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Abstract: The field of ophthalmology is expanding exponentially, both in terms of diagnostic and
therapeutic capabilities, as well as the worldwide increasing incidence of eye-related diseases. Due to
an ageing population and climate change, the number of ophthalmic patients will continue to increase,
overwhelming healthcare systems and likely leading to under-treatment of chronic eye diseases. Since
drops are the mainstay of therapy, clinicians have long emphasised the unmet need for ocular drug
delivery. Alternative methods, i.e., with better compliance, stability and longevity of drug delivery,
would be preferred. Several approaches and materials are being studied and used to overcome these
drawbacks. We believe that drug-loaded contact lenses are among the most promising and are a real
step toward dropless ocular therapy, potentially leading to a transformation in clinical ophthalmic
practice. In this review, we outline the current role of contact lenses in ocular drug delivery, focusing
on materials, drug binding and preparation, concluding with a look at future developments.

Keywords: contact lens materials; advanced ocular drug delivery; dropless ocular therapy; drug-
laden contact lens

1. Introduction

Numerous eye conditions, such as chemical or thermal burns, infectious corneal
inflammations, optic neuropathies and macular disorders, finally result in very poor visual
acuity, thus significantly reducing patients’ quality of life. It is presumed that due to
climate change, the incidence of ocular disease might significantly increase, especially in
diseases where UV-rays play a role, such as cataracts, age-related macular degeneration
and eyelid cancer. Due to population displacement in regard to global warming and rising
sea levels, large areas of the globe might end up with worse healthcare, more compromised
access to regular examinations and a higher incidence of untreated chronic ocular illness.
Poverty-related blindness might increase, on the one hand, while the ageing population
in developed countries might further increase the pool of ocular patients. While topical
therapy is still the first treatment choice, this method has some major drawbacks. Its
efficacy often varies significantly due to subjective factors. Many patients find such an
application difficult or even impossible, leading to reduced compliance, which results in
poor management of specific eye conditions. Topical delivery media can be irritative and
cause dry eye syndrome. Nonetheless, a significant proportion of the drug is drained by
the lacrimal system, which connects to the nasal cavity. In recent years there has been an
increasing number of examples where various other methods were studied, approaching
ocular therapy with a “dropless” idea, addressing the unmet need for a more effective
ocular drug-delivery system.
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Anatomically and physiologically, the eye is also challenging in pharmaceutical terms.
Static barriers (cornea, conjunctiva, blood-aqueous humour and blood-retina barriers),
dynamic barriers (choroidal and conjunctival blood flow, lymphatic cleansing and dilution
due to tear flow) and ocular transporter systems (ATP-binding protein family—P glyco-
protein (P-gp) and multidrug resistance proteins (MRP) as well as amino acid and peptide
transporters) pose a significant limiting factor in the local drug delivery [1]. A schematical
depiction of the eye with its crucial functional features is shown in Figure 1.
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Contact lenses are already successfully used for vision correction, while their potential
as drug delivery devices is far from fully exploited. We could consider contact lenses as an
advanced delivery system for the eye, with a more controlled manner of drug release than
common eyedrops, less likely to be affected by poor compliance [3]. While they have been
successfully used in past research, we still feel that much can be improved in such devices.
Presently, common contact lenses are also used to manage corneal injuries as mechanical
protection and to promote healing [4]. They are made of various synthetic polymers, such
as silicon and acrylate [5].

The current trends in the production of advanced delivery systems are leaning to-
ward natural, biocompatible, smart and potentially cheaper polymers, mostly polysac-
charides [6,7]. However, existing contact lenses have an undisputable, albeit clinically
underutilised, potential to bind selected substances for advanced forms of topical therapy.
Among the most promising methods of drug-binding are colloidal delivery systems (e.g.,
layered nanoparticles, nano- and micro-myceliums, polymersomes and layer-by-layer (LbL)
structures) with the potential to overcome pharmaceutical barriers [2,3].

The development of non-invasive delivery systems, such as drug-eluting contact
lenses with a prolonged release (of the substance), could result in substantial shifts in the
ophthalmological practice, leading to a dropless therapy approach that could simplify
therapy for patients and potentially require less follow up by eye professionals. This is
more so the case in a pandemic, as we had with COVID-19 when outpatient visits were to
be minimised.

For the purpose of this review, we searched through PubMed, where 4011 articles can
be found under the search term “therapeutic contact lenses”, 160 for the term “nanoparticle
contact lenses”, and 535 for the term “contact lenses drug delivery”. The trend of published
articles shows us yearly publication numbers that have been steadily growing, plotted in
Figures 2–4.
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In the following review, we present an overview of the technology currently used in
therapeutic contact lenses, as well as several promising possibilities for future applications.
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Figure 2. Number of scientific publications by year using a search query “therapeutic contact lenses”
done through PubMed on 3 March 2023.
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Figure 3. Number of scientific publications by year using a search query “nanoparticle contact lenses”
done through PubMed on 3 March 2023.
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Figure 4. Number of scientific publications by year using a search query “contact lens drug delivery”
done through PubMed on 3 March 2023.

2. Lenses
2.1. Initial Considerations

Hydrogels, from which most lenses are made, are formed by linking monomeric
chains into a matrix-like polymer. Each polymer exhibits unique properties, defined by
the chemical group interactions and cross-linking degree [8]. Physical properties are one
of the utmost considerations during contact lens design and quality control. Several of
these are important when considering a material for use as a drug-laden contact lens
system. Among these are their transparency, oxygen permeability, glass transition tem-
perature, wettability and water content. Each of these has to meet certain requirements
while simultaneously posing no limitations to the lens use. Transparency, as the lens’s
optical clarity measure, must be above 92%. Some approaches can achieve such stan-
dards (surfactant-laden SCLs, minimum 98.5% transmittance), while others are somewhat
lacking in this respect (liposome-laden Poly(2-hydroxyethyl methacrylate) (pHEMA) gels,
80% transmittance) [9]. Oxygen permeability presents another crucial characteristic of
lenses. Its low values can result in unwanted effects, such as corneal oedema. Hence,
adequate oxygen transfer is necessary for such systems, with the bare minimum being
around 125 Dk/t. It depends on the system’s water content and is therefore limited by
its water solubility [8]. Silicone hydrogels are sufficiently capable in this respect, with
no substantial alterations in oxygen permeability even soaked in vitamin E to improve
drug release times [9]. Wettability is the material property which helps determine the lens’
physiological compatibility and stability in lacrimal fluid and is determined by contact
angle measurement. It can be affected by the addition of copolymers [9]. Water content
affects comfort and oxygen permeability, which increase with the increase of the property
above. It was shown that comonomers do not affect the water content in pHEMA, as is
true with molecular imprinting for norfloxacin and fumarate release [9]. Finally, among
the lens properties also, glass transition temperature plays an important role. It presents
a reversible occurrence in which amorphous material changes from a hard and brittle
state into a viscous and rubbery one with increased temperature. Amongst other things,
this property also affects comfort. Monomer incorporations do not significantly alter it in
pHEMA (compared to pure pHEMA), nor is it affected after the supercritical impregnation
process or in the pendant cyclodextrin lenses [9].
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2.2. Lens Materials
2.2.1. “Classical” Hydrogels

Since poly(methyl methacrylate) was developed in 1928 and commercialised in 1933,
polymers have been used in various ways. This material, first discovered during World War
2, is biocompatible with a lack of rejection events after the pilots had suffered Plexiglass®

splinter-induced eye trauma [10]. Since 1936, the material has been used in hard contact
lenses. However, contact lenses were only popularised in 1954, with the advent of soft
pHEMA corrective contact lenses. These polymers have glass-like clarity, which, coupled
with lower density and better mechanical properties, made them the beginning of new
copolymer lens designs [11].

Lens materials are either hydrophilic (which is indicated by the suffix “-filcon”) or
hydrophobic (indicated by the suffix “-focon”). These labels are used according to their
composition and physical properties. Such classification is mainly used to describe lens
behaviour in care product solutions and in interaction with lacrimal fluid proteins [12].

