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Abstract: There are two common methods to interpret the results of an Axisymmetric Compression
Test (ACT): the Cylindrical Profile Model (CPM) and the Avitzur model; however, both of the two
and all other models available in the literature ignore the unavoidable foldover phenomenon, which
breaks the models to provide reliable friction-free flow stress curves. Here, a novel numerical
framework (called ACTAS) is presented that incorporates the foldover. ACTAS can be used to both
simulate and analyze ACT. Ten finite element models are used to benchmark ACTAS. The results
show the reliability of the proposed method in estimating the average and pointwise stress-strain
curves and friction factors. Moreover, a new solution is provided by coupling the CPM and the
Avitzur model (called A-CPM), to obtain reliable average flow curves even after the onset of foldover.

Keywords: axisymmetric compression test; flow stress curve; friction factor; foldover; barreling;
meshfree method

1. Introduction

Axisymmetric Compression Test (ACT) is a crucial physical simulation to characterize
material’s mechanical, microstructural, and frictional behaviors. The test provides “raw”
measurements, including the shape of the deformed sample and the load-displacement
curve, which require post-processing to be converted into “computed” stress, strain, strain
rate, and friction. Currently, the available post-processing methods are mostly simpli-
fied closed-form solutions of ACT, which have narrow applications due to their limiting
assumptions. Therefore, the results are no longer reliable if the methods are applied to
tests beyond their limits. The readers are referred to a recent work of Khoddam, Solhjoo,
and Hodgson [1] for a thorough review on the topic.

The most common way to convert load-displacement curves into “friction-free” stress-
strain curves is to assume a uniform deformation within the sample by employing a
Cylindrical Profile Model (CPM); see, for example, [2]. The CPM disregards barreling
and shear deformation in the sample, among other simplifying assumptions. Moreover,
although friction is incorporated into the CPM, it does not provide any methods to evaluate
friction. Therefore, to use the CPM in the analysis of ACT, the friction must be negligible.
This situation can be provided by either altering the test design [3] (see, e.g., Rastegaev [4],
Nadai [5], and Chen et al. [6]) or proper lubrication, e.g., using polymers and biological
tissues [7]. However, none of these adjustments eliminate friction to test metals with any
significant large deformation relevant to metal forming processes. In a recent publication,
Khoddam et al. [8] compared the CPM with a series of Finite Element (FE) models for a
material with a monotonic flow curve for six different samples. They found that CPM
underestimates the maximum effective stress, strain and strain rate. Additionally, when
looking for a representative tracing point to validate the theories, they found that the CPM
is incapable of fully identifying the flow curves at any sample point. More importantly,
they reported that the CPM could lead to misleading results, such as the false identification
of dynamic recovery and dynamic recrystallization, despite the monotonic nature of their
reference samples.
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Another common method for analyzing ACT is Avitzur’s limit analysis [9]. To use
this model, its barreling parameter bA must be approximated first. A solution for bA was
first proposed by Ebrahimi and Najafizadeh [10] and later by Solhjoo [11]. The value of bA
can be approximated with numerous assumptions; see, e.g., the kinematic analysis of the
Avitzur model, resulting in fifteen solutions for bA [12]. In another attempt, Yoa et al. [13]
used numerical data and defined bA as a function of the geometry of the initial sample,
the friction factor, and the mechanical behavior of the material. Despite the wide use of the
Avitzur model, the validation attempts showed its unreliability in estimating the friction
factor [11,14,15]. The possible reasons for the deficiency of the Avitzur model are discussed
to be the unrealistic geometry of the deformed sample and, more importantly, the model’s
inability to resolve the unavoidable side-surface foldover phenomenon [12,14]. The model’s
reliability in estimating flow curve from ACT has yet to be assessed, which is covered in
this work.

Additionally, there are a few less common methods to study ACT. Recently, Vup-
pala et al. [16] suggested an iterative approach. In this method, FE models are iteratively
solved at any given strain. The flow stress is adjusted to match the deformation load of the
simulation to that of the experiment. In this approach, friction is assumed to be known.
Some other methods have been specifically developed to study friction. For example,
Khoddam et al. [17] proposed an incremental approach based on an exponential profile
model [18] to estimate friction factor; however, due to the limitations of the employed
velocity field and the applied method, it is unable to capture foldover.

Foldover is inevitable in ACT for simulating any industry-relevant plastic deforma-
tion [12]. This complex phenomenon can be compared to necking in a tensile test and
requires a specially developed theory to capture it in the model. It is crucial to properly
post-process the test data after the onset of foldover [1,12]. For estimating the friction in the
presence of foldover, Yang et al. [19] proposed a computationally demanding Finite Element
Method (FEM-)based inverse solution using a multi-population genetic algorithm. This
method is developed for studying viscoelastic materials. However, there is a less expensive
method to study the test of plastically deformed metals: one can employ the closed-form
solution of Ettouney and Stelson to estimate the foldover [20] and subsequently estimate
the friction conditions using an FEM-based calibration method [21].

Avitzur and Kohser tried a two-zone velocity field [22,23] to account for the foldover
in an attempt. Their new method simulates ACT, for which more accurate and versatile
ways are available to incorporate barreling and foldover. So far, researchers use FE models
to produce the most realistic results [24]. Yet, some flow-based models offer comparable
solutions, e.g., the four-zone samples of Dadras and Thomas [25] or of Hou et al. [26]. All
these methods are direct solutions to ACT, which means that they require the mechanical
behavior of the material and the tool-sample interfacial friction to simulate ACT.

The current investigation aims to build a framework for a virtual laboratory based
on the upper bound method to analyze ACT. It includes an ACT simulator (ACTS) and
an analyzer (ACTA). The analyzer is the unique feature of this framework, which takes
the raw measurements of the test as input and performs a reliable characterization of
the mechanical behavior of the sample and the friction between the sample and the tool.
The simulator, like others, requires the stress-strain curve and friction factor to predict
the deformation load, the deformed shape of the sample, and the distribution of the state
variables (e.g., stress, strain, and strain rate) throughout the sample.

2. Problem Overview and the Current Common Solutions

Figure 1 illustrates a schematic of ACT’s sample geometry and its key parameters used
in ACT theories. This 2D illustration denotes a zero angular velocity, a common assumption
of all current ACT theories. The figure also depicts a parameter F corresponding to the
unavoidable foldover phenomenon, ignored in most theories. It is illustrated due to its
coverage in the proposed method of the present study.
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Figure 1. The schematic of the sample geometry in axisymmetric compression test (left) before and
(right) after the deformation. R0 and H0 are the sample’s initial radius and height, respectively. By
deforming the sample with a constant velocity of −U/2 parallel to the z axis, three characteristic
radii can be identified: the mid-plane (RM), top-plane (RT) and slip (RS) radii with foldover being
F = RT − RS. (RS is the result of the expansion of R0, and F is the contribution of the side surface
foldover, resulting in a larger top-plane radius RT). In a flow-based model, any point p(r, z) moves
based on the radial and axial components of the velocity field (Ur, Uz).

As mentioned in the Introduction, the two most used theories for interpreting ACT
are the CPM and the one proposed by Avtizur. In the rest of this section, these two theories
are briefly overviewed. Additionally, a possible connection between the two is suggested.

