
Citation: Li, T.; Yang, Z.; Xu, C.; Xu,

X.; Zhou, Z. A Phase Field Approach

to Two-Dimensional Quasicrystals

with Mixed Mode Cracks. Materials

2023, 16, 3628. https://doi.org/

10.3390/ma16103628

Academic Editors: Grzegorz Lesiuk

and Dariusz Rozumek

Received: 31 March 2023

Revised: 5 May 2023

Accepted: 8 May 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

A Phase Field Approach to Two-Dimensional Quasicrystals
with Mixed Mode Cracks
Tong Li 1, Zhenting Yang 1, Chenghui Xu 2, Xinsheng Xu 1 and Zhenhuan Zhou 1,*

1 State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment,
Department of Engineering Mechanics, International Center for Computational Mechanics,
Dalian University of Technology, Dalian 116024, China

2 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University,
Xi’an 710072, China

* Correspondence: zhouzh@dlut.edu.cn; Tel.: +86-1384-2853-461

Abstract: Quasicrystals (QCs) are representatives of a novel kind of material exhibiting a large
number of remarkable specific properties. However, QCs are usually brittle, and crack propagation
inevitably occurs in such materials. Therefore, it is of great significance to study the crack growth
behaviors in QCs. In this work, the crack propagation of two-dimensional (2D) decagonal QCs is
investigated by a fracture phase field method. In this method, a phase field variable is introduced
to evaluate the damage of QCs near the crack. Thus, the crack topology is described by the phase
field variable and its gradient. In this manner, it is unnecessary to track the crack tip, and therefore
remeshing is avoided during the crack propagation. In the numerical examples, the crack propagation
paths of 2D QCs are simulated by the proposed method, and the effects of the phason field on the
crack growth behaviors of QCs are studied in detail. Furthermore, the interaction of the double cracks
in QCs is also discussed.

Keywords: phase field model; decagonal quasicrystal; crack propagation; brittle fracture; mixed
mode crack; finite element method

1. Introduction

Quasicrystals (QCs) are a new kind of material with perfect long-range order but no
periodicity. Due to their unique atomic structures, QCs exhibit many excellent physical
properties, such as high hardness, a low friction coefficient, and high resistance. Therefore,
QCs are very promising materials for potential applications in corrosion-resistant coatings,
hydrogen storage, photovoltaic solar cells, etc. [1]. However, QCs are usually brittle, and
consequently, cracks, holes, and other defects will inevitably occur during daily use. If the
crack propagates, the QC will fail, which may lead to a catastrophic accident. Therefore,
the fracture analysis of QCs is of great importance, and it is very necessary to investigate
crack propagation behaviors in cracked QCs.

Plenty of research work has been carried out on the fracture problems of QCs. Li et al. [2]
extended the classical linear elasticity fracture mechanics to investigate a decagonal QC
with a Griffith crack. The results indicated the phonon and phason stresses at the crack
tip exhibit the well-known square root singularity, and the strain energy release rate was
obtained. Zhou and Fan [3] developed the plane elasticity theory of two-dimensional
(2D) octagonal QCs and obtained the exact analytic solution of a Mode I Griffith crack.
Guo and Fan [4] studied the fracture problem of a Mode II Griffith crack in decagonal
quasicrystals and obtained the corresponding stress intensity factors and strain energy
release rate. Shen and Fan [5] calculated the stress intensity factors for an infinitely long
strip of finite height containing two straight, semi-infinite collinear cracks. Li and Fan [6]
obtained exact solutions for two semi-infinite collinear cracks in a strip of 1D hexagonal
QCs. After that, they [7] further obtained an analytic solution for the elliptic notch problem
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of the material in icosahedral QCs by using the complex variable method. The solution
can be reduced to that of a Griffith crack problem. Fan et al. [8] presented linear, nonlinear,
and dynamic fracture problems for different QCs. Li and Liu [9] obtained closed-form
expressions for the elastic displacement and stress fields induced by a dislocation in
icosahedral QCs. Sladek et al. [10] developed a meshless method based on the local Petrov-
Galerkin approach for fracture analysis of decagonal QCs; both static and transient dynamic
boundary value problems were considered. After that, they [11] present path-independent
integrals for accurate evaluation of energy release and stress intensity factors in decagonal
QCs. Wang et al. [12] obtained the phonon-phason coupling field in the half-space, which
can be expressed in terms of elementary functions. These solutions could have applications
in 3D contact and crack problems in QCs. Li et al. [13,14] derived solutions for elliptical
crack and planar crack problems in 2D hexagonal QCs. Li and Shi [15] employed the
method of potential function theory to solve plane defect problems originating from two-
dimensional decagonal QCs. Zhao et al. [16] derived the fundamental solutions for interface
cracks in 1D hexagonal QC coatings under in-plane loads.