Some of these materials are sufficiently hydrophilic to be used for extended wear. This
is largely due to its wettability, enabling sufficient water absorption and retention, which
facilitates oxygen absorption and subsequent transport to the cornea [13]. The main types
of CL and some commonly used monomers for their preparation are shown in Figure 5.
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2.2.2. Silicone Hydrogels

Silicone hydrogels can be worked into a system which prevents hypoxia during closed-
eye periods. They make for hard lenses, which are gas permeable, with sufficient optical
clarity [11].

In general, these materials are strongly hydrophobic. For the contact lenses to work
in lieu of this problem, it was necessary to prepare hydrogels that build on a combination
of silicone components’ permeability coupled with the biocompatibility of hydrophilic
contact lens materials. The result of such a combination is certain contact lenses approved
for continuous wear for up to 30 days [15].

Since the release profiles of the drug-eluting contact lenses must be fitted to daily,
weekly, or monthly disposable products, the time of permeance of the eye surface must
remain a critical consideration [13].

Silicone hydrogels have a structure similar to classical hydrogels, with a significantly
different chemical composition. Because of silicone’s hydrophobicity, the surface must be
modified to improve its incompatibility with the ocular surface, resulting in discomfort.
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This is due to its poor surface wettability, which destabilises tear film and helps accumulate
deposits. The latter can be solved by incorporating soluble polymers within the material,
acting as internal wetting agents. These polymers must be oriented to form an interface
between the lens, lacrimal fluid, or tear film. This makes them a great combination of a soft
contact lens with excellent oxygen solubility in silicone.

Silicone hydrogel materials are made from a variety of monomers, with the main
common property being the presence of silicone. Due to the monomer variety, these
hydrogel materials exhibit a differing oxygen permeability, ranging from 60–175 barrers,
which is considerably greater than its conventional counterparts. The resulting lenses also
vary in stiffness, water content and surface characteristics. The two present hydrogels,
FDA-approved for wear up to 30 nights with monthly replacement, are Lotrafilcon A and
Balafilcon A. Both are also approved for therapeutic bandage lens uses. Lotrafilcon B is
recommended only for daily wear, with up to six nights’ extended wear, while gayfilcon A
and senofilcon are only recommended for daily wear [8].

2.2.3. pHEMA

PolyHEMA, with the IUPAC name of poly(2-hydroxyethyl methacrylate), is a soft
plastic material used in soft lens production due to its water absorption and flexibility. It is
created by polymerising monomer 2-hydroxyethyl methacrylate (HEMA), a clear liquid, a
product of a reaction between methacrylic acid and ethylene or propylene oxide.

The contact lens is shaped by casting the HEMA monomer into a small, concave,
spinning mould. This is then either heated or subjected to light or free radical initiators,
causing the monomer to polymerise, creating long, multiple-unit chains.

pHEMA chains are usually 3D cross-linked into a complex network by a copoly-
merising compound. The resulting material is hard but absorbent, meaning it can absorb
up to 60% of its weight in water. This results in a soft hydrogel, optically similar to the
conventional hydrogels. It is also less irritating to the cornea [16].

2.2.4. PLGA

This type of polyester is PLA (poly lactic acid) and PGA (poly glycolic acid) polymer,
and it is the best current biomaterial for drug delivery based on its design and perfor-
mance [17]. Despite its advantageous properties, it is often combined with other polymers.
Applying a certain material as a drug delivery device demands an in-depth understand-
ing of the substance’s physical, chemical, and biological properties. With PLGA being a
two-part polymer, one must account for both parts’ properties. While the PLA polymer
can take either a highly crystalline (PLLA) or a completely amorphous (PDLA) form, with
practically no physicochemical property differences, the PGA polymer only takes a highly
crystalline form since it lacks methyl side groups [17].

Concerning solubility, PLGA is soluble in various common solvents, not limited to
tetrahydrofuran, acetone, and ethyl acetate. It also biodegrades in contact with water since
ester linkage tends to hydrolyse. The degradation can be retarded with PLA methyl side
groups, which make the material more hydrophobic, with lesser water uptake, resulting
in a slower degradation rate. The same degradation process is also responsible for some
material parameter alterations, including the change in the glass transition temperature,
water content, and molecular weight. All of these changes influence the release and
degradation rates of incorporated drugs. Degradation, of course, isn’t the only factor which
can influence the material’s properties. Others also include initial molecular weight, device
size, water exposure, and storage [18].

The mechanical strength of the polymer, and thereby the device, also depends on
various factors, including molecular weight and polydispersity index. The strength is
one factor that determines the material’s suitability as a drug delivery device, while it
can also influence the degradation rate through the aforementioned hydrolysis. With
such contact lenses being drug delivery devices, it is also important to understand that
the release rate is not only a function of the lens material but also of the drug used in
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the formulation [17]. All of the aforementioned properties, namely mechanical strength,
swelling behaviour and hydrolysis, depend on the PLGA degree of crystallinity, which
also depends on the used copolymer ratio. The decreased crystallinity, namely the fraction
of matter in crystalline form, increases the hydration rate and the subsequent hydrolysis.
There is a general rule: the higher the PGA content, the faster the degradation process,
though the fastest degradation comes with a 50-50 polymer ratio [17]. Crystallinity and the
melting point are dependent on molecular weight. Due to its glass transition temperature
above 37 ◦C, the polymers in the body are glassy, with a fairly rigid chain structure [17].

PLGA composite formulations
Different drugs require various administration methods for optimal delivery, hence

the need for different PLGA combinations with polyethylene glycol (PEG). Production of
these copolymers is possible in di- or triblock molecules with different component orders.
PEG chains in the diblock types orient themselves towards the aqueous phase, encapsu-
lating their content, and creating a barrier, therefore reducing interactions with foreign
molecules. This enhances shelf stability, though it reduces drug and protein encapsulation
efficiency [17].

Covalently coupled blocks with an esther link can render triblock copolymers into
thermogels: free-flowing solutions at low temperatures and high viscosity gels at body
temperature. These copolymers combine the hydrophilicity of PEG segments with the
hydrophobicity of PLGA segments to achieve such thermos-responsive characteristics.
Drug release from such formulations may be achieved either via diffusion from the hydrogel
during the initial phase or through later erosion of the hydrogel matrix [17].

3. Methods of Binding Drugs into/to Lenses

The important aspects of drug delivery systems are an appropriate delivery duration,
biodistribution, and concentration for the desired therapeutic effect. This means that the
design must consider the degradation and clearance of the delivery system and the drug
itself. The biodistribution and pharmacokinetics of the polymer in question are dose-
dependent and non-linear and also depend on the PLGA system composition [17]. All
mentioned is further influenced by various drug incorporation/addition approaches that
are considered in the following chapters.

3.1. Layered Contact Lenses

Better controlled drug molecule diffusion can be achieved by layering multiple differ-
ing materials, enhancing the system’s effectiveness. The layers retard diffusion, ensuring
a more stable release. Layering can be achieved in two ways. Firstly, the system can
make use of different materials, for one of which the drug exhibits tropism, being less
diffusible from that region. Secondly, one can use alternating layers, which degrade over
time. Layering methods are numerous, from electrostatic interactions between protein
antigens and cationic polymers (rehydration dissolving films) to polymerising surfaces
with macromolecules (polymeric structures for the tailoring of drug release) [17]. It is
possible to encapsulate a drug-laden PLGA layer inside a PHEMA one, as Ciolino et al.
have done, with the PLGA layer being pressed on a photo-polymerised PHEMA layer.
The system is then transferred to a mould with a 2-hydroxyethyl methacrylate monomer,
which reacts to the top layer, resulting in a film capable of releasing fluorescein in perfect
sink conditions for more than four days [19]. This can also be done by taking two identical
polymer layers, one of which has a hole, and then fusing them. In the created recess, a
low-lens solubility drug is loaded [20].

