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Abstract: Ammonium, imidazole, or pyridinium functionalized β-cyclodextrins (β-CDs) were used as
efficient one-component bifunctional catalysts for the coupling reaction of carbon dioxide (CO2) and
epoxide without the addition of solvent and metal. The influence of different catalysts and reaction
parameters on the catalytic performance were examined in detail. Under optimal conditions, Im-CD1-
I catalysts functionalized with imidazole groups were able to convert various epoxides into target
products with high selectivity and good conversion rates. The one-component bifunctional catalysts
can also be recovered easily by filtration and reused at least for five times with only slight decrease
in catalytic performance. Finally, a possible process for hydroxyl group-assisted ring-opening of
epoxide and functionalized group- induced activation of CO2 was presented.

Keywords: carbon dioxide fixation; functionalized β-cyclodextrins; solvent- and metal-free catalysis;
environment-friendliness; cyclic carbonate

1. Introduction

CO2 has been attracting much attention because of its unique properties, such as
nontoxicity, low cost, bio-renewability and C1 building block for organic synthesis, and
so on [1–4]. During past decades, a great deal of efforts has been devoted to investigating
efficient procedures for CO2 fixation to produce valuable products. The formation of cyclic
carbonates via cycloaddition of CO2 with epoxides is among the most potential ways, and
the obtained cyclic carbonates are used widely as aprotic polar solvents, precursors for
polymerization reactions, electrolytes for lithium-ion batteries, and fine chemical intermedi-
ates [5–9]. Mechanistically, the Lewis acid center (e.g., metal center or H) ligates with the O
of the epoxide to activate the epoxide substrate, while the Lweis base (e.g., halogen anion)
acts as a nucleophilic reagent to open the ring of the epoxide so that the next steps such as
CO2 insertion and intramolecular cyclization occur [10–12]. Therefore, various catalytic
systems such as metal complexes [13–19], metal oxides [20–23], metalloporphyrins [24–30],
ionic liquids [31–35], functional polymers [36–40], organocatalysts [41–48], metal-organic
frameworks (MOFs) [49–59], mesoporous materials [60–65] and biomass [66–86] have been
developed to promote such reaction up to now.

Though significant improvements in catalyst species have been achieved, some draw-
backs such as scarce active sites and low carrier still remain to be overcome for effective
chemical conversion of CO2 via its coupling reaction with epoxides [87,88]. Moreover, in
many cases harsh reaction conditions (e.g., high pressure and/or high temperature) and
participation of co-solvent/additive are generally required. Furthermore, accompanying
issues of inherent corrosion, toxicity and environmental concerns associated with the use of
metallic cations remain challenging. Therefore, it is very demanding to put forward efficient
environment-friendly catalysts for the coupling reaction of carbon dioxide and epoxide.

Regarding catalysts reported so far, biomass-based environment-friendly catalysts
have drawn great attention such as betaine [68], lecithin [70], sugarcane bagasse [77],
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chitosan-based [66,67,71,73,76], cellulose-based [69,72,74,75,78], chitin-supported [83] com-
pounds, Xylan [89] and β-CD [90,91]. β-CD, a well-known inexpensive, stable, and read-
ily available natural hydrogen bond donor, is of abundant hydroxyl groups. In 2008,
Han et al. firstly reported an efficient catalytic system of β-CD/KI for CO2 cycloaddition
with epoxides [90]. This work broadened the application of β-CD in CO2 fixation and
more β-CD-based catalytic systems are highly expected. Unfortunately, there has been
no substantial advance in this field until 2017 when an efficient [DBUH][PFPhO]/β-CD
system was developed in Hou’s group [91]. However, functionalized β-CDs as efficient
catalytic systems compared to other biological materials are still rarely reported. Therefore,
ammonium functionalized bis-β-CDs as effective catalysts were synthesized in our group
to catalyze the coupling reaction of CO2and epoxides [84].