2.1. Cylindrical Profile Model

The CPM suggests a uniform distribution of state variables throughout the sample
and neglects both barreling and foldover. Using different methods, such as slab analysis or
upper bound for axisymmetric and homogeneous upsetting (see, e.g., [27]), the ratio of the
average deformation pressure pave to the average stress σ can be found to be:

pave

σ
= 1 +

2
3
√

3
mR
H

, (1)

with R = R0
√

H0/H being the effective radius. In this model, m is friction factor at
constant interfacial shear stress with limits of 0 ≤ m ≤ 1. The friction factor m must be
known beforehand, while the model does not provide any tool for estimating m. These
limitations render the CPM useful only when the friction is negligible and the sample does
not show barreling.

2.2. Avitzur Model

The Avitzur model is based on the upper bound solution for the average deformation
pressure. It has a velocity field in its core, which introduces an arbitrary coefficient of
“barreling parameter” bA to represent the barreling of the deformed sample. The theory
can be used if bA � bn

A for n ≥ 2, such that bn
A ≈ 0 and bA < 2

√
3H/R [9,12]. This model

connects the deformation pressure to the average stress by:

pave

σ
=

8
g

((
1

12
+ g2

)3/2
− g3 −m

(
24
√

3(1− ebA/2)
)−1

)
, (2)

with g = H/(bAR). Furthermore, the friction factor can be defined as a function of the
barreling parameter:

m =
3
√

3
2

R
H
(

6
bA
− 1)−1. (3)
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Therefore, if the barreling parameter can be obtained through measurements, the model
can be used to interpret the ACT results. There are numerous ways to approximate bA: see,
e.g., [10–13]. However, regardless of the approximation method, this model provides highly
unreliable estimations of the friction factor [11,12,28]. As mentioned earlier, the accuracy of
its estimated flow curves has yet to be assessed.

2.3. The Connection between Cylindrical Profile and Avitzur Models

It is easy to show the differences between the geometry and the distribution of the
state variables in the deformed samples of the CPM and the Avitzur model; see, e.g., [14].
Yet, in connecting pave and σ, both of these models take a similar route to derive their
formulations by ignoring the barreled geometry. In other words, the Avitzur model is
essentially a CPM due to its assumption of a constant R as the upper limit of integration
in calculating the internal deformation power and friction losses [9]. This assumption
behind the derivation of Equation (2) suggests a possibility of connecting the two models,
for example, by inserting the friction factor of the Avitzur model (Equation (3)) into the
CPM (Equation (1)), resulting in:

pave

σ
≈ 1 +

(
R
H

)2( 6
bA
− 1
)−1

. (4)

While the analytical comparison between Equations (2) and (4) is not trivial by any
means, numerical comparisons for various values of the aspect ratio R/H and the barreling
parameter help us to make an assessment. Figure 2 shows the ratio of Equation (4) to
Equation (2) for the values of bA ∈ [0, 1] and R/H ∈ [0.1, 1], which safely range way
beyond any practical limits [12]. The ratio varies between 1 and 1.02, suggesting a close
correlation between the two models even under significant frictional conditions. Therefore,
one can use the CPM approximated by the Avitzur model to analyze ACT results without
a pre-known friction factor. Hereafter, I call it A-CPM (i.e., Equation (4)). In this paper,
A-CPM is evaluated for various samples. This assessment reflects the reliability of both the
CPM and the Avitzur model in their original forms.
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Figure 2. The ratio of Equation (4) (A-CPM) to Equation (2) (Avitzur model) for a wide range of bA

and R/H.

3. Solving the Nonuniformity Problem

Several assumptions are claimed to be the sources of uncertainty of current ACT theo-
ries and their closed-form solutions. For example, (1) they assume a uniform constitutive
behavior throughout the sample, and (2) their uniform description of material flow makes
them intrinsically unable to describe the sample’s flow after the onset of unavoidable
foldover. There are also a few successful studies on simulating ACT using flow-based
models that incorporated the foldover phenomenon [25,26]. These models are carried out
using numerical methods of dynamically evolving geometries.
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ACTAS is a framework that uses a meshfree-based numerical method to solve both
direct and inverse problems of ACT with an incremental approach. The selected form of
the numerical method provides the potential for:

• dividing the sample into any desired number of zones,
• conditionally moving the zones’ boundaries,
• simulating the nonlinear material behavior, and
• simulating the discontinuities and singularities occurring after the onset of the foldover

by handling the creation, distortion, and destruction of nodes.

In the next section, the direct solution (ACTS) is first built to identify the tool’s limita-
tions. Like other direct solutions, ACTS requires the input of flow curve and friction factor.
Considering that other well-developed methods, such as FEM, can rigorously simulate
ACT, one may question the reason for developing a new one. The primary reason is to
build a foundation for the inverse solution ACTA. For a working ACTS, ACTA must be
able to perform an accurate analysis; only then, performing ACTA on other data sets can
be justified.

4. Mathematical Implementation of ACTAS

Investigating ACT with ACTAS requires three stages: preprocessing, processing,
and postprocessing. The preprocessing stage is to generate the geometric model and to
establish the problem domain and boundaries using scattered nodes. Contrary to the FEM,
which requires a mesh for defining the information of the connected nodes, the nodes of the
meshfree method, called field nodes, do not require any information on such a relationship
for estimating the unknown functions of field variables. Moreover, the initial values of
the state variables and the constitutive behavior of the material should be established at
this stage. Once the problem is set, the solver (ACTS or ACTA) performs the calculations
within an incremental procedure, preparing the results for postprocessing.

As mentioned in Section 3, both ACTAS modules use the Upper Bound Theorem (UBT)
to solve the deformation load of ACT for an assigned velocity field. This section describes
the UBT analysis of ACT first and then the mathematical implementations of both ACTS
and ACTA.

4.1. Total Power Dissipation and Deformation Load

The upper bound theorem states that, among all kinematically admissible velocity
fields, the actual one minimizes the total power dissipation due to plastic deformation Ė.
For a system where there is no predetermined body traction, such as the ACT with free
side surfaces, Ė can be expressed as:

Ė = Ėd + Ėf, (5)

where Ėd and Ėf are the internal power of plastic deformation and the frictional power at
the boundaries of velocity discontinuity (e.g., tool-workpiece interfaces), respectively. In a
general case of a multizone velocity field, these powers are written as:

Ėd = ∑
i

∫
Vi

σε̇ dVi and (6a)

Ėf = ∑
i

∫
Si

τ
∣∣∆vSi

∣∣ dSi, (6b)

where the index i indicates the zone i,
∣∣∆vSi

∣∣ is the absolute velocity discontinuity at the
boundary of zone i with respect to its neighboring zones, ε̇ is nodal effective strain rate, σ
is nodal stress, and τ is nodal shear stress at the boundaries of zone i.