3.2. Surface-Modified Contact Lenses

Drug delivery systems can be created by various methods, relying on loading the drug
into “particles” already present in the lens monomer mix during the polymerisation process.
The radicals used during the process, however, can cause drug degradation. Such issues
can be avoided by loading the drugs into already created polymers or attaching them to
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the lens surface, enabling us to attach drugs to either side of the lens selectively [21]. Thus,
Danion et al. have layered levofloxacin-loaded liposomes on the lens surface, demonstrating
that 10 layers of liposomes layered on the lens can achieve a sustained release of six
days [17,22]. Qui et al. have invented a method where a positively-charged azetidinuim
group is used to affix a hydrophilic and cross-linked polymeric material coating to the lens
surface. This can improve the lubricity of the resulting formulation, which may lessen lens
wear discomfort [23]. Li et al. have polymerised hydrophilic polymers on the lens surface,
catalysing the process with lanthanide or transition metal oxidants [24]. Korogianaki et al.
have created a surface-modified lens, covalently affixing Proteoglycan 4 to silicone hydrogel
lenses. Surface Proteoglycan 4 addition diminishes the kinetic friction coefficient [25]. A
method developed by Winterton utilises coating the lens surface with polyionic materials,
creating a wettable surface [17,26].

3.3. Soaking Method

This simplest, cost-effective, and conventional approach to drug loading includes
contact lenses being soaked in the desired drug solution. As shown in Figure 6, some of the
drug adheres to the polymer matrix while the rest is dissolved in the aqueous phase before
release. Drug delivery aspects of the system were investigated in several studies. The
tested drugs were (including, but not limited to) timolol [27], dexamethasone, hyaluronic
acid and pilocarpine [28–30].
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Charged surface contact lenses (Balafilcon A, Etafilcon A and B) were shown to have
greater ketotifen fumarate uptake as well as release. Their incorporation resulted initially
in a burst release, with the fumarate plateauing within a few hours. Compared to eye
drop therapy, the contact lenses exceeded the total amount of the incorporated drug [31].
During an evaluation of fumarate-loaded silicone contact lenses, Xu et al. found that the
hydrophilic/hydrophobic monomer ratio influenced drug uptake and release kinetics.
Increasing the hydrophilic phase of the lens caused a notable increase in drug uptake.
Conversely, an increase in the hydrophobic phase meant an improved sustained release.
In rabbit eyes, compared to eye drop therapy, a more stable release, lasting 24 h, was
noted [32]. A possibility to raise the lens’ loading capacity is by bonding two separate
materials, creating a cavity within the lens. However, this compromises O2 and CO2, as
Nakada et al. have found, increasing the risk for corneal oedema [20]. Schultz et al. studied
the uptake and release of timolol maleate and brimonidine tartrate using the soaking
method to prepare the contact lenses. In vitro studies showed a burst release achieving
a plateau in an hour. In glaucoma patients, wearing such lenses 30 min per day for two
weeks, the reduction in intraocular pressure (IOP) was equivalent to the previous treatment,
even with the drug being diluted ten-fold [33,34]. Using the soaking method, the prepared
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contact lenses presented a higher drug bioavailability than eye drops [9]. For example,
through a combination of in vitro and in vivo studies, Li et al. demonstrated that 20% of
the timolol, loaded onto a pHEMA contact lens, entered the cornea, providing a higher
fractional uptake in comparison to eye drops [27].

The conventional lens’ ability for drug uptake is highly dependent on the lens’ water
content and thickness, as well as the drug’s molecular weight, its concentration in the
soaking solution and its solubility in the hydrogel matrix. Soaking time also plays an
important role in drug uptake [35]. For example, Maulvi et al. demonstrated that hyaluronic
acid, a drug with a high molecular weight, cannot penetrate the hydrogel’s aqueous
channels. Thus, it remains on the contact lens surface and even with a higher concentration
in the soaking solution, it fails to achieve a corresponding extended release duration [29].
Contact lenses show a low affinity for ophthalmic drugs like timolol maleate, brimonidine
tartrate and several others [34,36]. The low affinity causes the drugs to be released in their
entirety in a time course of only a few hours. Further, such examples are ketotifen fumarate,
ciprofloxacin, prednisolone, acid and pilocarpine [37]. The release characteristics present a
further limitation of the soaking method.

While the sterilisation and packaging processes might cause a premature release of
the embedded drug, the exact effect has yet to be determined [33]. It was speculated that
adjusting the CL loading temperature could optimise the release profile, thereby improving
the soaking method. Topoe et al. tested the hypothesis. The CI26Y disks used as intraocular
lenses extended drug release to 15 days for moxifloxacin and diclofenac by increasing the
loading time to 2 months or the loading temperature to 60 ◦C. However, the release profile
of the Definitive 50 disks, which were used as examples for soft contact lenses, could not be
improved by changing the loading conditions [38]. Minami et al. developed contact lenses
created with the cast moulding method, which were soaked in epinastine hydrochloride to
treat allergic conjunctivitis. Testing out different polymers with varying ionicities in vitro,
they discovered that the more anionic polymers showed better release results. Prolonged
release was described through in vivo studies on guinea pigs. Also, compared to eye drops,
the efficacy of epinastine hydrochloride-soaked CLs was increased in the 12-h study [39].

3.4. Molecular Imprinting

Using a more template-based approach, we can turn to molecular imprinting (MI).
With this method, we can achieve the formation of specific cavities in a 3D-polymer
network [9,40]. The targeted drug is mixed with functional monomers. All of the molecules
are thereby interacting and being rearranged. After polymerisation, the drug is removed.
The remaining imprints are essentially tailored active sites, dubbed macromolecular target
sites [40]. In other words, the 3D structure of the drug is imprinted onto the inner side of
the flexible molecular network. Due to the monomer organisation in the hydrogel mix,
molecular sites with high affinity are formed, as depicted in Figure 7, thus increasing the
drug loading capacity while decreasing diffusion rates. The macromolecular memory sites
also show a high affinity for drugs with a similar 3D structure to the ones used in the
manufacturing process. As the drug affinity and its release profiles depend on the type and
ratio of the functional monomers in the polymeric matrix, it is possible to tailor them by
altering the monomer composition. With an increased degree of cross-linking within the
hydrogel matrix, one can attain stable imprinted cavities [33].

MI can be used in conjunction with a variety of monomers, such as HEMA, methacrylic
acid (MAA), and methyl methacrylate (MMA; 100–400 mM). The monomers can signifi-
cantly influence the drug loading capacity, as well as drug release from MI CLs, which was
studied by Alvarez-Lorenzo et al. The results showed an increase in timolol loading capac-
ity when MMA was incorporated as a comonomer (100 mM MAA) [41]. Later, Hiratani
et al. found that by increasing the MAA/drug ratio, they could achieve a two-fold increase
in release duration. The imprinted hydrogels demonstrated a higher affinity for timolol and
a slower release rate compared to the non-printed variety [42]. Also, Yanez et al. studied
imprinted soft contact lenses for norfloxacin delivery. Their results showed that imprinted
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hydrogels with norfloxacin/acrylic molar ratios of 1:4 and 1:3 result in the best controllable
release process, attaining a sustained release for 24 h [43]. Tieppo et al. have studied the in-
fluence of different monomer-to-template ratios and non-ionic covalent interactions. Their
research resulted in the development of molecularly imprinted diclofenac-poly(HEMA-co-
DEAEM-co-PEG200DMA) soft contact lenses. The latter enabled zero-order release kinetics
(in this, the drug is released at a constant rate independent of the dissolved substance’s
concentration) at a ratio of 10.5. The release rate in these lenses was almost halved from
11.72 mg/h in the first 48 h [44]. Using multiple functional monomers in MI technology,
Vankatesh et al. demonstrated eight times higher drug loading capacity, which poses signif-
icant room for treatment individualisation [45]. With the concept being proven in vitro, the
next natural step was an in vivo evaluation of CL viability. Hiratani et al. did just that and
found that when tested, such lenses with a 34 mg dose of timolol. Compared to non-MI CL
with 21 mg timolol and 125 mg applied via eye drops, MI lenses delivered the appropriate
drug concentrations 2–3 times longer [46]. Dry eye syndrome is another affliction that
could benefit from MI CL usage. White et al. investigated MI silicone hydrogel lenses. They
found that release time varies to a notable degree, depending on the functional monomer-
to-template ratio, but using 120 kDa Hydroxypropyl methylcellulose, a release of up to
60 days was reported [47].
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While various monomers have been shown to favourably influence the loading and
release kinetics of the used drug, the MI methodology also has its limitations. For example,
the optical and physical properties of CLs can be altered by the structure of such hydrogels.
As Schrader et al. would describe it, the chosen template molecules and monomers play
an important role in the drug loading capacity, as well as the CL deformation following
drug release in their study [48]. The gas and ion permeability is also dependent on the
material’s water content, which seems to decrease with the CL wearing time, presenting
an obstacle in extended wear uses [49]. In line with these limitations, some authors used
other types of structural components for MI. For example, polystyrene can be used to
develop a crowding-assisted molecularly-imprinted polymer, as Tang et al. have done.
This enabled them to achieve zero-order release kinetics from drug-laden CLs, improving
the effective diffusivity [50]. MI was used in the development of polymyxin B-loaded CLs.
Malakootin et al. have thus achieved a sustained drug release. The results showed that
acrylic acid-functionalised and imprinted hydrogels loaded greater amounts of polymyxin
B and had improved sustained release profiles than non-functionalised and non-imprinted
networks [51]. Alvarez-Rivera et al. designed epalrestat-loaded hydrogels for the treatment
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of diabetic eye conditions while also using the method of molecular imprinting. In vivo
tests presented a successful accumulation of epalrestat delivered by hydrogels in the cornea.
In vitro test results also demonstrated the anti-cataract activity of epalrestat-loaded silicone
hydrogels [52]. Anirudhan et al. have discovered a method for achieving an appropriate
therapeutic index in sustained drug delivery of timolol maleate with the MI technique [53].