For crack propagation in QCs, some investigations have been conducted based on
the atomistic model [17–29]. However, it is inconvenient to apply atomistic simulation
to engineering. Therefore, Wang and Ricoeur [30] adopted the finite element method
(FEM) to simulate the crack growth in 1D QCs and predicted the crack pattern for different
boundary conditions. Fan et al. [31–39] investigated crack propagation based on the
elastodynamic/hydrodynamic model.

From the above literature review, it is found that increasing attention has been paid to
the fracture of QCs. However, most of them were concentrated on the derivation of exact
solutions and determination of fracture parameters of cracked QCs, and the investigations
on crack propagation were mainly based on the atomistic model [17–29]. The work on
crack growth in QCs based on continuum mechanics is still insufficient. Additionally, in
the traditional FEM, the crack topology is modeled by geometry. The remesh process is
necessary when simulating crack propagation, which has a huge computational cost. In
this paper, a phase field method is introduced to predict the crack propagation path in
QCs. Unlike conventional discrete crack models (such as the FEM), the fracture phased
field method employs diffusive cracks to avoid an explicit representation of kinematic
discontinuities, and therefore the propagating cracks are tracked automatically without
additional ad-hoc criteria in the classical Griffith fracture theory [40,41]. In this method, the
fracture energy and degraded strain energy of QCs are formulated using the phase field
variable. Subsequently, the total potential energy of QCs under the phase field framework
is obtained, and the governing equations for the phase field model are derived by means of
the Francfort-Marigo variational principle. The phase field evolution equation for QCs is
constructed. Finally, the FEM is adopted to solve the phase field governing equations. The
phase field variable and phonon/phason displacement of the entire model can be obtained,
as well as the reaction force and the crack pattern.

This paper is organized as follows: The basic equations of 2D decagonal QCs are
presented in Section 2.1. The phase field model for 2D QCs is formulated in Section 2.2. The
finite element implementation for the phase field model is presented in Section 2.3. Several
numerical examples are presented in Section 3. Conclusions are summarized in Section 4.

2. Phase Field Method for 2D Decagonal QCs
2.1. The Basic Equations

According to the elasticity of 2D decagonal QCs, the basic equations for the plane
problem of QCs in the absence of body force and phason self-action are [42]:

∂σx
∂x +

∂τxy
∂y = 0

∂τyx
∂x +

∂σy
∂y = 0

,


∂Hx
∂x +

∂Hxy
∂y = 0

∂Hyx
∂x +

∂Hy
∂y = 0

(1)
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σx
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Hx
Hy
Hxy
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 =


R1 −R1 R2
R1 −R1 R2
R2 −R2 −R1
−R2 R2 R1




εx
εy

γxy

+


K1 K2
K2 K1

K1 −K2
−K2 K1




ωx
ωy
ωxy
ωyx

 (4)

where ux and uy are the phonon displacements; wx and wy are the phason displacements;
εx, εy, and γxy are the phonon strains; ωx, ωy, ωxy, and ωyx are the phason strains; σx, σy,
and σxy are the phonon stresses; Hx, Hy, Hxy, and Hyx are the phason stresses; C11, C12, C22,
and C66 are the phonon moduli; K1 and K2 are the phason moduli; and R1 and R2 are the
phonon-phason coupling coefficients.