Although the catalytic results are positive and encouraging, the synthesis and yield of
modified bis-β-CDs are difficult. Young and Ng et al. synthesized a series of functionalized
β-CDs by displacing 6-tosyl-β-CD with alkylamines, pyridinium or alkylimidazoles via
easy ways [92]. Inspired by their work, we herein designed and synthesized a series of
functionalized β-CDs to be as one-component catalysts, in which hydroxyl groups were
functionalized as Lewis acid to activate the epoxide and halide ions were functionalized as
Lewis base to promote the ring-opening step. The catalytic performance of newly synthesized,
functionalized β-CD for the coupling reaction of CO2 and epoxides were systematically
investigated without adding co-catalyst and solvent. Moreover, theseβ-CD based catalysts can
be reused conveniently, which is important for developing practical processes. Furthermore,
a synergistic mechanism involved hydroxyl group and halide ion was discussed based on
the literatures and experimental results. This ecologically safe, simple, inexpensive catalytic
system has potential of CO2 conversion at the industrial level in the future.

2. Materials and Methods
2.1. Chemicals and Analytical Methods

All the chemicals were purchased from Acros and used as received except for epoxides
which were purified by distillation from CaH2 before use. A Bruker Al-400 MHz instrument
manufactured by Bruker Technologies Switzerland Ltd., Fällanden, Switzerland, was used
for recording NMR spectra using TMS as an internal standard.

2.2. Synthesis of Functionalized β-CDs

The ammonium, imidazole, and pyridinium functionalized β-CDs (Scheme 1) were
exactly synthesized and characterized according to previously reported methods [92]. After
synthesis and purification following the reported procedures, these functionalizedβ-CDs
were directly employed to initiate CO2 coupling reaction with epoxides.
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Scheme 1. Structures of β-CD and various functionalized β-CDs. 
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2.3. General Procedure for Cyclic Carbonates Synthesis from Epoxides and CO2

Cycloaddition reaction of CO2 and epoxide was conducted in a 250 mL stainless steel
autoclave. In a typical reaction, predetermined amounts of catalyst and epoxide were fed
into the reactor, CO2 was then added into the reactor at certain pressure. The autoclave was
sealed and then immersed into an oil bath at preset temperature with stirring. The reactor
was cooled down in an ice-water bath after predesigned time and the unreacted CO2 was
released slowly. The yield and selectivity are determined by 1H NMR characterization.

3. Results and Discussion
3.1. Effect of Reaction Parameters with Am-CD1-I

Reaction conditions were screened for optimizing the catalytic activity based on
the ammonium functionalized β-CD Am-CD1-I and the coupling reaction of CO2 and
propylene oxide (PO). The reaction conditions as collected in Figure 1 were standardized
by observing the effect of reaction temperature, pressure, time, and catalyst loading on the
yield of propylene carbonate (PC).
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Figure 1. Effects of different reaction parameters on PC yield over Am-CD1-I: (a) Effects of reaction 

temperature, conditions: PO (5 mL, 71.5 mmol), Am-CD1-I (0.2 mol%), CO2 pressure 3 MPa, time 5 
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temperature 130 °C, time 5 h. (c) Effects of reaction time, conditions: PO (5 mL, 71.5 mmol), Am-

CD1-I (0.2 mol%), reaction time 130°C, CO2 pressure 3 MPa. (d) Effects of catalyst loading, 

conditions: PO (5 mL, 71.5 mmol), reaction time 130°C, CO2 pressure 3 MPa, reaction time 5 h. 
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Figure 1. Effects of different reaction parameters on PC yield over Am-CD1-I: (a) Effects of reaction
temperature, conditions: PO (5 mL, 71.5 mmol), Am-CD1-I (0.2 mol%), CO2 pressure 3 MPa, time
5 h; (b) Effects of CO2 pressure, conditions: PO (5 mL, 71.5 mmol), Am-CD1-I (0.2 mol%), reaction
temperature 130 ◦C, time 5 h. (c) Effects of reaction time, conditions: PO (5 mL, 71.5 mmol), Am-CD1-I
(0.2 mol%), reaction time 130 ◦C, CO2 pressure 3 MPa. (d) Effects of catalyst loading, conditions: PO
(5 mL, 71.5 mmol), reaction time 130 ◦C, CO2 pressure 3 MPa, reaction time 5 h.