3.5. Colloidal Nanoparticles

Colloidal nanoparticles (such as polymeric nanoparticles, liposomes, niosomes, mi-
croemulsions, micelles, etc.) can entrap drug molecules and attain better control over
their release rate from contact lenses [54–56]. Creating therapeutic contact lenses us-
ing this approach requires the formulated nanoparticular system (10–100 nm) to be dis-
persed in different monomers (e.g., HEMA) and further polymerised (e.g., with ethylene
glycol-dimethacrylate (EGDMA) and/or with photo inhibitors (e.g., Darocur)) [57,58].
Nanoparticle-loaded contact lenses can provide a controlled drug delivery for an extended
time span due to the nanoparticles preventing the interaction of drugs with the polymeri-
sation mixture and providing additional resistance to the drug’s release. Furthermore,
enzymatic drug metabolism (such as lysozyme in tears) is also a problem, which seems to
be somewhat bypassed using loaded nanoparticles or globules [55,59,60]. We list types and
their examples and characteristics of colloidal nanoparticles in Table 1.

Table 1. A list of colloidal nanoparticles, their examples and characteristics, with relevant references.

Colloidal Nanoparticles Examples Characteristics References

Polymeric nanoparticles

• PGT nanoparticles
• EDGMA and PGT

(cross-linked nanoparticles)
• Dispersed bovine serum

albumin-coated meloxicam
nanocrystals

• Favourable release profile
• Limitation: nanoparticles reduce

oxygen and ion permeability in silicone
hydrogel CL, as well as increase the
storage modulus and decrease the
water content

[55,61,62]

Cyclodextrins
• puerarin-β-CD
• methacrylated-β-CD
• GMA-β-CD

• Hydrophobic interior can accommodate
several hydrophobic molecules,
enabling better-controlled drug delivery

• Increasing tensile strength
• Inducing swelling

[63–65]

Liposomes

• dimyristoyl
phosphatidylcholine
liposomes

• REL
• ML
• PEG-biotinylated lipid

liposomes

• Good biocompatibility and
biodegradability, suitable for a variety
of medical applications

• Sustainable drug delivery heavily
dependent on the number of
lipid barriers

• Gas permeability compromised due to
liposome multilayer

[9,21,33,59,66]

Microemulsions and
micelles

• oil-in-water type
microemulsions with ethyl
butyrate and Pluronic F127

• microemulsion with OTMS
silica shell

• nanostructured
microemulsions or micelles

• MePEG-b-PCL micelles
• Silica shell nanoparticles

• Thermodynamically stable, have a high
loading capacity of drugs, while their
release profile is readily adaptable

• Decrease protein adherence and
increases wettability of contact lenses

• Prolonged drug release
• Hydrogel transparency

largely unaffected

[60,67–71]

Although methods of creating therapeutic CLs are known, we have to keep in mind
that any alteration in the CL also poses a risk of altering the lenses’ physical and mechanical
properties, such as gas and ion permeability, transparency and swelling behaviour. All
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of these often had to be changed as well, seeing as the wearer’s comfort has to be consid-
ered [33]. The following subchapters review the latest options in therapeutic lenses based
on colloidal systems.

3.5.1. Polymeric Nanoparticles

Several researchers have studied polymeric nanoparticles, utilising both biodegrad-
able and non-biodegradable polymers. With the number of ocular pathologies on the rise,
such contact lenses were heralded as a novel therapeutic modality. Glaucoma is one such
pathology. Jung et al. used dispersed timolol-loaded propoxylated glyceryl triacylate
(PGT) nanoparticles in contact lenses. Results of in vitro studies showed a release profile
with a drug presence detectable for as long as 1 month. In vivo studies on Beagle dogs
demonstrated a reduction in IOP. However, while therapeutically successful, nanoparticles
also reduce oxygen and ion permeability in silicone hydrogel CL, as well as increase the
storage modulus, thus indicating the technique’s limitation [55]. Timolol encapsulated
highly cross-linked nanoparticles, dispersed in CL, as used by Chauhan et al., demonstrated
an increase in drug release period to up to four weeks. Monomers with multi-vinyl func-
tionalities like EDGMA and PGT were used to prepare cross-linked nanoparticles. Timolol
was linked to the aforementioned CL particle matrix by Esther bonds, the hydrolysis of
which is suggested as the drug transport mechanism. While therapeutically worthwhile,
the increase in particle bonding also notably leads to an increase in the storage modulus,
as well as decreases the water content [61]. Due to its known antimicrobial effects on
P. aeruginosa and S. aureus, silver-impregnated hydrogels were assessed by Bazzaz et al.
As it transpires, this method lowers the microbial adverse event risk for extended CL
wear [57]. Rad et al. also studied the effects of silver NPs, noting continuous antibacterial
activity against P. aeruginosa and S. epidermidis [72]. Lower needed drug doses are generally
desirable, as are decreased dosing frequencies. This was investigated by Chandasana et al.
with natamycin in corneal targeting nanoparticle-laden CL. Results of in-vitro studies
demonstrated extended release lasting up to 8 h. Compared to marketed preparation,
in-vivo studies also presented a notable improvement in the area under the curve and main
residence time [73]. Post-cataract endophthalmitis can often present in ocular irritation.
Dispersed bovine serum albumin-coated meloxicam nanocrystals in CL material, as devel-
oped by Zhang et al., reduced said problem, with a sustained drug delivery lasting up to
five days [62].

3.5.2. Cyclodextrins

Due to the physical limitations of hydrophobic drugs in water-rich environments, it is
difficult to achieve sufficient doses and sustained delivery. In order to combat both prob-
lems, cyclodextrin (CD) utilisation is one of the possible approaches. The hydrophobic inte-
rior of CDs can accommodate several hydrophobic molecules, enabling better-controlled
drug delivery [63].

Xu et al. used copolymerisation of HEMA with puerarin-β-CD complex to develop
pHEMA/β-CD hydrogels. Incorporating the β-CD into hydrogels increases its hydrophilic
properties, thereby inducing swelling, as well as increasing tensile strength. This results
in an improved drug residence, followed by a higher drug concentration in tears, as
well as vitreous humour, compared to conventional eye drops or hydrogel therapy [74].
Fernández et al. aimed to attain sustained acetazolamide delivery to treat glaucoma, which
was achieved via drug-poly-CD loaded hydrogel CL, cross-linked with citric acid. This
improved drug solubility in CL material, thereby achieving both corneal drug concentration,
as well as an extended release lasting several weeks [75].