For the frictional power, which is meaningful for the shearing interfaces, the shear
stress would be described by incorporating a functional form for friction, commonly as
τ = mκ at the tool-workpiece interface and τ = κ (i.e., m = 1) for internal surfaces of
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velocity discontinuity, where κ is material’s shear flow stress. For the case of a one-zone
velocity field, these powers can be simplified to:

Ėd = 2π
∫ H/2

0

∫ R(z)

0
σε̇rdrdz and (7a)

Ėf = 4π
∫ RT

0
τUr(r, H/2)rdr, (7b)

with R(z) being the radial profile of the barreled sample at any given height z.
The calculation of Ėd requires the effective strain rate, which could be obtained from

the strain rate components:

ε̇ =

√
2/3

(
ε̇2

rr + ε̇2
ϕϕ + ε̇2

zz + 1/2
(

ε̇2
rz + ε̇2

rϕ + ε̇2
zϕ

))
. (8)

These strain rate components can be derived from the velocity components using the
following relations:

ε̇rr = ∂Ur/∂r, (9a)

ε̇ϕϕ =
1
r
(
Ur + ∂Uϕ/∂ϕ

)
, (9b)

ε̇zz = ∂Uz/∂z, (9c)

ε̇rz = ∂Ur/∂z + ∂Uz/∂r, (9d)

ε̇rϕ =
1
r
(
∂Ur/∂ϕ−Uϕ

)
+ ∂Uϕ/∂r, (9e)

ε̇zϕ =
1
r

∂Uz/∂ϕ + ∂Uϕ/∂z. (9f)

The strain rate components ε̇ij = ε̇ ji for any i and j of directions {r, z, ϕ}.
The power dissipation equation may contain a set of various unknowns x̂ whose

values, in any given state of the problem, should be determined so that the total energy
dissipation rate reaches its minimum, i.e., dĖ/dx̂ = 0. The solutions obtained from x̂ that
satisfy this condition result in the minimum power dissipation Ėmin. Lastly, the deformation
load L can be obtained as:

L = 2Ėmin/U. (10)

ACTA requires an analytical solution of x̂, while ACTS can use either a closed-form
solution or an optimization method to find the minimizing x̂. Further details of these two
modules are provided in the following sections.

4.2. ACT Simulator

ACTS takes the defined problem from the preprocessing stage, determines the zone of
each field node, calculates the nodal velocities, and moves the nodes accordingly for an
assigned increment. The problem should be set by defining the following items:

(i) an admissible velocity field and the conditions for dynamically defining its internal
boundaries (if exist),

(ii) the geometrical domain of the initial sample in its pre-deformed shape, represented
by field nodes,

(iii) the ram speed U, which can be a constant or a function of other available variables,
(iv) the initial distributions of the state variables of the defined constitutive law, such

as stress and strain,
(v) the constitutive law,
(vi) the constant friction factor m,
(vii) either the time step size ∆t or the number of increments N, and
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(viii) the conditions for stopping the test, e.g., assigning a final height.

Regarding item (v), it is common practice to assume that the material obeys the von
Mises yield criterion, which connects the yield stress in pure shear κ and normal loading
σ via κ = σ/

√
3. This way, the shear stress in the frictional power can be written as a

function of σ.
Once the problem is defined at the preprocessing stage and passed to the solver,

the processing begins with position integration, that is, to find the position of each node
moving according to the assigned velocity field. The new nodal positions are approximated
using the forward Euler kinematics:

p(i+1) = p(i) + ∆tU(i), (11)

where p and U are the nodal position and velocity, respectively, and the upper indices
(i + 1) and (i) indicate the corresponding time steps of t(i+1) and t(i), respectively, and
∆t = t(i+1) − t(i). Then, the nodal strain rate ε̇ are calculated using Equation (8), which can
be accomplished using either its closed-form solution, if available, or numerical methods.

The next step is to calculate the secondary nodal state variables required by the
assigned constitutive law. For example, the nodal strain at the end of each increment is
calculated by:

ε(i+1) = ε(i) + ∆tε̇(i). (12)

Once all relevant state variables have been obtained, the nodal stress values at any
given increment are calculated using the predefined constitutive law. All of these secondary
nodal properties (for example, ε and σ) are defined in terms of the unknown parameter(s)
of the assigned velocity field and must be obtained as such that the minimizing condition of
dĖ/dx̂ = 0 is satisfied. If a closed-form solution of x̂ is at hand (x̂(c)), it can be used directly
to evaluate these properties. Otherwise, x̂ can be found by performing minimization
techniques (x̂(min)) such as the simplex search method of Lagarias et al. [29] based on the
work of Nelder and Mead [30].

After Ėmin is evaluated at the given increment i (that is Ė(i)
min), the corresponding

deformation load can be calculated from Equation (10). I should note that for the sake
of brevity, the upper indices of (i) are omitted for the rest of the paper, but only for the
increment (i); other time steps, such as (i+ 1), (0), or ( f ), are mentioned wherever required.

The final step of ACTS for increment i is to check whether the condition(s) to finish the
simulation are satisfied: if not, it continues to the next increment; otherwise, the results are
passed onto the postprocessing stage, where various data can be evaluated, namely, load-
displacement curve, evolution of the sample’s profile, and distributions of state variables
throughout the sample, e.g., stress and strain.

4.3. ACT Analyzer

The ACTA module proposed in this section is developed by assuming only two state
variables in the constitutive law: stress and strain, which is the same as all available models
in the literature; however, it is possible to extend it to capture other relevant state variables
as well. ACTA requires six data sets for the preprocessing; the first four are the same as the
ones for ACTS, and the other two are:

(v) the load-displacement curve, and
(vi) some geometry measurements of the sample at different time steps.

The employed velocity field, which is the core of ACTA, may require incremental
measurements of the full sample’s profile R(z) or the slip radius RS. With current test rigs,
collecting such data is infeasible in a continuous test; therefore, the employed velocity field
may necessitate performing a series of interrupted tests to use ACTA.

The objective of ACTA is to analyze the deformation load and the geometry of the
sample as functions of displacement to obtain two results: (1) the average (and pointwise)
flow curve of the sample and (2) the interfacial friction factor m. The following is my
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suggestion for implementing ACTA in a three-step method, which borrows two main
assumptions from the CPM. The first is to approximate the average strain by ε ≈ ln (H0/H).
Furthermore, the corresponding stress distribution is approximated with a single average
value, that is, σ = σ; therefore, Equation (7) can be rewritten as:

Ėd = 2πσ
∫ H/2

0

∫ R(z)

0
ε̇rdrdz, and (13a)

Ėf = m
4π√

3
σ
∫ RT

0
Ur(r, H/2)rdr. (13b)

4.3.1. Step 1: Estimating the Average Stress (σ̃)

Let us define a virtual optimal area Aopt that connects the average stress and the
compression load via:

σ = L/Aopt. (14)

Inserting Equations (10), (13) and (14) into Equation (5), the optimal area can be defined as:

Aopt =
2
U
(Ė′d + Ė′f), (15)

where Ė′d and Ė′f are the deformation and frictional power normalized by σ. Ė′d is a
function of only the sample’s geometry, which is available at any increment. However,
the calculation of Ė′f requires a priori knowledge of m, which is inaccessible in a physical
setup. To calculate Aopt, we can identify its possible range by trying two limiting values
of m = {0, 1}. Therefore, we find the lower (AL) and upper (AU) limits of Aopt. As for the
first guess, let us approximate the optimal area as the mean of the two limits, i.e.,

Ãopt ≈
AL + AU

2
=

2Ė′d + Ė′f(m = 1)
U

. (16)

In this way, our first guess of the average stress is obtained as σ̃ = L/Ãopt, assuming σ ≈ σ̃.

4.3.2. Step 2: Estimating the Friction Factor (mE)

The second step is to perform a series of ACTS by defining the constitutive law of
σ̃-ε and by varying the friction factor in the range of [0, 1]. Each of these ACTS results
in a solution of x̂ corresponding to their minimum power dissipation. Comparing the
solutions of x̂ obtained from a minimization process (x̂(min)) within the performed ACTS
with those obtained from the closed-form solutions (x̂(c)), the friction factor should be
obtained from the one simulation that results in x̂(min) ≈ x̂(c). The value of m used in that
specific simulation would be picked as the estimated friction factor mE.