The reaction temperature was first investigated to test its effect on the PC yield.
Figure 1a displays a strong effect of temperature on the PO conversion. A high reaction
temperature is favorable for the synthesis of PC, indicating that the cycloaddition reaction
was thermodynamically favorable [93,94]. To our satisfaction, low temperature appears
insensitive to the PC selectivity in view of the fact that low temperature would be favorable
for producing polycarbonate. Considering that polymerization of cyclic carbonates occurs
at higher temperatures [95] and has adverse effect on the equipment, an optimal reaction
temperature of 130 ◦C was selected for following studies.

Figure 1b reflects the influence of the CO2 pressure on the PC yield. Low pressures
ranging from 0.5 to 1.0 MPa gave rise to increase in the PC yield. The PC yield decreased in
high-pressure range (3.0–5.0 MPa) after a plateau from 1.0 to 3.0 MPa of CO2 pressure. Such
phenomenon is observed as well in other catalytic systems [96–98]. It could be explained
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that in the low-pressure region, the increase in CO2 pressure enhanced PC yield due to
higher CO2 concentration in the liquid phase. However, much higher CO2 pressure would
lower the PC yield due to decreased PO concentration around the catalyst, this is not
favorable for the cycloaddition because PO is another reactant [99,100]. As a result, a
maximal PC yield was obtained.

The PC yield increased steadily with reaction time until 7 h and the coupling reaction
proceeded rapidly within the first 5 h, and no appreciable increment in PC yield was
observed thereafter (Figure 1c). This might originate from a hampered interaction between
the catalyst and reactant due to the formation of PC [101]. A more viscous reaction system
after prolonged reaction time was another negative factor disfavoring the activation of CO2.
Thus, the reaction time of 5 h was chosen to be optimal. Increasing of the catalyst loading
from 0.14 mol% to 1 mol% led to rising catalytic activity (Figure 1d). However, there was a
decrease in the PC yield for the reaction conducted with 2 mol% catalyst, which may be
from a hindered mass transfer due to excess catalyst. Thus, 1 mol% Am-CD1-I is optimum
for this work and selected for subsequent research.

3.2. Effect of Reaction Parameters over Im-CD1-I

Inspired by the high performance of ammonium functionalized β-CD Am-CD1-I, the
imidazole functionalized β-CD Im-CD1-I was also attempted to catalyze the cycloaddition
of CO2 and PO. PC yields catalyzed by Im-CD1-I trended similarly to those in the case
of using Am-CD1-I (Figure 2). The reaction temperature also affected the PC yield and
110 ◦C is chosen to be optimal (Figure 2a). The PC formation with Im-CD1-I correlated
with CO2 pressure (Figure 2b). The peak PC yield appeared at 3 MPa and much higher
CO2 pressure resulted in decreased yield. Moreover, prolonged reaction time exceeding 3 h
failed in further increasing PC yield (Figure 2c). The PC yield at the low catalyst loading
(0.14–0.33 mol%) rose with increasing catalyst loading, realizing a drastic elevation in
PC yield. However, a further increase in catalyst loading contributed little to PC yield
(Figure 2d). To sum up, the optimal condition of the cycloaddition over Im-CD1-I is 110 ◦C,
3 MPa, 3 h and 0.33 mol%.
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bulky butyl on the amine group might form a more flexible ion pair with I-, thus 

increasing its nucleophilicity and making it the most viable catalyst [103,104]. For both 