Copolymerising hydroxyethyl methacrylate with methacrylated-β-CD, as was done
by Santos et al., can be used to alter the properties of hydrogel contact lenses, such as drug
loading and release rate of acetazolamide and hydrocortisone, by way of alterations in
swelling and storage moduli [64]. By copolymerising hydrogels with glycidyl methacrylate
(GMA) and grafting them with β-CD, CLs can be adapted for controlled drug delivery.
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The incorporated β-CDs, bound to glycidyl groups, as shown in Figure 8, did not notably
change the hydrogel matrix’s optical and physical properties. This resulted in a 1300%
improvement in diclofenac loading, as well as a sustained drug release lasting as much as
two weeks [65].
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Glisoni et al. have discovered a way of engineering pHEMA-co-β-CD, which is loaded
with an antimicrobial agent (5,6-dimethoxy-1-indanone N-4-allyl thiosemicarbazone). The
sustained delivery they achieved lasted up to two weeks though the release profile al-
ters depending on the β-CD proportion, as well as mesh size and the degree of hydrogel
swelling [76]. Radical thiolene click chemistry was used by Arslan et al. for the creation
of hydrogels using thiol-modified β-CD and allyl terminated PEGs to achieve controlled
release of previously loaded puerarins, as illustrated in Figure 9. Similarly to Glisoni et al.,
they found that altering the amount of β-CD cross-linker or PEG chain length also alters the
physical and rheological properties of the hydrogels [77]. Functionalising hydrogels with β-
CD can improve the attained ocular drug delivery, as discovered by Hu et al. Further, β-CD
functionalised hydrogels demonstrated sustained drug delivery, increased hydrophilicity,
and reduced protein adherence [78]. One of the glaucoma treatment options is acetazo-
lamide. By modifying biodegradable polymer CL with β-CD, Prakash et al. achieved a
sustained drug release, which was confirmed by observing a prolonged release from the
nano-drug complex in simulated tear fluid. It was concluded that the sustained release
from the biomaterial shows its great potential in glaucoma therapy since the advantages
include fewer side effects of acetazolamide due to a low drug content [79].
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3.5.3. Liposomes

By their chemical nature, liposomes create membrane-like structures. These are, due
to their biocompatibility and biodegradability, suitable for a variety of medical applications,
one of which is being a part of ophthalmic drug delivery CL systems. Liposome-laden
hydrogels are a suitable carrier for lidocaine, as Gulsen et al. have shown for dimyristoyl
phosphatidylcholine liposomes. In this case, the entrapped lidocaine was released for about
eight days. An additional advantage of these liposomes was also the CL transparency [59].
Jain et al. used unilamellar (REL) and multilamellar (ML) liposomes in their drug-eluting
CLs. They would load them with ciprofloxacin. The REL variety CLs were prepared via
the reverse phase evaporation method, while the ML variety was prepared by the lipid
film hydration method. Since there were several lipid barriers, ML liposomes presented a
greater sustained release compared to REL liposomes. Moreover, the liposome cholesterol
content and liposome structure were observed to play an important role in the amount of
loaded and released drugs [66]. Danion et al. immobilised levofloxacin-liposomes on CLs
through a multi-step approach. Firstly, the hydroxyl groups on the CL material presented
an excellent binding site for polyethylenimine (PEI). Simultaneously, carbodiimide (CDI)
chemistry provided an appropriate method of attaching NHS-PEG-biotin molecules to
the amine groups. NeutrAvidin was then bound to the PEG-biotin layer in the second
step. This resulted in liposomes with PEG-biotinylated lipids that were then bound to
the surface-immobilised NeutrAvidin. After adding further layers of NeutrAvidin and
liposome layers, multilayers formed [9,21]. A cytotoxicity study has demonstrated that
the as-prepared liposome-laden contact lenses are biocompatible [80]. In a related study,
Danion et al. have described increasing drug release time with an increase in lipid layers.
Namely, CLs with two layers presented up to 30 h of drug release, while 10 layers provided
a drug release of up to 120 h [22]. Even though-liposome laden CLs are a promising
drug delivery modality, the gas permeability of such systems is compromised due to the
liposome multilayer [33].

3.5.4. Microemulsions and Micelles

Using drug-loaded microemulsions and micelle-laden therapeutic contact lenses was
shown to be a promising approach to drug entrapment. They are thermodynamically
stable and have a high loading capacity for drugs, while their release profile is readily
adaptable. Furthermore, their use decreases protein adherence and increases the wettability
of contact lenses [67]. Microemulsions and micelles do not seem to obscure the optical traits
of hydrogels due to their size (5–100 nm).
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Li et al. studied contact lenses for therapy with timolol. They developed lenses with
oil-in-water type microemulsions with ethyl butyrate and Pluronic F127. Due to the tightly
packed surfactant present at the oil–water interface, the microemulsion demonstrated
a controlled release of timolol [68]. A structural schematic in Figure 10 illustrates the
interactions between the gel, surfactant and drug.

Bengani et al. developed dexamethasone 21-disodium phosphate-laden contact lenses
(ACUVUE®, Johnson & Johnson, New Brunswick, NJ, USA), where ionic surfactants were
used to increase the affinity of the drug to the charged surface of the contact lens. The
procedure resulted in a drug-eluting lens without aberrant optical properties and with
less protein absorption. The study demonstrated an increase in the drug release duration
from 2 h to 50 h, using loading with 10% surfactant [81]. Gulsen et al. used microemul-
sion to encapsulate timolol in a formulation stabilised with octadecyltrimethoxysilane
(OTMS) silica shell. Such a formulation was later dispersed in hydrogels. The developed
hydrogels demonstrated drug release, prolonged to more than eight days. The hydrogel
transparency remained unaffected [60]. To extend the delivery of cyclosporine, Kapoor and
associates developed nanostructured microemulsions or micelles of surfactant-laden hydro-
gels. The in-vitro study results presented relatively similar release profiles for micelles and
microemulsion-laden hydrogels with parallel surfactant loading. According to the study,
the developed hydrogels’ effectiveness was undisturbed by the processing conditions, such
as the removal of unreacted monomers (extraction step), sterilisation and packaging [69].
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Silica shell cross-linked methoxy (polyethylene glycol)-block-polycaprolactone (MePEG-
b-PCL) micelles were used by Lu et al. to load with dexamethasone acetate and fabri-
cate hydrogel contact lenses. The in-vitro study results demonstrated extended release
of over a month, while the transparency of the hydrogel material remained unaltered
for contact lens wear [70]. Kapoor and Chauhan have shown that a four-fold increase in
the loaded surfactant may halve the drug release percentage using their hydrogel drug
release model [69]. Chauhan and colleagues developed Barium-laden hydrogels capable
of controlled drug release to increase the absorption of cyclosporine. The hydrogels were
observed to be effective for cyclosporine and less so for dexamethasone and dexametha-
sone 21-acetate [82]. The release of ketotifen, a common antihistaminic and MAST-cell
stabilizer in ophthalmology, from hydrogel contact lenses was studied by Maulvi et al.
Octyltrimethoxysilane was used to formulate silica shell nanoparticles from microemulsion.
The in vivo results demonstrated an extended-release of ketotifen of more than 10 days.
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The silica shell nanoparticles presented good potential as a drug delivery system that does
not compromise the critical lens properties [71].

3.6. Supercritical Fluid Technology (SCF)

This technology is used to load/impregnate hydrophilic or hydrophobic drugs into
contact lenses with supercritical solvents, such as CO2. During the impregnation, the
dissolution of drugs occurs in a supercritical solvent at conditions that are subcritical or
supercritical, followed by an interaction with hydrogels. There are operational parameters
which can be adjusted so as to influence the drug’s release kinetics (temperature, time,
pressure and depressurisation rate) [33]. Several authors report the use of this technology
to successfully prepare novel therapeutic lenses.