4.3.3. Step 3: Updating the Average Stress (σ)

The average stress is then updated with the estimated friction factor. To do so, first,
the optimal area in Equation (15) is updated by recalculating the normalized frictional
power using mE. Then, the average stress is updated using Equation (14).

5. Materials and Methods

In the following sections, two realizations of ACTAS are described and then bench-
marked against comparable FE models. In all of these scenarios, the ACT is modeled as
described in [11]: a cylindrical sample with initial height and radius of H0 = 16 mm and
R0 = 5 mm is compressed with a uniform velocity of U = 2 mm s−1 to its final height of
Hf = 10 mm. Moreover, due to the axisymmetrical description of the selected velocity
fields, the test sample is modeled as only a cross-section of the cylindrical sample bounded
in r = [0, R0] and z = [0, H0/2].
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Different friction conditions are studied, assuming the friction factor being fixed
throughout the test. Furthermore, the material is defined by Hollomon’s work-hardening
constitutive law, that is, σ = kεn, where k is the strength coefficient and n is the strain
hardening exponent [31]. It should be noted that while ACT plays an important role
in mechanical characterization of materials during thermomechanical processes, which
require advanced constitutive laws, e.g., [32], the simple material model of Hollomon
serves the intent of the current study that is to introduce the new framework of ACTAS.
In the current study, both k and n are assumed as material constants, varying in ranges of
k ∈ [50, 500] MPa and n ∈ [0, 1]. The following are assumed for the development phases of
ACTAS: m = 0.3, k = 100 MPa and n = 0.2.

FEM simulations are performed using DEFORM 2D with axisymmetric isoparamet-
ric four-node quadrilateral elements. For FE models, the samples are discretized with
2663 nodes and 2555 elements, with coarse elements near the r and z axes and fine ones
close to the edge of the sample where foldover is expected the most. The FEM simulations
are performed for 50 steps, and the deformation data are recorded every 10 steps, which
resembles geometry measurements in a series of interrupted physical tests.

6. Creating a Virtual Laboratory Using ACTAS

This section demonstrates two practices (Cases 1 and 2) used for creating a virtual
laboratory based on the proposed ACTAS framework. Case 1 describes a one-zone sample
that is unable to show foldover. The main purpose of this case is to examine ACTAS’
abilities for a simple case. Case 2 introduces a more advanced velocity field that can capture
the foldover phenomenon. In both cases, first the simulator (ACTS) and then the analyzer
(ACTA) are described.

6.1. Case 1: A One-Zone Sample
6.1.1. Velocity Field

ACTAS uses a velocity field (VF) at its core. Among numerous available options,
the VF proposed by Kobayashi and Thomsen and modified by Lee and Altan is a simple
yet promising choice [33,34]; hereafter, I refer to this VF as LAKT. In LAKT, the origin of the
z axis is located in the middle of the sample and is defined as the following for the range of
z ∈ [0, H/2]:

Ur(r, z) = A(1− bLz2)r, (17a)

Uz(z) = −2A(z− bLz3/3), (17b)

Uϕ = 0, (17c)

with
A =

U/2
H(1− bLH2/12)

(18)

determined using the velocity boundary condition of Uz(H/2) = −U/2. The arbitrary
barreling parameter of the model bL represents the barreling of the deformed sample and
can be estimated following the kinematic approach suggested in [12]. For a set of forward
kinematics, the following holds:

R(i+1)
M − RM

R(i+1)
T − RT

=
Ur(RM, 0)

Ur(RT, H/2)
=

RM

RT(1− bLH2/4)
. (19)

This analysis results in an estimate of the barreling parameter bL(K):

bL(K) =

(
2
H

)2
1−

(
R(i+1)

T
RT

− 1

)(
R(i+1)

M
RM

− 1

)−1. (20)
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Moreover, the effective strain rate field of this velocity field can be formulated as [34]:

ε̇ =
2A√

3

√
3(1− bLz2)2 + (bLrz)2. (21)

LAKT has a few features that makes it an excellent start for ACTAS implementation: it
is simple and easy to use, and its profile description is comparable with experiments [34],
unlike those models with exponential functions. Moreover, although LAKT leads to no
foldover, its radial velocity component being a function of both r and z, is crucial to extend
it for capturing the foldover phenomenon. More details are provided in Section 6.2.

6.1.2. ACT Simulator

The implementation of ACTS using LAKT in the current study is almost identical to
the one described by Lee and Altan [34]. The ACT is simulated in a number of steps s,
directly affecting the incremental height reduction: ∆h = (H0 − Hf)/s. At the beginning of
each step, the Nelder–Mead simplex algorithm [29,30] is used to minimize Ė with respect to
bL. Then, the nodal velocity field, strain rate, strain, and stress are calculated in order. Then,
the simulation process continues to the next step unless it satisfies one of the following
conditions: (1) the final height (Hf) is reached or (2) the radius of the top plane RT shrinks.
The latter is a physically unjustifiable artifact that may occur because of the features of the
velocity field. In such a case, the further solutions of the model are invalid.

The implemented ACTS outputs the final shape of the sample, the distributions of ra-
dial and vertical components of the velocity field, strain rate, strain, and stress. In addition,
it records the deformation load and the barreling parameter at each increment.

As for the first step and before performing the primary investigations, the appropriate
number of time steps and sample nodes must be decided. For that, various time steps of {5,
10, 25, 50, 75, 100, 250, 500, 750, 1000, 2500, 5000, 7500, 10,000} and grids of {3, 5, 10, 30, 50,
100} are studied. Here, the number of grids refers to the nodes along each axis; for example,
a grid number of 3 means that the sample was defined by three sets of nodes along the
r axis and three sets of nodes along the z axis, i.e., 3× 3 = 9 nodes in total. To measure
the accuracy of each simulation, the volume of the sample in its initial (V0) and final (Vf)
stages is used to calculate a percentage volume change error by δ(V) = 100%× |1−Vf/V0|,
where |...| indicates the absolute value. Figure 3 shows the results of these tests. Choosing
an arbitrarily low-value threshold of δ(V)max = 0.02%, the set with the time step 1000 and
the grid number 50 is selected for all forthcoming studies in the current work.

selected set          

Figure 3. The percentage volume change error as a function of numbers of simulation steps and grids.
With an arbitrarily small threshold of δ(V)max = 0.02%, the features for the forthcoming tests of the
current study are selected.

With the selected set of time steps and grids, ACTS is performed on the sample.
Figure 4 shows the discretized sample at the initial and final stages. Changes in the radial
profile are tracked during deformation. Figure 5a shows the mid-plane RM and top-plane
RT radii. Moreover, Figure 5a shows the calculated deformation load L. Figure 5b shows
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two sets of barreling parameters. One is obtained from the minimization process of the
dissipation energy (bL(min)), and the other is estimated from the kinematic analysis of LAKT
(bL(K) from Equation (20)) using the recorded geometry of the deformed sample. Figure 5b
shows that the two methods result in the same solutions of bL.

80

82

84

86

88

Figure 4. Discretized sample of Case 1 with a grid of 50 at the (a) initial and (b) final stage of the ACT.

Figure 5. The results of Case 1. (a) The variation of deformation load (left y-axis), mid-plane, and
top-plane radii (right y-axis) as functions of displacement d. (b) The values of bL obtained from the
minimization process (bL(min)) and the kinematics estimation (bL(K)) from Equation (20).