Figure 2. Effects of different reaction parameters on PC yield over Im-CD1-I: (a) Effects of reaction
temperature, conditions: PO (5 mL, 71.5 mmol), Im-CD1-I (0.33 mol%), CO2 pressure 2 MPa, time
3 h; (b) Effects of CO2 pressure, conditions: PO (5 mL, 71.5 mmol), Im-CD1-I (0.33 mol%), reaction
temperature 110 ◦C, time 3 h; (c) Effects of reaction time, conditions: PO (5 mL, 71.5 mmol), Im-CD1-I
(0.33 mol%), reaction time 110 ◦C, CO2 pressure 3 MPa; (d) Effects of catalyst loading, conditions: PO
(5 mL, 71.5 mmol),reaction time 110 ◦C, CO2 pressure 3 MPa, reaction time 3 h.
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Comparison of the optimal conditions for Am-CD1-I and Im-CD1-I (130 ◦C, 1 MPa,
5 h, 1 mol% Am-CD1-I vs. 110 ◦C, 3 MPa, 3 h, 0.33 mol% Im-CD1-I) found that ammonium
functionalized β-CD Am-CD1-I required higher reaction temperature and more time, along
with higher catalyst loading, while the imidazole functionalized β-CD Im-CD1-I only
required relatively higher CO2 pressure, which may be due to the different solubility
of the two functional β-CDs in the reaction system. In general, the optimal condition
for Im-CD1-I is milder than that forAm-CD1-I, reflecting the superiority of imidazole
functionalized β-CDs catalysts although Im-CD1-I and Am-CD1-I are both metal-, solvent-
and cocatalyst-free.

3.3. Catalytic Performances of Various Catalysts

Under optimal conditions, solvent-free synthesis of PC from CO2 and PO catalyzed by
ammonium, imidazole, and pyridinium functionalized β-CDs was investigated. As listed
in Table 1, most of functionalized β-CDs afforded excellent selectivity for PC. The reason
for such a high selectivity of this reaction is due to the tendency of the X− ion to attack
the C with small site resistance during the nucleophilic attack on the epoxide to open its
ring. The details will be shown in the description of the mechanism section. For various
catalysts, the catalytic activities correlated with their structures. The mono-6-halide-β-CDs
can convert PO in quantitative yields (Table 1, entries 1–3), suggesting synergetic effect
of rich hydroxyl groups and halide ions in the modified β-CDs. The synergetic effect of
these two functional groups has been reported and testified using a DFT calculation by
Zhang et al. [102]. Moreover, when β-CD was modified by ammonium, imidazole, and
pyridinium, the catalyst performance was improved visibly. For the ammonium functionalized
β-CDs (Table 1, entries 4–9), higher catalytic activities of Am-CD1-I and Am-CD2-I are
attributed to bulky alkyl on the butyl amine group. The more-bulky butyl on the amine group
might form a more flexible ion pair with I-, thus increasing its nucleophilicity and making it
the most viable catalyst [103,104]. For both mono-6-halide-β-CDs and functionalized β-CDs,
the activity for various halogen anions decreases in the order of I− > Br− > Cl−(Table 1, entries
1–3,5–7,13–15) probably owing to the leaving ability and nucleophilicity of the anion [105,106].
To study the effect of imidazole functionalized β-CD structure on the catalytic activity, a
milder reaction condition was conducted afterwards. A longer alkyl chain endowed imidazole
functionalized β-CD with higher catalytic performance (Table 1, entries 16–18) because a
long alkyl chain may weaken electrostatic interaction, thus enhancing the nucleophilicity of
anion [107]. The ammonium, imidazole, and pyridinium functionalizedβ-CDs played quite
well in coupling reaction between CO2 and epoxides with much better performance compared
with binary catalytic system β-CD/KI [90] or β-CD/TBAI [108], because our catalyst only
required lower CO2 pressure and catalyst loading without adding metal and additive.

3.4. Recycling Test

A series of reaction recycles using Am-CD1-I and Im-CD1-I as catalysts were per-
formed to investigate the stability of the catalyst for the cycloaddition reaction of PO with
CO2 under each optimal condition. In each cycle, Am-CD1-I and Im-CD1-I were recovered
via simple filtration, washed with acetone, dried in vacuo and directly reused for the next
cycle. As Figure 3 presents, both Am-CD1-I and Im-CD1-I can be reused for at least 5 times
without obvious loss in catalytic activity. In order to confirm the stability of Im-CD1-I
(showing slight decrease after 5 times of recycling, Figure 3), the reused Im-CD1-I was
characterized by FT-IR analysis. Strong characteristic bands assigned to the in-plane C-H
deformation vibration and in-plane C-C and C-N stretching vibration of the imidazole
ring (1629 and 1318 cm−1), along with the characteristic band of C-I bond at 604 cm−1

remain after reuse (Figure 4), indicating a very stable Im-CD1-I for this reaction. As shown
in Figure 4, the structure of the catalyst was maintained after five times of reuse, which
proved the stability and reusability of the synthesized catalyst, and the slight decrease in
the catalytic effect after five times of use might be due to the partial loss of catalyst during
the recycling process.
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Table 1. Results of coupling reaction of CO2 and PO catalyzed by various catalysts a.