Acetazolamide and timolol maleate, both glaucoma drugs, were impregnated to
Balafilcon A contact lenses (PureVision, Bausch & Lomb, Laval, QC, Canada) using discon-
tinuous supercritical solvent impregnation with CO2 + EtOH and CO2 + H2O. Costa et al.
have further demonstrated that it is possible to attain varied levels of drug impregnation by
using variable co-solvent types and compositions, affecting drug loading and the pattern
of release, without affecting the optical properties of the lens [83].

Due to the limitations of techniques such as soaking, which can only be used for
water-soluble drugs, and molecular imprinting, Yanez and colleagues developed an SCF-
assisted molecular imprinting technique to load Hilafilcon B contact lenses (Soflens, Bausch
& Lomb, Laval, QC, Canada) with drugs and adjust their release profile. In the case of
flurbiprofen impregnation, the sequential SCF increased the loading capacity of the drug. It
was suggested that both physical and chemical interactions compel molecularly imprinted
cavities since a higher affinity and recognition ability for flurbiprofen in an aqueous solution
were noted [84]. In contrast to conventional molecular imprinting methodology, the SCF
technique demonstrated a favourable drug release profile, an improvement in drug loading,
and unaltered key characteristics of the contact lens [85,86].

In studies by Duarte et al., SCF was employed to molecularly imprint salicylic acid,
acetylsalicylic acid and flurbiprofen. In the first two cases, an acrylate (poly(diethylene
glycol dimethacrylate)) was synthesised with CO2 + carboxylic acid and perfluoropolyether
oil as a stabiliser. Results have shown that the drug release rate is influenced by the amount
of the drug actually used at the fabrication step and the percentage of its impregnation [87].
In the third case, flurbiprofen was released in a controlled manner for three months. They
impregnated the drug into methyl methacrylate-co ethyl hexyl acrylate coethylene glycol
dimethacrylate), P(MMA-EHAEGDMA)contact lens matrix [86]. Finally, Yokozaki et al.
studied the importance of temperature and pressure in impregnating salicylic acid using
supercritical CO2. The results demonstrated that low pressure and increased temperature
during the impregnation process enable sustained drug release [88].

3.7. Vitamin E as a Release-Modifying Additive

Diffusion barrier materials should ideally possess low drug affinity to prevent direct
diffusion across the barriers. Alternatively, diffusion barriers should notably reduce drug
diffusion, even though the drug is trespassing the barriers. Vitamin E presented the best
overall performance in slowing the drug release rate without significantly altering the
lens’s bulk properties. Vitamin E is very stable when incorporated into a lens due to its
hydrophobic nature, having negligible solubility in the tear fluid [17]. In Figure 11, it can be
seen how Vitamin E aggregates decrease the rapidity of drug release on a Vitamin E-loaded
CL. Several authors used such a strategy to develop their respective drug-delivering lenses.
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To increase the duration of drug release, Peng et al. suggested increasing vitamin E
loading from 10% to 40%. This has, in effect, created a stable transport barrier for drugs.
The results demonstrated prolonged release of timolol. However, oxygen permeability
was somewhat hindered [89]. Kim et al. achieved a drug release duration of nine days
by developing a dexamethasone contact lens with 30% vitamin E loading. Compared to
the drug release time of contact lenses without vitamin E, it was 16 times higher [90]. In
a further study by Peng et al., the authors report extended cyclosporine delivery from
silicone-hydrogel contact lenses, utilizing vitamin E as the barrier. Sustained drug release
of approximately a month was demonstrated in in vitro flux tests using silicone-hydrogel
contact lenses. The authors related this change in release to the drug’s high partition
coefficient in the gel. In contrast, the hydrogel ACUVUE lens demonstrated release for
merely 24 h due to its hydrophilic nature. Thus, silicone-hydrogel contact lenses show
immense potential for the delivery of cyclosporine in treating chronic dry eyes [91]. To
prolong the release time of cysteamine, Hsu et al. made contact lenses loaded with vitamin
E as part of the diffusion barrier. Results demonstrated that incorporating vitamin E
improved the release duration from 10 min to 3 h. Not only did vitamin E provide the
ability to control the drug release rate, but it also prevented the oxidation of cysteamine [92].
Peng et al. reported another interesting study. Namely, they managed to extend the release
duration of charged (at physiologic pH) anaesthetic drugs (such as lidocaine, bupivacaine
and tetracaine) to seven days. This was achieved by using nano-sized hydrophobic vitamin
E aggregates acting as a diffusion barrier in silicone contact lenses. These therapeutic
contact lenses were shown to be a viable possibility for treating post-operative pain that
occurred during photorefractive keratectomy surgery [93]. Peng et al. loaded ACUVUE
TruEye contact lenses with vitamin E as a diffusion barrier to extend the timolol release
duration for the treatment of glaucoma. The results showed a notable reduction in IOP
in beagle dogs, using only 20% of the drug dose compared to eye drops therapy [94].
Hsu et al. used a similar approach for two simultaneously incorporated drugs. They
achieved sustained drug release of timolol and dorzolamide from a single contact lens to
treat glaucoma. Vitamin E was incorporated into the lenses as a physical barrier to sustain
drug release [95]. Dixon et al. studied the release of cysteamine using vitamin E-laden
contact lenses to treat cystinosis. As cysteamine is very small in size, the incorporation
of vitamin E barriers into the lenses prevented the otherwise very rapid release. The
results showed an improved release duration of both ACUVUE®OASYS® and ACUVUE®

TruEyeTM [96]. Dixon et al. were involved in another study in which they developed carbon
black tinted contact lenses loaded with cysteamine and vitamin E. These lenses were used to
achieve cysteamine delivery while also addressing the issue of photophobia that is common
in cystinosis. Using pre-made contact lenses resulted in an uneven distribution of carbon
black. Therefore, they added 0.3% of carbon black to the monomer solution, creating a lens
that still has the required lens parameters for wear and is capable of delivering cysteamine
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while helping with photophobia. The carbon black influenced the effect of vitamin E,
requiring three times the amount of vitamin E loading to achieve the same increase in
cysteamine release in comparison to control lenses without carbon black [97]. Sekar et al.
explored the release of bimatoprost from polymeric hydrogels incorporated with vitamin E.
The following lenses were used: ACUVUE®OASYS® and ACUVUE® TruEyeTM. Loading
the lenses with vitamin E enabled the delivery of bimatoprost in therapeutic dosages for
over 10 days, prolonging the release duration 10–40-fold, while light transmission and
other properties were not compromised by vitamin E loading [98]. Torres-Luna et al. also
studied drug release from ACUVUE®OASYS® and ACUVUE® TruEyeTM lenses. They
incorporated the lenses with vitamin E in conjunction with a cationic surfactant. The results
demonstrated a sustained release of non-steroidal anti-inflammatory drugs within their
therapeutic windows. Diclofenac sodium release was extended to over 150 h for both types
of lenses [99].

Vitamin E is also an antioxidant, protecting the cornea from UV radiation and cer-
tain drugs from oxidation. Vitamin E showed the ability to extend the release duration
of several hydrophilic drugs, showing immense potential as a biocompatible diffusion
barrier. Its limitations, however, should not be ignored. For example, vitamin E reduces
ion permeability and oxygen permeability and increases storage module, i.e., change in
mechanical properties and protein absorption due to its hydrophobic nature [33].

3.8. Other Solutions

Hyaluronic acid (HA) can prolong water retention, slow tear removal, improve tear
film stability, decrease protein adsorption at the ocular surface and allows undisturbed
blinking [100]. It is usually found in eyedrops or artificial tears. This means that binding it
to the surface of a contact lens could prolong these effects.

Singh et al. investigated contact lenses modified with a hyaluronic acid-binding
peptide (HABpep). Their ability to locally bind and concentrate hyaluronic acid, ap-
plied with eyedrops, made for better water retention. They covalently HABpep-modified
the contact lens surface with and without a poly(ethylene glycol) (PEG) spacer to bind
HA noncovalently. The fluorescence measurements showed increased water retention
in HABpep-modified lenses with or without a PEG spacer. It is assumed that HABpep-
modified contact lenses could localise HA applied via eyedrops or contact lens solution in
a thin coating, biologically and physically benefitting the ocular surface [101].