6.1.3. ACT Analyzer

To examine the suggested ACTA framework, 100 tests are analyzed by collecting their
incremental data of heights, deformation load, mid-, and top-plane radii. The sampling is
performed by varying the friction factor (m) and the material parameters (k and n) using
the Latin Hypercube Sampling (LHS) algorithm, and the data collection is performed from
ACTS virtual experiments.

To assess the performance of ACTA, two measures are used: the mean absolute relative
error (MARE) and the coefficient of determination (r2), which are defined as:

MARE =
1
N ∑j

∣∣∣∣∣XA(j) − XE(j)

XA(j)

∣∣∣∣∣, and (22a)

r2 = 1−
∑j

(
XA(j) − XE(j)

)2

∑j

(
XA(j) − XA

)2 , (22b)

where X is the selected observable (m, k, or n), N is the total number of observations with j
pointing to a single observation, with XA =

(
∑j XA(j)

)
/N. The indices A and E refer to

the assigned and estimated values, respectively. A perfect match can be identified by the
lower bound of MARE = 0 and the upper bound of r2 = 1.
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The estimated friction factor is the product of ACTA’s step 2. Figure 6 shows the
correlation between the assigned (mA) and estimated (mE) values of the friction factor.
The results show a good correlation between mA and mE up to a maximum value of ∼0.6.
Although larger values of mA are examined, those simulations satisfy the stopping condition
2, that isidentifying a shrinkage in RT, and are rejected.

The average stresses are calculated by taking the estimated friction factors into the third
step of ACTA. Together with the corresponding average strains, these values established
the average stress-strain curves. To compare all estimated constitutive models with the
assigned ones, they are fitted with the Hollomon model due to the a priori knowledge
about their form. Figure 7 shows the correlation between the assigned and estimated values
of k and n for all tests.

The analysis results on both the friction factor and the material parameters reveal a
high accuracy of the proposed ACTA framework.

Figure 6. The correlation between the assigned (mA) and estimated (mE) values of the friction factor
in Case 1. The continuous black line represents a perfect correlation.

Figure 7. The correlation between the assigned and estimated values of the material parameters (a) k
and (b) n in Case 1.

6.2. Case 2: Capturing the Foldover of the Side Surface

To model the foldover phenomenon, the model should be able to solve two issues.
The first one is about the ability of the velocity field to treat the sample in more than one
zone. The other issue is the dynamic evolution of the sample, so that the nodes on the
side surface can join the top layer upon foldover and contribute to the expansion of the
top-plane radius from RS to RT.

6.2.1. Velocity Field

To capture the foldover phenomenon, the selected velocity field must divide the
sample into more than one zone. One can use advanced velocity fields from Dadras and
Thomas [25] or Hou et al. [26], each with four-zone models. However, to examine the
ACTAS framework, a simpler velocity field with two deformation zones may be sufficient.
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Therefore, I propose a two-zone model as shown in Figure 8, with zone 1 for r ≤ RT and
zone 2 for r > RT that is the bulging part.

H
/2

 

RT

z

r

Z
o
n
e
 2

Z
o
n
e
 1

RM

Figure 8. The schematic of the newly proposed model that divides the sample into two zones,
with zone 1 for 0 ≤ r ≤ RT and zone 2 for RT < r ≤ R(z). The border of zones 1 and 2 is at r = RT.

The downward material flow in zone 2 (unlike in zone 1) is not directly controlled
by the boundary contact of the compressing tool. In this two-zone model, LAKT is used
for zone 1. For zone 2, the proposed velocity field of Hou et al. [26] of a comparable zone
is used, with zero vertical movement. Thus, the new two-zone velocity field can be read
as follows:

Uz(r, z) =

{
−2A

(
z− bλz3/3

)
if r ≤ RT

0 if r > RT
, (23)

where A can be easily found to be:

A =
U/2

H(1− bλH2/12)
. (24)

The radial velocity component in each zone is then obtained from the integration of the
incompressibility equation given by:

∂Ur

∂r
+

Ur

r
+

∂Uz

∂z
= 0, (25)

resulting in:

Ur(r, z) = A
(

1− bλz2
)
×
{

r if r ≤ RT(
R2

T/r
)

if r > RT
. (26)

The strain rate components are obtained from the velocity field components, and the
effective strain rate is formulated as:

ε̇ =
2A√

3
×
{√

3(1− bλz2)2 + (bλrz)2 if r ≤ RT√
(1− bλz2)2 + (bλrz)2

(
R2

T/r
)

if r > RT
. (27)

Moreover, following the proposed method in [12] for a forward kinematic estimation
of the barreling parameter, bλ(K) for this two-zone velocity field is obtained as:

bλ(K) =

(
2
H

)2
1−

(
R�(i+1) − R�

)
R�(

R(i+1)
M − RM

)
RM

. (28)

Note that RT is replaced by R� because of the incapability of the two-zone model to address
foldover in its closed-form formulation. The initial zone 1 expands only to RS, and the
foldover contributes to the final measured RT. Therefore, RT becomes increasingly larger
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than the predictions of the model, resulting in underestimates of bλ. The solutions of ACTS
are are used to decide on the values of R�.

6.2.2. ACT Simulator

The method for implementing ACTS with the new velocity field is more or less the
same as described for Case 1 (Section 6.1.2), with no difference in the setup. Upon the
beginning of the simulation process, all nodes are considered to be in zone 1. As soon as
RM becomes larger than RT, the nodes in zone 2 are flagged. Then, once any of the nodes
in zone 2 reaches the height of the compressing tool, its flag is removed, and the node is
considered as a field node in zone 1. This node, traveling from zone 2 to zone 1, represents
the foldover. Therefore, the top-plane radius RT is updated using the radial position of this
field node.

Figure 9 shows the discretized sample at its final stage of the simulated ACT, exhibiting
dynamically identified slip (RS) and top-plane (RT) radii, with their difference indicating the
identified foldover. The percentage volume change error of the simulation was calculated
to be a negligible value of δ(V) ≈ 0.03%.

F

76

78

80

82

84

86

88
RS RT

Figure 9. Discretized sample of Case 2 with a grid of 50 at the final stage of the ACT.

Figure 10a shows the selected radii and the deformation load. Comparing the results
with Figure 5a (Case 1), it is noticeable that the changes of RS in Case 2 are close to the
changes of RT in Case 1, which can be justified with the fact that both are results of LAKT.
The changes of RM and RT are different between the two cases. In Case 2, where the
foldover is captured, RM increases slower than in Case 1, and the opposite is true for
RT. The incompressibility assumption justifies this behavior. The deformation loads for
both cases are more or less the same. Furthermore, Figure 10b shows the minimized and
kinematic estimations (Equation (28)) of the barreling parameter bλ. Two values of RS
and RT are tried for R�. The results show that RT results in large deviations as soon as
the foldover initiates. Using RS results in some discrepancy as deformation advances and
foldover becomes more severe; however, the deviations are small. Based on these expected
results, it is assumed that R� = RS for the rest of this investigation. Although this does not
guarantee a perfect match between bλ(min) and bλ(K) for the whole range of deformation,
their values are close enough for a wide range with minimal differences.
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Figure 10. The results of Case 2. (a) The deformation load (left y-axis) and the sample’s geometry
(right y-axis) as functions of displacement d. (b) The values of bλ obtained from the minimization
process (bλ(min)) and the kinematics estimation (bλ(K)) from Equation (28) for two values of R�: RS

and RT. The zoomed-in inset shows that the bλ(K)(RT) underestimates the barreling parameter from
the onset of the foldover phenomenon.