The strain energy of QCs is:

IIs =
∫

Ω
ψ(ε, ω) dV =

∫
Ω

1
2
εTσ+

1
2
ωTH dV (5)

where σ =
{

σx, σy, σxy
}T and H =

{
Hx, Hy, Hxy, Hyx

}T are the stress vectors;

ε =
{

εx, εy, γxy
}T and ε =

{
ωx, ωy, ωxy, ωyx

}T are the strain vectors; and ψ(ε, ω)
is the strain energy density.

2.2. Phase Field Method

Consider a 1D QC strip with a centered crack, as shown in Figure 1. The fracture
energy is:

IIc =
∫

∂Ωc
Gc dS = Gc Ac (6)

where Gc is the critical energy release rate (CERR); ∂Ωc is the crack surface; and Ac is the
cross-sectional area of the strip.
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Figure 1. A QC strip with a centered crack.

In a phase field model, the crack is supposed to be surrounded by a diffusive degraded
zone, and a phase field variable d is introduced to describe the damage in the diffusive
degraded zone:

d = e−
|x|
lc (7)

where lc is an internal length scale that controls the width of the diffusive zone. Here,
it is noted that, when x approaches infinity (±∞), d converges to zero, which indicates
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that the material is intact; when x is zero, d equals one, which indicates that the material
is totally broken and the crack surface is produced. Define a crack’s surface density as
functional [43]:

γ
(
d, d′

)
=

1
2lc

(
d2 + l2

c d′2
)

(8)

The crack topology can then be described by the phase field variable.
Substituting Equation (8) into Equation (6) yields the fracture energy in the phase

field model:
IIc =

∫
Ω

Gcγ
(
d, d′

)
dV (9)

where Ω is the domain of the overall model. As observed in Equation (9), the integral over
the crack path is transformed into the integral over the model. The crack topology is im-
plicitly expressed in the framework of the phase field method. Therefore, it is unnecessary
to track the crack’s path while it is propagating.

Similarly, the 2D crack surface density functional can be defined as:

γ(d, ∇d) =
1

2lc

(
d2 + l2

c |∇d|2
)

(10)

Therefore, the fracture energy of QCs in a plane problem is:

IIc =
∫

Ω
Gcγ(d, ∇d) dV (11)

In the phase field model, the material at the crack is assumed to be softened. Therefore,
a degradation function is introduced to evaluate the damage to the material in the diffusive
degraded zone [43]:

ω(d) = (1− d)2 + k (12)

where k is a small positive number to ensure the non-singularity of the matrix. It can be
observed that ω(d) satisfies ω(0) = 1 and ω(1) = 0.

The strain energy for QCs is modified as follows:

IIs =
∫

Ω
ω(d)ψ(ε, ω) dV (13)

It should be pointed out that the crack will not propagate if the crack face is under
compression. Therefore, the strain energy density ψ should be decomposed into a tensile
part and a compressed part, and the energy degradation only occurs on the tensile part [43]:

IIs =
∫

Ω
ω(d)ψ+ + ψ− dV (14)

where ψ+ = λ〈ε1 + ε2 + ε3〉2+/2 + µ
[
〈ε1〉2+ + 〈ε2〉2+ + 〈ε3〉2+

]
and ψ− = ψ− ψ+ are the ten-

sile and compressed strain energy densities, respectively; 〈〉+ is defined as 〈x〉+ = (|x|+ x)/2;
and λ and µ are the Lamé constants.

The potential energy of the overall model contains the strain energy, fracture energy,
and potential energy of the external force:

IIp = IIs + IIc − IIe
=
∫

Ω ω(d)ψ+ + ψ− dV +
∫

Ω Gcγ(d, ∇d) dV
−
∫

∂Ω uTtu dS−
∫

∂Ω wTtw dS
(15)

where u =
{

ux, uy
}T; w =

{
wx, wy

}T; and tu and tw are the external forces in the phonon
and phason fields, respectively.
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The Francfort-Marigo variational principle states that the real displacement u and the
phase field variable d will minimize the potential energy.