Table 2 summarises all the drug-binding methods to contact lenses described above,
with their advantages and limitations.

Table 2. Methods of binding drugs into/to lenses. The basics of drug-binding mechanism and
methods’ advantages and limitations are described, with relevant references listed.

Method Mechanism Advantages Limitations References

Layered contact
lenses

Approaches:
• The system can make

use of different
materials, for one of
which the drug
exhibits tropism,
being less diffusible
from that region.

• Alternating layers,
which degrade
over time.

• The layers retard
diffusion, ensuring a
more stable release.

• Compromised gas
permeability. [17,22,33]



Materials 2023, 16, 3653 19 of 29

Table 2. Cont.

Method Mechanism Advantages Limitations References

Surface-modified
contact lenses

• Loading the drugs
into already created
polymers or attaching
them to the
lens surface.

• Enables the
attachment of drugs
to either side of the
lens selectively.

• Can diminish kinetic
friction coefficient. [21,25]

Soaking method

• Contact lenses are
soaked in the desired
drug solution. Some
of the drug adheres to
the polymer matrix
while the rest is
dissolved in the
aqueous phase
before release.

• The simplest,
cost-effective, and
conventional
approach.

• Higher drug
bioavailability than
eye drops.

• Some of the drug
adheres to the
polymer matrix while
the rest is dissolved in
the aqueous phase
before release.

• The lens’ ability for drug
uptake is highly
dependent on the lens’
water content and
thickness, the drug’s
molecular weight, its
concentration in the
soaking solution and its
solubility in the
hydrogel matrix.

• Lenses show a low
affinity for several
ophthalmic drugs.

• Sterilisation and
packaging processes
might cause a
premature release.

[27–30,33–
36]

Molecular
imprinting

• The targeted drug is
mixed with functional
monomers. After
polymerisation, the
drug is removed, and
specific cavities in a
3D-polymer network
are formed.

• Molecular sites with
high affinity increase
the drug loading
capacity while
decreasing
diffusion rates.

• Drug affinity and its
release profiles can be
tailored.

• Can be used with a
variety of monomers
(HEMA, MAA,
MMA).

• The optical and physical
properties of the lenses
can be altered by the
structure of
such hydrogels.

• The gas and ion
permeability is
dependent on the
material’s water content,
which decreases with
wear time, presenting an
obstacle in extended
wear uses.

[33,40,41,48,
49]

Colloidal
nanoparticles

• The formulated
nanoparticular
system is dispersed in
different monomers
(e.g., HEMA) and
further polymerised
(e.g., with EGDMA)
and/or with
photo inhibitors.

• Can entrap drug
molecules and attain
better control over
their release rate from
contact lenses.

• Prevent the
interaction of drugs
with the
polymerisation
mixture and provide
additional resistance
to the drug’s release.

• Alter the lens’s physical
and mechanical
properties, such as gas
and ion permeability,
transparency and
swelling behaviour.

[33,54–
56,59,60]
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Table 2. Cont.

Method Mechanism Advantages Limitations References

Supercritical fluid
technology

• Supercritical solvents,
such as CO2, are used
to drugs onto contact
lenses. During the
impregnation, the
dissolution of drugs
occurs in a
supercritical solvent
at conditions that are
subcritical or
supercritical,
followed by an
interaction with
hydrogels.

• Can be used to adjust
the drug’s release
kinetics without
affecting the optical
properties of the lens.

• Limited loading of drugs
with higher solid molar
volume (such as
dexamethasone) due to
constraints in diffusion
and uptake by
contact lenses.

[33,83,84]

Vitamin E as a
release-modifying
additive

• Incorporation of
vitamin E into lenses
to act as a
diffusion barrier.

• Slows the drug
release rate without
significantly altering
the lens’s bulk
properties.

• Very stable when
incorporated into a
lens due to its
hydrophobic nature,
having negligible
solubility in the
tear fluid.

• Can prevent the
oxidisation of drugs,
such as cysteamine.

• Reduces ion permeability
and oxygen permeability.

• Increases storage module
due to changes in
mechanical properties
and protein absorption
due to its
hydrophobic nature.

[17,33,89,92]

4. Contact Lenses Preparation Methods for Use in Drug-Delivery

Therapeutic contact lenses can be prepared through various methods. Each of these
has its advantages and disadvantages, affecting their respective use for targeted drugs
and/or applications. Here some of the most commonly used methods for this purpose are
reviewed and displayed in Figure 12.
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4.1. Cast-Moulding Method

In the cast-moulding method, the lenses are manufactured by depositing a curable
mixture of polymerisable monomers into a mould cavity. The mould cavity is formed with
two mould sections. The anterior mould section forms the anterior lens surface, while
the posterior mould section forms the posterior lens surface. After curing the monomer
mixture, the mould is disassembled, and the lens is removed. This method is often used
for manufacturing disposable contact lenses due to the quick polymerisation process. The
rapid polymerisation times tend to produce less efficient cross-links with shorter chains and
more chain ends. The presence of oxygen during the manufacturing process could result in
degeneration of the lens surface. Since cast-moulded lenses have a low volume-to-surface
area ratio, oxygen degeneration could affect the polymer network [102].

Maulvi and colleagues used a modified cast moulding technology to embed the drug-
laden rings into the contact lenses, thus creating an efficient dual drug delivery system. They
created a novel type of lens containing semi-circular acrylate rings laden with moxifloxacin
HCl and hyaluronic acid. In vitro, studies demonstrated a release of moxifloxacin and
hyaluronic acid of up to 96 h. In the in vivo studies, the single implant contact lens therapy
showed a healing effect comparable to high-dose eye drop therapy [103].

4.2. Lathe-Cutting Method

This method creates lenses from a cylindrical button of dehydrated material. It starts
with injecting the polymer material into a glass tube, which is then heat treated. The created
polymer rod is then cut to produce a cylindrical button, which is then shaped in the lathe.
The frequent use of thermal initiators possessing low activation energies enables the use of
relatively low temperatures in ovens or water baths [2,102]. Similar to the cast-moulding
method, oxygen could cause surface degeneration of the polymer, but due to the higher
volume-to-surface area ratio, it presents less of a problem. The lens can simply be formed
from the centre of the button, and the degenerated surface is discarded [104]. In this method,
the polymer structures tend to have longer chains, also meaning more chain entanglements.
Furthermore, the lenses are commonly heat-treated, causing more possible changes in their
mechanical characteristics [105].

4.3. Spin-Casting Method

In this lens manufacturing process, the monomer mixture is injected into a rotating
mould and spun at the desired speed by a computer-guided system. The anterior surface
of the lens is shaped by the mould. The posterior surface is defined by several factors: the
centrifugal force caused by the rotation of the mould, gravity, as well as friction forces and
surface tension between the polymer and mould. The lens’s posterior surface geometry
and dioptric power can be altered by changing the spin speed [102]. This method is rather
quick in contrast to the lathe-cutting method, as the final lens is mostly polymerised within
60 min or less. The mechanical properties can be changed by integrating a diluent into
the monomer mixture, aiding in a better polymerisation result [106]. The diluent provides
improved access to the growing polymer chains, eases the process of removing the lenses
from the moulds, and presents a possible way of controlling the material’s swell factor.
Similar to cast-moulded lenses, spun-cast lenses also have a low volume-to-surface area
ratio, which means oxygen could cause surface degradation. Therefore, the process is
commonly executed under anaerobic conditions [102].