Entry Catalyst Yield (%) b Selectivity (%) b TON c TOF (h−1) d

1 β-CD-I 78 99 78 16
2 β-CD-Br 65 99 65 13
3 β-CD-Cl 60 99 60 12
4 Am-CD1-I 97 99 97 19
5 Am-CD2-I 96 99 96 19
6 Am-CD2-Br 89 99 89 18
7 Am-CD2-Cl 79 99 79 16
8 Am-CD3-I 90 99 90 18
9 Am-CD4-I 84 99 84 17

10 e β-CD-I 26 98 80 27
11 e β-CD-Br 20 99 61 20
12 e β-CD-Cl 3 99 9 3
13 e Im-CD1-I 98 99 297 99
14 e Im-CD1-Br 91 98 276 92
15 e Im-CD1-Cl 3 99 10 3
16 f Im-CD1-I 80 99 320 107
17 f Im-CD2-I 90 98 360 120
18 f Im-CD3-I 92 99 367 122
19 e Py-CD-I 89 99 271 90
20 g β-CD/KI 98 99 223 56

a Reaction conditions: PO (5 mL, 71.5 mmol), catalyst 1 mol%, CO2 pressure 1 MPa, reaction temperature
130 ◦C, reaction time 5 h. b Determined by 1H NMR spectra analysis using TMS as an internal standard. c Turnover
number for PC calculated as mole of PC produced per mole of catalyst. d Turnover frequency for PC calculated
as mole of PC produced per mole of catalyst per hour. e Reaction conditions: PO (5 mL, 71.5 mmol), catalyst
0.33 mol%, CO2 pressure 3 MPa, reaction temperature 110 ◦C, reaction time 3 h. f Reaction conditions: Catalyst
0.25 mol%. g Reaction conditions: PO (22 mmol), β-CD 0.1 g, KI 2.5 mol%, CO2 pressure 6 MPa, reaction
temperature 120 ◦C, reaction time 4 h.
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condition for Am-CD2-I: PO (5 mL, 71.5 mmol), Am-CD2-I (1 mol%), CO2 pressure 1 MPa, reaction
temperature 130 ◦C, time 5 h. Reaction condition for Im-CD1-I: PO (5 mL, 71.5 mmol), Im-CD1-I
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3.5. Cycloaddition of Various Epoxides and CO2

To probe the prospect and versatility of as-synthesized functionalized β-CD cata-
lyst, the cycloaddition reaction of CO2 with various epoxides with Im-CD1-Iwas studied
(Table 2). Im-CD1-I worked well towards various epoxides possessing both electron-
withdrawing and electron-donating substituents, forming respective cyclic carbonates with
excellent selectivity and good yields. For isobutyl oxide (Table 2, entry 7) and cyclohex-
ene oxide (Table 2, entry 8), identical reaction conditions gave rise to relatively low yield
possibly due to that a steric hindrance obstructed the nucleophilic attack of the epoxide
while its coordination to the Lewis acid metal center benefited the yield [108–111]. The
aliphatic substituted epoxides (including PO in Table 1) were transformed with CO2 to
desired products in good yields. Especially, the activated epoxide epichlorohydrin was
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converted by as-designed catalysts and transformed into respective cyclic carbonate in
good yield in 3 h (Table 2, entry 1). Surprisingly, aromatic substituted epoxide styrene
oxide reacted with CO2 in a yield of 100% (Table 2, entry 3). Furthermore, the glycidyl
ethers were turned into corresponding carbonates in good yields from 75 to 98% (Table 2,
entries 4–6). It is also noteworthy that the Im-CD1-I catalyzed the diepoxides to produce
respective bicyclic carbonates as well (Table 2, entries 10,11), raw materials for synthesiz-
ing non-isocyanate polyurethanes (NIPUs) without using toxic phosgene or isocyanates
via the reaction with polyfunctional primary amines [112–114]. With increasing aliphatic
chain length, the addition of CO2 was hindered because of chain folding or the fluidity of
chains and the hindrance of methylene groups. Such phenomenon was also observed by
Qin et al. [115–117].
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a Reaction conditions: Im-CD1-I (0.33 mol%), epoxide (71.5 mmol), reaction temperature 110 ◦C, pressure 3 MPa,
reaction time 24 h. b Determined by 1H NMR spectra analysis using TMS as an internal standard. c TON for
cyclic carbonate calculated as mole of cyclic carbonate produced per mole of catalyst. d TOF for cyclic carbonate
calculated as mole of cyclic carbonate produced per mole of catalyst per hour. e Reaction time 3 h.
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3.6. Proposed Mechanism