δIIp =
∫

∂Ωu
ω(d)σ+

ij niδuj + σ−ij niδuj dS +
∫

∂Ωw
ω(d)H+

ij niδwj + H−ij niδwj dS

−
∫

Ω

∂
[
ω(d)σ+

ij

]
∂xi

δuj +
∂σ−ij
∂xi

δuj dV −
∫

Ω

∂
[
ω(d)H+

ij

]
∂xi

δwj +
∂H−ij
∂xi

δwj dV∫
Ω ω′(d)ψ+δd dV +

∫
Ω

Gc
lc

dδd dV +
∫

∂Ω Gclc ∂d
∂xi

niδd dS−
∫

Ω Gclc ∂2d
∂x2

i
δd dV

−
∫

∂Ω δujtu
j dS−

∫
∂Ω δwjtw

j dS
= 0

(16)

where σ+
ij and H+

ij are the stresses induced by stretch, while σ−ij and H−ij are induced by
compression. Equation (16) is valid for arbitrary δui, δwi, and δd. Hence, the governing
equations for the phase field model of QCs are:

∇
[
ω(d)σ+

ij + σ−ij

]
= 0, Ω (17)

∇
[
ω(d)H+

ij + ∂H−ij
]
= 0, Ω (18)

(2d− 2)ψ+ +
Gc

lc
d− Gclc∆d = 0, Ω (19)

[
ω(d)σ+

ij + σ−ij

]
ni = tu

j , ∂Ω (20)

[
ω(d)H+

ij + H−ij
]
ni = tw

j , ∂Ω (21)

d,ini = 0, ∂Ω (22)

It should be mentioned that crack growth is an irreversible process. Therefore,
Equation (19) should be modified by considering the history of the load [44]:

(2d− 2)H +
Gc

lc
d− Gclc∆d = 0 (23)

where H = max
[0, t]
{ψ+} is a history variable that is the maximum strain energy during the

crack propagation. This history variable ensures that the crack face does not close under
compression. Equation (23) is the evolution law of the crack phase field for QCs. Cracks
grow only if this equation is valid.

2.3. Finite Element Implementation

Due to the strong nonlinearity of the governing equations in the phase field model, the
FEM is often adopted to solve the problem. In the FEM, the phonon/phason displacements
and the phase field variable are approximated by the shape functions:

{
ux, uy

}T
=

4

∑
i=1

Nu
i ui (24)

{
wx, wy

}T
=

4

∑
i=1

Nw
i wi (25)

d =
4

∑
i=1

Nidi (26)
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where Ni is the shape function; Nu
i = Nw

i = diag(Ni, Ni); and ui, wi, and d are the nodal
phonon and phason displacements and phase field variables, respectively.

Therefore, the phonon and phason strains and the gradient of the phase field variable
are, respectively: {

εx, εy, γxy
}T

=
4

∑
i=1

Bu
i ui (27)

{
ωx, ωy, ωxy, ωyx

}T
=

4

∑
i=1

Bw
i wi (28)

∇d =
4

∑
i=1

Bd
i di (29)

where Bu
i =

[
∂Ni/∂x ∂Ni/∂y

∂Ni/∂y ∂Ni/∂x

]T

, Bw
i =

[
∂Ni/∂x ∂Ni/∂y

∂Ni/∂y ∂Ni/∂x

]T

,

and Bd
i =

[
∂Ni/∂x ∂Ni/∂y

]T. Substituting Equations (24)–(29) into Equation (15) yields
the residuals:

ra =
∫

∂Ω
NTt dS−

∫
Ω
(1− d)2BTDQCBa dV = 0 (30)

rd = −
∫

Ω
2(d− 1)Hu

(
Nd
)T

dV −
∫

Ω

Gc

c0

[
2d
lc

(
Nd
)T

+ 2lc
(

Bd
)T
∇d
]

dV = 0 (31)

where a =
{

ux1, uy1, . . . , ux4, uy4, wx1, wy1, . . . , wx4, wy4
}T; N =

[
N0 02×8

02×8 N0

]
is the

shape function matrix where N0 =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
; B = LN is

