom in correcting their active geometry.

The geometry of the tools is highly dependent on the springback of cold-formed
sheet metal parts. The problem can be somewhat solved by addressing several work
directions. This study focuses on a statistical analysis of a few influencing parameters that
cause essential changes in part geometry after removing forming forces. However, this is
different from the purpose of this study.

Thus, one of the solutions considered in this study is allowing the material to flow
by regulating the clamping pressure with which the blank is held. Analyzing the process
leads to the construction of a solution that will enable automatic control of the hydraulic
pressure of the clamping system by considering, at any point in the process, the punching
force, speed, and stroke.
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By creating an algorithm that communicates bidirectionally, the measurements de-
termine a command that keeps the forming and clamping forces constant as the stroke
increases to the pre-set value.

The results were filtered through statistical analysis to highlight the mathematical link
between the process parameters and the data obtained.

Considering the parameters of the forming process, its pre-programmed stage has a
predictable trajectory. The data obtained and presented in graphical form show minimal
differences between the estimated and measured values regarding reaction force, drawing
radius, and flange angle. Thus, reasonably accurate estimates can be made through a
general mathematical model. Moreover, ANOVA analysis suggests that each model is
statistically significant, calculating a p-value of less than 0.05, demonstrating that these
values were not obtained by chance. Further analyses yielded clear percentage values
showing that noise did not influence the results. A significant factor in statistical data
analysis is the lack of fit F-value. The model fits if there is a non-significant lack of fit.

The mathematical estimates of the models are accurate due to their statistical sig-
nificance, the correlation functions being, in turn, the starting points in the design of
the adaptive algorithm. Moreover, the graphs of the models—where blue is used to
show weak correlations and red highlights strong correlations—are also obtained based
on these equations.

In the case of the adaptive punch-forming algorithm-controlled process, the data
input script logic uses variable process parameters, i.e., for each increment in the deforma-
tion stroke, the system tries to find the optimal process parameters by using previously
implemented mathematical models.

Another aspect of the process relates to the small degree of wear of the 3D-printed
punch. It has to be considered that it was used to carry out initial tests, for the calibration of
the machine and its correlation with the video detection system, and to obtain the samples
for the experimental study. As can be noted in Figure 18a,b, no deformation has occurred,
with the punch maintaining its initial shape. Furthermore, the top view of the 3D-printed
punch, as can be noted from Figure 18c, indicates that it retained the roughness resulting
from the printing process. This is an indicator that the stress induced by the contact pressure
was distributed across the surface and was not concentrated.

Materials 2023, 16, 3704 18 of 20 
 

 

 

 
Figure 18. Comparison between the contact surface of the 3D-printed punch before (a) and after the 
(b) punch-forming process, indicating (c) the top view, after usage, highlighting the printing layers. 

5. Conclusions 
Following the analysis of the data collected from the experimental tests and the eval-

uation of the mathematical models used by the adaptive system, some conclusions can be 
drawn as follows: 
− the reaction force of the system, depending on the forming speed, pressure, and 

stroke, increases rapidly after exceeding a depth of 25 mm; 
− the radius of the part is strongly influenced by the clamping force, having incon-

sistent values at lower values; 
− high values of the forming speed produce similar effects regarding the radius. 

Thus, the three essential process parameters are changed accordingly depending on 
the drawing stroke. Although the general shape of the correlation graphs is similar, it can 
be concluded that the system reacts according to the mathematically estimated need in a 
precise way. Thus, the holding force is generally adjusted in three stages regardless of the 
prescribed deformation stroke. The forming speed decreases parabolically with the in-
crease in the forming stroke, thus implying a proportional increase in the forming force. 

The result obtained indicates that future research in this field can be directed toward 
training neural networks for decision making and investigating more alloys, complex 
shapes, and process parameters. Moreover, using machine learning and deep learning, an 
optimal punch shape can be obtained, for complex shapes, if we take into consideration 
factors such as the punch topology and geometry to decrease the springback effect, the 
optimization of the printing parameters, and the tool wear over time. 

Author Contributions: Conceptualization, C.C.G. and V.A.C.; methodology, C.C.G. and V.A.C.; 
software, C.C.G.; validation, C.C.G., V.A.C. and V.Z.; formal analysis, C.C.G. and V.A.C.; investiga-
tion, C.C.G. and A.-M.R.; resources, C.C.G., V.A.C. and V.Z.; data curation, C.C.G. and A.-M.R.; 
writing—original draft preparation, C.C.G., V.Z. and A.-M.R.; writing—review and editing, C.C.G. 
and V.A.C.; visualization, C.C.G.; supervision, V.Z.; project administration, V.Z.; funding acquisi-
tion, V.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Ministry of Education and Research, through the Na-
tional Council for the Financing of Higher Education, Romania, grant number CNFIS-FDI-F-2023-0085. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

  

(a) (b) (c) 

Figure 18. Comparison between the contact surface of the 3D-printed punch before (a) and after the
(b) punch-forming process, indicating (c) the top view, after usage, highlighting the printing layers.

5. Conclusions

Following the analysis of the data collected from the experimental tests and the
evaluation of the mathematical models used by the adaptive system, some conclusions can
be drawn as follows:

- the reaction force of the system, depending on the forming speed, pressure, and stroke,
increases rapidly after exceeding a depth of 25 mm;

- the radius of the part is strongly influenced by the clamping force, having inconsistent
values at lower values;
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- high values of the forming speed produce similar effects regarding the radius.

Thus, the three essential process parameters are changed accordingly depending on
the drawing stroke. Although the general shape of the correlation graphs is similar, it can
be concluded that the system reacts according to the mathematically estimated need in
a precise way. Thus, the holding force is generally adjusted in three stages regardless of
the prescribed deformation stroke. The forming speed decreases parabolically with the
increase in the forming stroke, thus implying a proportional increase in the forming force.

The result obtained indicates that future research in this field can be directed toward
training neural networks for decision making and investigating more alloys, complex
shapes, and process parameters. Moreover, using machine learning and deep learning, an
optimal punch shape can be obtained, for complex shapes, if we take into consideration
factors such as the punch topology and geometry to decrease the springback effect, the
optimization of the printing parameters, and the tool wear over time.
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