6.2.3. ACT Analyzer

A new set of 100 samples is prepared using the LHS algorithm and tested as follows.
First, virtual compression tests are performed using ACTS on all samples. Then, using
their collected data, they are analyzed using ACTA, without any further modifications to
its algorithm.

Figure 11 shows the correlation between the assigned and estimated friction factors
obtained from ACTA’s step 2. Compared to Case 1 (Figure 6), the results show that the
newly proposed model enables ACTS to perform on a full range of m ∈ [0, 1]. Figure 12
shows the mechanical characterization results using ACTA, with the correlations between
the assigned and estimated material parameters of k and n for all tests.

The calculated errors of the results obtained for both the friction factors and the
material parameters indicate the applicability of ACTA for highly accurate estimates.

Figure 11. The correlation between mA and mE in Case 2.
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Figure 12. The correlation between the assigned and estimated values of the material parameters
(a) k and (b) n for Case 2.

7. Benchmarking ACTAS against FEM Virtual Experiments

In a physical setup, the flow stress of the material is unknown and must be obtained
from the interpretation of the recorded load-displacement data. However, the flow stress
curve and the frictional conditions are a priori knowledge in a virtual simulation. This dif-
ference makes virtual tests superior to their physical counterparts in assessing an analyzer.
Here, FEM-based tests are considered reference virtual experiments.

Moreover, several geometrical data as functions of the sample’s height are required
to work with any flow-based model of ACT, such as the two-zone VF proposed in the
current investigation. Currently, available compression test rigs cannot perform such mea-
surements [1]. As a remedy, interrupted tests may need to be executed. Here, to simulate
interrupted tests, the required geometric data (RS, RT, and RM) are collected only five times
during each virtual experiment.

Ten samples are prepared using the LHS algorithm; Table 1 summarizes their character-
istics. These samples benchmark the proposed ACTAS (based on the method discussed in
Case 2), and the corresponding FEM solutions are considered references. The assessment of
ACTAS is performed using different error measurements. For the multi-valued solutions of
ACTS, i.e., load and geometrical measurements as functions of displacement, the absolute
percentage error of each quantity for the whole course of ACT is calculated via:

δ(X) = 100%×
∣∣∣∣1− XACTS

XFEM

∣∣∣∣, (29)

where X is the quantity under study. For the single-valued solutions of ACTA, i.e., m, n,
and k, the same errors of MARE and r2 (Equation (22)) are considered.

Table 1. The list of all samples investigated for the benchmark.

Sample m k (MPa) n

1 0.05 388 0.05
2 0.15 433 0.75
3 0.25 343 0.95
4 0.35 163 0.65
5 0.45 298 0.55
6 0.55 253 0.15
7 0.65 73 0.25
8 0.75 478 0.35
9 0.85 208 0.45
10 0.95 118 0.85

7.1. ACT Simulator

Figure 13 shows the comparison between the deformation load and geometry of the
deformed samples for the two direct solutions. The maximum error of the deformation
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load is around 6%. For geometry measurements, the errors are found to be negligible in
general, except for sample 10 with the highest friction factor.

Figure 13. The percent error of (a) deformation load, and profile’s (b) RM, (c) RT, and (d) RS obtained
from comparing ACTS and FE models. The symbols are to be read from the legend in the subplot
(d) that refers to the corresponding sample number in Table 1.

7.2. ACT Analyzer

The data collected from the FE models are analyzed using the ACTA framework to esti-
mate the sample’s stress-strain curve and the interfacial friction factor in each test. Figure 14
compares the assigned and estimated friction factors. Moreover, the flow stress curves
are obtained and Hollomon’s model is fitted to them (as justified earlier in Section 6.1.3).
Figure 15 compares the fitted and assigned constants of the models. The results show that
all estimated values are closely comparable with the assigned ones.

Figure 14. The correlation between the assigned (mFEM) and estimated (mACTA) friction factors.
The symbols point to different samples to be read using the legend of Figure 13d.
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Figure 15. The correlation between the assigned and estimated values of the material parameters
(a) k and (b) n for the samples investigated in the benchmark.

8. Results and Discussion

ACT is a powerful tool in characterizing metals’ hot and cold flow behaviors and their
associated phenomena, e.g., recovery and recrystallization. For this purpose, it is common
practice to perform microstructural analyses on the center core of the sample. Despite the
microstructural analyses’ locality, the corresponding flow curves are obtained with the
assumption of uniform distribution of stress and strain throughout the sample. In this
section, the benchmark results are discussed further and compared with the results of the
conventional methods.

8.1. Average Stress

Figure 16 shows the stress-strain curves obtained from the analyses of the FE models
using ACTA and A-CPM (Equation (4)) in comparison with the assigned ones. The two
estimations are not precisely the same for the whole strain range of all samples; however,
their estimation errors (for all collected data points) are almost the same as each other,
with r2 = 0.998 and MARE = 0.03, indicating high accuracy for both analysis methods.
The main difference between the two is their required computational power: ACTA is an
incremental numerical method that requires many calculations, while A-CPM (Equation (4))
is a closed-form solution with one single calculation per data point. For this reason, A-CPM
is the most efficient of the two. Yet, one should note that A-CPM works here only due to
the small contribution of foldover in the average behavior of the samples.

Figure 16. The stress analysis of the ten reference samples (see Table 1). (a) average flow curves
obtained from A-CPM (Equation (4)) and ACTA (according to the algorithm developed for Case 2) in
comparison with the assigned Hollomon models. (b) the correlation between the estimated average
stresses (A-CPM and ACTA) and the assigned values. (Sample #5 is randomly selected for further
detailed discussions in this section. For that, its flow curve is identified in the subset (a)).
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To employ A-CPM, the barreling parameter of the Avitzur model bA is needed.
See Appendix A for detailed study on the various kinematic estimates of bA proposed
in [12]. Among all estimates of bA in [12], those developed for a static method can cover a
wider range because they provide only one value of bA for the entire course of deformation.
In contrast, the ones for a dynamic method identify one value for each geometry measure-
ment. Although for a reliable conversion of the force-displacement data into a flow stress
curve, one should use the formulae developed within the dynamic method, these formulae
limit the number of the converted data points to the number of geometry measurements
during the test. For example, in the current work, the profile is measured five times during
the simulated ACT, and the dynamic solutions provide only five data points on the flow
curve. To convert the whole range of deformation, the formulae developed within the
static method could be used, although they are prone to misleading conclusions, such as
false identification of peak stress. Among the developed estimates of bA, the two proposed
initiallly by Ebrahimi and Najafizadeh [10] and Solhjoo [11] are the only ones that do not
result in false interpretations for the studied samples (see Appendix A), both showing the
same high levels of accuracy and precision. Of these two models, the one developed by
Solhjoo is selected here, that is [11]:

bA(K) ≈ 4
∆R
ΣR

(
2H
∆H
− 1
)

, (30)

with ∆R = R(f)
M − R(f)

T , ΣR = R(f)
M + R(f)

T , and ∆H = H0 − H(f), where the superscript (f)
indicates the final state of the deformation.