the strain matrix where L =


∂

∂x 0 ∂
∂y 0 0 0 0

0 ∂
∂y

∂
∂x 0 0 0 0

0 0 0 ∂
∂x 0 ∂

∂y 0
0 0 0 0 ∂

∂y 0 ∂
∂x


T

; and t =
{

tu
x , tu

y , tw
x , tw

y

}T

is the load vector.
Equations (30) and (31) can be solved by this iteration method:{

an+1
dn+1

}
=

{
an
dn

}
+

[
Kaa

n Kad
n

Kda
n Kdd

n

]−1{
ra

n
rd

n

}
(32)

where Kaa =
∫

Ω ω(d)BTDB dV, Kad =
(

Kda
)T

=
∫

Ω 2(d− 1)BTσN dV,

and Kdd =
∫

Ω

(
2H + Gc

l

)
NdTNddV +

∫
Ω lGcBdTBddV.

Due to the high nonlinearity of Equation (32), there is a convergence problem using
the classic Newton iteration. A highly robust staggered algorithm is usually adopted to
solve Equation (32) [41,44]. In this algorithm, one of the two unknowns (displacement and
phase field variable) is assumed to be unchanged while solving the other unknown during
one iteration, which yields:

an+1 = an + (Kaa
n )−1ra

n (33)

dn+1 = dn +
(

Kdd
n

)−1
rd

n (34)

Finally, the nodal phonon/phason displacements and the phase field variables can be
calculated by Equations (33) and (34), respectively.



Materials 2023, 16, 3628 7 of 15

3. Numerical Results

In this section, a few numerical examples are presented to illustrate the application of
the phase field method to the fracture of 2D decagonal QCs. The material parameters are
tabulated in Table 1 [45–47].

Table 1. Material properties of 2D decagonal QCs.

C11 C12 C66 K1 K2 R1 R2

Al-Ni-Co (GPa) 234.30 57.34 88.45 122 24 −1.1 0.1

According to Fan’s work [42], the expression of CERR is:

Gc =
λ(K1 + K2) + 2

(
R2

1 + R2
2
)

8(λ + M)c
K2

IC (35)

where M = (C11 − C12)/2 and c = M(K1 + K2) − 2
(

R2
1 + R2

2
)
. The fracture toughness

of Al-Ni-Co QCs is KIC = 1MPa
√

m. Therefore, the CERR in this paper is selected as
Gc = 5.56× 10−4 N/mm, according to the material constants in Table 1. Although no
experimental method has been reported to apply a constant phason displacement on the
surface of QCs, some investigations [48,49] reveal that some ways can cause the disorder
of the phason field. Therefore, different phason displacement loads are considered in the
following calculation to investigate the effect of the phason field on the fracture behavior
of QCs.

3.1. The Rectangular QCs with Edge Crack

A rectangular QC model is considered, as shown in Figure 2. The geometry of the
model is width W, height L, and crack length a. The upper edge is constrained to have the
same displacement in phonon and phason fields, and the lower edge is only constrained in
the vertical direction. A concentrated phonon force Pσ is applied to the upper edge. The
angle between Pσ and the horizon is ϕ.
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Figure 2. A rectangular QC with an edge crack.

At the current stage, the crack growth of 2D QCs has not been reported in the open
literature. To demonstrate the accuracy of the present method, an elastic material is selected
by degenerating all the material constants in phason field, i.e., K1 = K2 = R1 = R2 = 0.
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The geometrical parameters are taken as a = 0.5 mm and W = L = 1 mm. The elastic
material constants come from Ref. [44]. The variation of the vertical concentrated force
Pσ (ϕ = π/2) versus the displacement u is plotted in Figure 3. As observed, the present
results are in excellent agreement with the reference data from Ref. [44]. Furthermore, it
is noted that the peak force Pσ shows an increasing trend as the length scale lc decreases,
which indicates the crack grows slowly as the length scale declines. In the previous study,
to ensure the high resolution of the crack topology, the minimum size of the element was
required to meet the condition of h < lc/2 [43]. Therefore, in the following calculations, the
length scale is selected as lc = 1 mm, and the element size is selected as h < lc/5.
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Subsequently, the effect of the phason field on the crack growth is studied in Figure 2
by considering an initial phason displacement w0 on the upper edge of the model. The
parameters are selected as a = 50 mm and W = L = 100 mm. The variation of the applied
force versus the displacement for different w0 values is illustrated in Figure 4. The results
show that the peak force decreases as the initial phason displacement increases, which
indicates that the initial stretch phason load will undermine the strength of the model. In
addition, as the initial phason load gets larger, the crack grows slower. The crack pattern
with w0 = 6× 10−4 mm is plotted in Figure 5.
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Finally, the QC model subjected to a concentrated shear load at its upper edge is
considered. The variation of the shear phonon force Pσ (ϕ = π) versus the horizontal
displacement at the upper edge is illustrated in Figure 6. Two peak forces were observed,
and they decrease as the initial vertical phason displacement w0 increases. The crack
patterns with different initial phason displacements are shown in Figure 7. Clearly, the
increasing initial phason displacement will lead to a significant crack deflection. Therefore,
it is concluded that the phason load is a key influencing factor for the peak force and crack
patterns under the applied shear loads.
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3.2. The Rectangular QCs with an Internal Crack