5. Future Prospects

While therapeutic contact lenses have seen some advances, loading drugs onto contact
lens surfaces remains challenging. Various drugs might require different binding methods
and can alter materials’ mechanical properties. For example, vitamin E as a barrier agent
in certain drug-laden contact lenses is hydrophobic, which causes protein adsorption, de-
creased transparency, and increased risk of keratitis. This could be somehow amended by
using less-absorptive copolymers in the structure to yield a more hydrophilic quality of the
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lens [5]. Different polymers have also been shown to work well with nanoparticles, offering
a high-loading capability. For instance, Jung et al. incorporated propoxylated glyceryl tri-
acrylate (PGT) nanoparticles carrying timolol into silicone hydrogels, achieving continued
drug release over a period of one month. They also demonstrated the incorporation of
timolol-laden PGT nanoparticles onto commercial lenses. Further studies showed that such
an approach is suitable for in vivo studies but is not viable for commercial use, as the drug
is released from the nanoparticles during storage into the gel and packaging medium [55].
The copolymerisation of cyclodextrins with monomers such as HEMA or EGDMA has been
researched for the sustained release of hydrophobic drugs. The drug release in this study
was often extended to several weeks [65,75]. While methods using nanoparticles provide
extended and sustained drug release, some drawbacks must be considered. For instance,
PGT nanoparticles have lower ion and oxygen permeability, and a decrease in water content
has also been observed [55,61]. On the contrary, it was found that β-CDs have no notable
impact on the optical and physical properties of hydrogels [65]. Furthermore, Maulvi
and associates developed silica shell nanoparticle-laden hydrogel contact lenses to deliver
ketotifen that did not alter the lens’s critical properties [71]. Another promising method
here would be molecular imprinting, with different advantages. Molecular imprinting
studies have shown that using a combination of HEMA with methacrylic acid (MAA)
and methyl methacrylate (MMA), monomers can significantly increase loading capacity
and attain a sustained release of drugs such as timolol [41,42]. While macromolecular
memory sites and higher cross-linking are an excellent way to increase drug affinity, it
also presents a limitation as it makes the method depends on the template molecules and
functional monomers. Similar to nanoparticle binding methods, the drawbacks include
decreased water content with lower ion and oxygen permeability because of the higher
cross-linking [33,48].

With the advent of increasingly customisable treatment options in ophthalmology, it
would be advantageous to produce different therapeutic lenses for different illnesses. How-
ever, lack of generality means questionable real-life clinical applicability of the pharmaco-
therapeutic contact lenses. This could change with the advent of customised production
methods. One such method is 3D printing, which is becoming widespread in various
fields of biomedical applications. In Figure 13 the process of preparation and 3D printing
is summarised. While this idea does seem promising, there has been a lack of relevant
research in the field. In our previous studies, we have shown that 3D printing can be used
to optimise the mechanical properties, biocompatibility and other properties of various
formulations [107–110], which can be transferred to the preparation of novel lenses. In this
sense, there are also a lot of opportunities to transfer this knowledge to ophthalmology and
prepare therapeutic lenses with desired transparency, mechanical properties, resisting tear
and wear, and providing personalised drug delivery tailored to specific patient/disease
needs. All in all, this approach might be a valid option for patient-to-patient customisation
needed in certain cases.

There are already some related reports found in the literature and a review on 3D
printing in ophthalmology that mentions contact lenses as a potential printable drug-
delivery system [111]. For example, Fahad et al. have studied the feasibility of 3D printing
contact lenses. They used commercially available transparent resin monomers in the
printing process, creating discs that achieved a 90% light transmittance. Moreover, they
printed tinted lenses for the potential treatment of colour blindness. They also studied the
possibility of lenses containing microchannels acting as a transducer for sensing ocular
parameters. A 3D-printed drug-eluting contact lens with a central aperture was produced
using fused deposition modelling, where printable filaments of copolymers (ethylene-vinyl
acetate and polylactic acid) were used. These were beforehand loaded with timolol maleate
and have shown a favourable sustained release profile [112]. However, it was shown that
digital light printing (DLP) is preferred in contact lens printing due to its ability to achieve a
significantly higher resolution than fused deposition modelling [113]. Nevertheless, further
research is needed to assess such lenses’ physical and optical properties [114].
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Figure 13. A schematic of contact lens production using 3D printing. (A) Computer-designing a
model of the lens, (B) writing 3D printer readable files, (C) digital light 3D printing, (D) cleaning and
storage of the prepared lenses, and (E) patient application of the contact lenses [114].

In the field of ophthalmic therapy, research has been increasingly invested in finding
suitable stem cell therapies. It has already been shown that stem cells can migrate from a
carrying medium to the ocular surface, demonstrated by a novel product in regenerative
medicine of ocular surface—Holoclar, approved by the European Medicines Agency (EMA).
A possible route to future development of advanced medicinal products for the ocular
surface could very well be a 3D-bioprinted contact lens carrying stem cells. However, more
research into this area needs to be done, as in the paper of Gruene et al., where they have
shown that stem cells could be successfully 3D-printed into a material using laser-assisted
bioprinting to generate 3D grid-shaped grafts of human adipose-derived stem cells and a
natural hydrogel (alginate-blood plasma compound) [115].

A very limited number of review articles on the topic of therapeutic contact lenses have
been published to date [2–4]. While these predominantly focused on contact lenses and
drug delivery vehicles, our review is more focused on a concise review of the latest novelties
of therapeutic lenses, which might overcome some of the barriers to their translation to the
clinics, including the use of copolymerisation for enhanced drug-release and preservation
of material transparency. Furthermore, until now, 3D (bio)printing has only begun to be
explored as a possible production method of contact lenses in dropless drug delivery in
ophthalmology. In a recent review by Xu et al. [2], the authors mentioned 3D printing for
use in ocular models in experimentation pertaining to drug-eluting contact lenses [116].
In our article, we wanted to emphasise the recent development in this field, enabling the
production of custom, patient-specific therapeutic contact lenses, 3D (bio)printing being a
smart future choice, especially in the case of multimodal treatment (e.g., controlled drug
delivery and cell therapy). Despite a recent review on 3D printing in ophthalmology, in
which contact lenses are mentioned in conjunction with drug delivery and diagnostic
possibilities [111], the latter possibilities are not mentioned. To our best knowledge, 3D
(bio)printing of contact lenses for stem cell therapy was not yet included in any reviews to
date. Considering the extensive range of ocular surface pathologies with unmet therapeutic
needs (e.g., persistent epithelial defects, limbal epithelial stem cell deficiency in chemical
burns and rheumatic pathology, pterygium), which could be transformed with further
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development of this field, our review might present a very helpful starting point. Figure 14
shows an outlook of the potential use of such an approach in a concrete clinical setting.
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Figure 14. A scheme of possible future use of contact lenses for ophthalmic therapy. In this case,
limbal epithelial stem cells’ deficiency in, e.g., chemical burn patients is considered an exemplary
problem. With the help of 3D bioprinting, stem-cell-laden contact lens formulations can be printed in
desired forms and geometries. If necessary, the same formulation can be upgraded with additional
pharmacotherapeutics. Such an approach might present the future of one-step dropless individually
tailored therapeutic options in ophthalmic ocular therapy. With related tools that are being continu-
ously developed and interdisciplinary technical solutions, the future prospects of contact lenses in
therapeutic use seem promising.

6. Conclusions

Over the past decade, the field of ocular drug delivery systems has greatly advanced.
In search of greater drug bioavailability, contact lens ocular drug delivery has been ex-
tensively studied and developed. This article provides an overview of different types of
lenses, their properties, and their production, including drug-binding methods. As the
properties of different types of lenses vary, so does their compatibility with specific drugs
and drug-binding methods, offering a variety of possible clinical applications. However,
general clinical application is yet to be seen. Simultaneously, we see an emerging field of 3D
printing as a promising customisable method for a personalised treatment approach. The
soaking method has the advantage of its simplicity and a higher level of general applicabil-
ity. However, other methods, such as molecular imprinting and the usage of nanoparticles,
have achieved better results concerning drug retention and release control. In order to
improve clinical applicability, classic lens properties must be abided by—transparency,
oxygen permeability and wettability are among the most important. Further research
into the optimisation of these properties in conjunction with materials and drug-binding
methods research is needed to ensure real-life applicability, compliance and, ultimately, an
improvement of the quality of life of patients.
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