8.2. Stress Distribution throughout the Sample

ACTAS is capable of providing the distributions of the state variables available within
the model; for the current implementation, these state variables are strain rate, strain,
and stress. Figure 17 compares the stress distribution of (randomly selected) sample 5.
The solutions may seem to differ a lot; however, they are close at a crucial point: the center
of the sample, where ACTA, ACTS, and FE models predict stresses of 218 MPa, 220 MPa,
and 233 MPa, respectively. All of these predictions are higher than the average stress of
∼200 MPa of the sample; see Figure 16.

Table 2 summarizes the stress magnitudes at the center of the samples for the reference
FEM experiments, compared with the ACTS, ACTA, and A-CPM solutions for all ten
samples. The results show that all methods, the simulator (ACTS) and the analyzers (ACTA
and A-CPM), underestimate the stress values; however, the overall percentage errors for
ACTS and ACTA are reduced by ∼50% compared to A-CPM.

Figure 17. Comparison of the von Mises stress distributions in a randomly selected sample (#5) for
(a) FEM and the proposed (b) ACTS and (c) ACTA models. (The presented solutions for ACTA are
essentially the solutions of ACTS using the parameters identified from the ACTA analyses of the FE
virtual experiments). The values are in the units of MPa.
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Table 2. The von Mises stress at the center of the sample in FEM, ACTS, ACTA, and A-CPM models,
in the units of MPa. The numbers in the parentheses are the calculated percentage errors.

Sample FEM ACTS ACTA A-CPM

1 377 374 (0.8) 370 (1.9) 374 (0.8)
2 265 260 (1.9) 250 (5.7) 246 (7.2)
3 188 184 (2.1) 178 (5.3) 167 (11.2)
4 116 110 (5.2) 108 (6.9) 100 (13.8)
5 232 220 (5.2) 218 (6.0) 197 (15.1)
6 248 237 (4.4) 239 (3.6) 226 (8.9)
7 69 66 (4.9) 66 (4.9) 60 (13.5)
8 438 411 (6.2) 419 (4.3) 367 (16.2)
9 183 172 (6.0) 177 (3.3) 148 (19.1)

10 84 78 (7.4) 83 (1.4) 62 (26.4)

8.3. Strain Distributions

A-CPM defines uniform distributions for the state variables throughout the sample,
which is valid for identifying the constitutive behavior of the material as a whole (Figure 16).
However, the local values are requested for microstructural analysis of samples as they can
be far from the average values. Such a deviation can also be present for the strain distribu-
tion. Figure 18 shows the strain distributions of the randomly selected sample 5 obtained
from the FE, ACTS, and ACTA models. Despite the essentially different strain distribution
patterns, the solutions toward the core of the sample are comparable. The strains at the cen-
ter of all ten samples are summarized in Table 3, showing an overall improvement of ~60%
in the prediction of the strain using ACTS and ACTA compared to A-CPM; εA-CPM = 0.47
for all samples.

Figure 18. Comparison of the effective strain distributions in a randomly selected sample (#5) for
(a) FEM, (b) ACTS, and (c) ACTA models.

Table 3. The effective strain at the center of the FEM, ACTS, and ACTA models; the effective strain
for the A-CPM model is uniform throughout each sample and the same for all samples, that is
εA-CPM = 0.47. The numbers in the parentheses are the calculated percentage errors.

Sample FEM ACTS ACTA A-CPM

1 0.57 0.49 (14.0) 0.50 (12.3) (17.4)
2 0.52 0.51 (2.6) 0.50 (3.6) (9.5)
3 0.53 0.52 (2.4) 0.52 (3.0) (11.7)
4 0.59 0.55 (7.2) 0.54 (8.1) (20.3)
5 0.64 0.58 (9.7) 0.57 (11.3) (26.4)
6 0.82 0.65 (20.5) 0.64 (21.5) (42.7)
7 0.82 0.65 (19.8) 0.64 (22.1) (42.5)
8 0.78 0.66 (15.8) 0.64 (17.9) (39.7)
9 0.75 0.65 (12.9) 0.65 (13.2) (37.5)

10 0.67 0.61 (8.5) 0.62 (7.7) (30.1)
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8.4. Flow Behavior at the Center of the Sample

For a clear comparison, the local stress-strain curves at the center of all ten samples
are collected; Figure 19 shows these local flow curves. (Strain rates are not studied simply
because the selected constitutive model is strain rate independent.) In all cases, the ACTS,
ACTA, and A-CPM models underestimate both the stress and strain of the final data point
of the FE models; however, as discussed earlier, ACTS and ACTA give better estimates
(Tables 2 and 3). The solutions of ACTS models coincide with those of the FE models for
their entire identified (yet underestimated) ranges.

Moreover, the general shape of A-CPM can be misleading. For example, for sample 6
(Figure 19f), A-CPM suggests the flow stress is almost reaching its maximum, although the
stress of the FE model is only increasing. One should note that the reported results of
A-CPM are based on the best estimates of bA, and other available solutions of bA could
result in misleading solutions for other samples, too; see Appendix A for further details.

Figure 19. The stress-strain curves at the center of the samples (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g)
7, (h) 8, (i) 9, and (j) 10. The data are obtained from different models of FEM, ACTS, and ACTA.
The results of A-CPM, which are uniform throughout the sample, are added for comparison. Note
that the ranges for both stress and strain vary for different samples, and max(εA-CPM) = 0.47 for
all samples.
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8.5. Friction Factor

Although ACTA is developed primarily to serve as a reliable interpreter of ACT and
to characterize the mechanical behavior of materials, it can estimate the friction factor at
the tool-sample interface. Table 4 summarizes the friction factors approximated with ACTA
(Figure 14) and the Avitzur model (Equation (3)), and compares them with the assigned
values. The results show the high accuracy of the proposed analyzer (ACTA) in estimating
the friction factor. Moreover, the results confirm previous works on the inaccuracy and
unreliability of estimating the friction factor using the Avitzur model.

One may argue that developing a method valid for an exceptionally high friction
factor of m = 1 is redundant, as the lubrication assures low friction during metal forming
processes. While this might be true for the upper bound, friction factor can be evaluated
experimentally only at its limiting values: m = 0 for a fully lubricated process (if RT = RM)
and m = 1 for a sticking one (if RT = R0), and no other intermediate values, which is
the case for most of the processes, can be identified by direct measurements. Therefore,
a reliable analysis tool must be valid for a full range of m to be used safely for post-
processing the measurements to yield reliable mechanical properties of the material.

Table 4. The assigned (mFEM) and estimated friction factors of the ten samples used for the evaluation.
The estimations for the Avitzur model are obtained from Equation (3) with its barreling parameter
from Equation (30).

Sample 1 2 3 4 5 6 7 8 9 10

mFEM 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
mACTA 0.07 0.13 0.22 0.31 0.41 0.54 0.58 0.68 0.85 1.00
mAvitzur 0.04 0.04 0.05 0.08 0.11 0.21 0.19 0.19 0.19 0.17

9. Summary and Conclusions

This paper proposes a meshfree-based numerical framework (called ACTAS) that
models the axisymmetric compression test in an incremental approach and uses the upper
bound theorem to solve for the test’s deformation load, with a velocity field on its core to
describe the sample’s material flow during the test. ACTAS consists of two modules: an
analyzer (ACTA) and a simulator (ACTS). ACTAS is a general framework that can take
various velocity fields to model the material flow of the ACT sample. If the implemented
velocity field allows, ACTAS models the side surface foldover phenomenon.