A mechanism is proposed for the functionalized β-CD catalyzed reaction as shown
in Scheme 2 based on experimental results and literatures [118]. Firstly, the interaction
between the epoxide oxygen and hydroxyl groups of Im-CD1-I promoted the polarization
of the C-O bond in epoxide as reported in literature [119–123]. Simultaneously, CO2 was
activated by functionalized group, such as imidazole herein. Moreover, the imidazolium
cations could also stabilize the metal-alkoxide bond through charge interactions, which
would help explain the superior performance of imidazole, ammonium, or pyridinium
functionalized β-CDs than mono-6-halide-β-CDs. Subsequently, the nucleophilic halide
anion attacked the less hindered carbon atom of epoxide followed by ring opening step
to form an intermediate of oxygen anion. The oxygen anion intermediate then reacted
with activated CO2 to form a carbonate anion, followed by an intramolecular ring-closure
step to produce cyclic carbonate and regenerate the catalyst. According to this mechanism,
the cooperative effect between the electrophile (hydrogen bond) and nucleophile (flexible
halide anion) in the same catalyst molecules could effectively promote the coupling reaction
in an eco-friendly mode without the introduction of metal, additive, and solvent [124,125].

3.7. Comparison of Different Biological Catalytic Systems

Catalytic activities of as-synthesized functionalized β-CDs in the coupling reaction
of CO2 and PO are compared with those of other biological catalyst systems reported in
literature [66–78,83,89–91]. Though the reaction conditions differ from each other to some
extent (reaction temperature: 100–140 ◦C; CO2 pressure: 1.17–8 MPa; reaction time: 1–10 h;
yield: 85–100%; TOF: 5–81 h−1), approximate comparison is reasonable. Compared with
either β-CD-based catalytic systems [90,91], or other biological catalytic systems [66–78,83],
the as-synthesized functionalized β-CDs Am-CD2-I, Im-CD1-I and Py-CD-I demonstrated
better performance as indicated by significantly higher yield values (96% for Am-CD2-I
and 98% for Im-CD1-I) than the yield of 85% for the Xylan/DBU catalytic system [89] in
addition to metal- and cocatalyst-free conditions adopted in this work. The comprehensive
catalytic performance of the present catalysts is also better than that of MOFs and metal
oxides [22,49,54]. Overall, the functionalized β-CDs utilized in this work are among excellent
catalysts in comparison to most of efficient biological catalyst systems reported so far.

Scheme 2. Proposed mechanism.
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4. Conclusions

A series of imidazole, ammonium, and pyridinium functionalized β-CDs were first
employed as a one-component and recyclable catalyst for the coupling reaction between
various epoxides and CO2 without the addition of metal, cocatalyst, and solvent. Excellent
selectivity and high cyclic carbonate yields are realized under mild conditions. As disclosed by
the mechanism, the reaction proceeded smoothly owing to a synergistic effect from abundant
hydroxyl groups of β-CD and the halide anion of functional groups. These green, biocompati-
ble, and non-toxic catalysts derived from inexpensive environment-friendly starting material
β-CD have great potential in industrial application for the conversion of CO2.
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