In this example, a rectangular QC with an internal crack is considered in Figure 8. The
length of the crack is a, and the angle between the crack and the horizon is θ. The middle
of the crack is centered in the model. The boundary conditions of the QC are the same as
those in Section 3.1. The parameters are selected as a = 25 mm and W = L = 100 mm. The
QC model is subjected to a vertical initial phason displacement w0 at the upper edge.
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Figure 8. A rectangular QC with an internal crack.

Firstly, the QC model is subjected to a tensile load in the phonon field (ϕ = π/2). The
peaks of the phonon forces for different angles θ are shown in Figure 9. It can be observed
that the peak force monotonously increases with the increase in θ, while it shows an opposite
trend as the initial phason displacement increases. The force-displacement relation for
different angles θ is shown in Figure 10. Clearly, the slope of the force-displacement curve
increases as the angle θ increases. The crack patterns with different angles are plotted in
Figure 11. As observed, the crack grows along a straight line to the edge of the model when
subjected to a tensile load.
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Subsequently, the model is subjected to shear loads in the phonon field at the upper
edge. The peak phonon forces for different angles θ are illustrated in Figure 12. As observed,
the peak force first increases and then decreases as the angle θ increases. The crack patterns
are plotted in Figure 13. Similar to the observation in Figure 7, the increasing initial phason
displacement has a significant influence on the crack propagation path.
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Figure 13. The crack pattern with shear load for different initial phason loads (internal crack):
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3.3. The Rectangular QCs with Double Cracks

As the last example, the QC model with double cracks is investigated in Figure 14.
The parameters are selected as a1 = a2 = 25 mm and W = L = 100 mm. The left crack
is horizontal. The angle between the right crack and the horizon is θ. The lengths of the
left and right cracks are a1 and a2, respectively. Point B is located at the center of the right
crack. The distance between the right edge of the model and point B is ∆1 = 27.5 mm.
The distance between the left crack and point B is ∆2. The model is subjected to a tensile
phonon/phason displacements. The peak forces for different angles θ with ∆2 = 32.5 mm
are plotted in Figure 15. It can be found that, as θ increases, the peak force monotonously
increases for w0 = 0 mm and w0 = 0.0004 mm, while it increases first and then decreases
for w0 = 0.0008 mm. The crack patterns for different angles θ and distances ∆2 are
illustrated in Figures 16 and 17. As observed, the interaction of two cracks has a big
contribution to their crack propagation path. The two cracks eventually merge together as
the applied load increases.
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4. Conclusions

In this paper, a phase field model is developed to predict crack propagation in 2D
decagonal QCs. The contribution of the phason field to the potential energy is considered,
and the evolution law of the crack phase field for QCs is established. Therefore, the crack
topology in QCs is described by the phase field variable, which can be solved by the FEM. In
this manner, the crack propagation in QCs can be accurately simulated without remeshing,
and the evolution of the crack can be vividly illustrated. Numerical examples illustrate
that the proposed model can predict accurate results for the crack propagation of QCs,
and the phason field has a big contribution to both the force-displacement relation and the
crack pattern.
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