The steps to build a virtual laboratory based on ACTAS for mechanical and frictional
analyses of ACT are described in the paper. For this goal, two velocity fields are used in
the implementation of ACTAS, which is then benchmarked against the reference models
obtained from FEM-based virtual experiments. The following summarizes the main points.

1. To employ the ACTA module, closed-form solutions for the unknowns of the model
must be available, e.g., the barreling parameters of the velocity fields. Due to the
formulation of VFs, the derivation of the closed-form solutions may not be trivial
or possible. Instead, one can use kinematics of the VF to estimate the solution of its
unknowns; see, e.g., Equation (19).

2. As the first step in building a virtual laboratory based on ACTAS, a one-zone VF
(LAKT) [33,34] is used. The setup is selected such that the percentage volume change
error becomes a negligible value of δ(V) ≈ 0.02%. In this setup, ACTA correctly
estimates all samples’ constitutive behavior and friction factors for m . 0.6, which is
found to be the upper limit of LAKT to meaningfully model ACT.

3. Due to the incapability of LAKT in modeling the foldover phenomenon, an extension
of it is proposed; see Section 6.2 for the details. By implementing the newly proposed
two-zone velocity field, the ACTA module obtains accurate results for the full range
of 0 ≤ m ≤ 1.

4. ACTAS is benchmarked against ten reference solutions obtained from FEM-based
experiments (Table 1). The ACTS module shows low percentage errors for the de-
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formation load (δ(L) . 6%) and geometrical measurements (Figure 13). The ACTA
module accurately estimated the average stress-strain curves for all samples.

5. Investigating the pointwise stress-strain curves at the center of the samples between
ACTAS and FE models, ACTAS provides improved results compared to those of the
conventional methods. Moreover, ACTAS results in no false identification of peak
stress, misleading to interpretations about the onset of dynamic recrystallization.

6. This paper also addresses the shortcoming of employing the CPM without a priori
knowledge of friction. As a solution, the Avitzur model is coupled with the CPM
(called A-CPM) and is represented as:

pave

σ
≈ 1 +

(
R
H

)2( 6
bA
− 1
)−1

,

with R = R0
√

H0/H and bA being the barreling parameter of the Avitzur model, which
can be estimated by geometrical measurements of the sample via, e.g., Equation (A2);
see Appendix A for the details.

7. Comparing the solutions of A-CPM and FE models, it is found that A-CPM can be
used to accurately identify the friction-free average stress-strain curves regardless of
the severity of friction.

8. Because the solutions of A-CPM are almost identical to those of the Avitzur model
(Figure 2), it infers the high accuracy of the Avitzur model in estimating the average
stress-strain curves.

9. The unreliability of the Avitzur model for estimating friction factor is confirmed once
more, aligned with previous investigations.

10. For microstructural analyses, the study is usually focused on the center of the sample,
where the flow curve may differ from the average one. For such studies, the analyses
of A-CPM should be considered with extra care, as it underestimates both the stress
and the strain values. It may even provide misleading results regarding the onset of
dynamic recrystallization.

ACTAS shows promising results and versatile features for implementing various
velocity fields and constitutive behaviors. In this paper, which primarily aims to introduce
this new framework and demonstrate its capabilities, simple models are selected for both
options: a two-zone velocity field to describe the sample’s flow and the Hollomon’s
constitutive law that defines stress to be only a functions of strain. ACTAS must be
validated for more challenging material models, e.g., with strain rate and temperature
dependence, to prove its robustness as a reliable ACT simulator and analyzer.
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The following abbreviations are used in this manuscript:

ACT Axisymmetric Compression Test
ACTAS ACT Analyzer and Simulator (the framework proposed in this work)
ACTS Simulator module of ACTAS
ACTA Analyzer module of ACTAS
CPM Cylindrical Profile Model
A-CPM The coupled version of the Avitzor and the Cylindrical Profile models
VF Velocity Field
LAKT Lee and Altan version of the VF proposed by Kobayashi and Thomsen [33,34]
LHS Latin Hypercube Sampling
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Appendix A. Effects of bA on A-CPM

Avitzur published his model in 1969 [9]. In this model, the barreling parameter (bA)
is introduced to represent the barreling of the deformed sample, and its value highly
controls the behavior of the model. Because this parameter is non-physical, Avitzur used
the derivative of the upper bound solution for the deformation pressure and obtained a
closed-form solution of bA as:

bA = 6/

(
1 +

3
√

3
2

R
mH

)
, (A1)

which requires a value of m. The model remained inapplicable until 2004, when Ebrahimi
and Najafizadeh rearranged this solution and defined m as a function of bA, and suggested a
method to estimate the barreling parameter using the boundary conditions of the deformed
sample [10]. In another attempt, Solhjoo used the same boundary conditions, and by
employing different assumptions, he derived another solution to approximate bA [11].
In 2019, Solhjoo and Khoddam took a step further and performed a series of kinematic
analyses on the Avitzur model and derived various approximations of bA [12]. They derived
fifteen estimates in total by following four approaches (EN, S, K, and K2A), employing
both forward and backward Euler kinematics, and using two methods: dynamic (to study
the deformation in small increments) and static (to study the deformation in one increment,
that is, to consider only the initial and final steps).

By approximating bA with all of these formulae, inserting them in the A-CPM (Equation (4)),
and comparing the obtained stress-strain curves with the assigned Hollomon models, it is found
that they all result in small errors, with an overall maximum MARE of 0.075 and minimum r2

of 0.968, where the maximum errors correspond to K2A approach as expected. Although all
these estimates seem to perform well, these errors cannot simply be considered enough to
accept all solutions. With further investigations on the obtained flow stress curves, one can find
that the methodology used to derive the estimating formulae greately impacts the flow curve,
clearing out the benefits of using the dynamic estimates over the static ones. The obtained flow
curves show that almost all static approximations of bA resulted in false identifications of peak
stresses. This is found by calculating the slope of the curve: a zero or negative slope indicates
the identification of a maximum (i.e., the peak) stress. Figure A1 shows the stress-strain curves
obtained for sample #6 that most of the models resulted in a misleading behavior. The only
exceptions to such false analyses are:

bEN = 4
H
R

∆R
∆H

and (A2a)

bS = 4
∆R
ΣR

(
2

H
∆H
− 1
)

, (A2b)

originally published by Ebrahimi and Najafizadeh [10] and Solhjoo [11], respectively. Fur-
thermore, their errors for both models are calculated to be almost identical (MARE ≈ 0.035
and r2 = 0.998).

Studying the dynamic estimates of bA shows no false identification of a peak stress.
Yet, the shortcoming of employing dynamic solutions is their limitation to the number
of measurements during the test. For example, in the current study, the geometric data
from the samples are collected five times during the compression test, meaning that these
dynamic approximating formulae provide only five data points of the flow stress curve; see
Figure A2. In practice, current test rigs cannot collect geometric data during the compres-
sion test, making dynamics approximations less favorable to use; however, by advancing
machines to perform such measurements on the fly, for example, by installing optical
sensors, this problem can be solved.
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Figure A1. The assigned stress-strain curve for sample #6 and those obtained from A-CPM using
the estimates of bA that are developed with a static method for the (a) forward and (b) backward
Euler kinematics. (The formulation of bEN and bS is the same for the forward Euler kinematics in the
static method).
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Figure A2. The assigned and A-CPM estimates of the flow stress curve of sample #6. Various estimtes
of bA used in A-CPM are developed with a dynamic method for the (a) forward and (b) backward
Euler kinematics.
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