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Abstract: Silicon carbide (SiC) has a variety of applications because of its favorable chemical stability
and outstanding physical characteristics, such as high hardness and high rigidity. In this study, a
femtosecond laser with a spiral scanning radial offset of 5 µm and a spot radius of 6 µm is utilized to
process micropillars on a SiC plate. The influence of pulsed laser beam energies and laser translation
velocities on the micropillar profiles, dimensions, surface roughness Ra, and material removal
capability (MRC) of micropillars was investigated. The processing results indicate that the micropillar
has the best perpendicularity, with a micropillar bottom angle of 75.59◦ under a pulsed beam energy
of 50 µJ in the range of 10–70 µJ, with a pulsed repetition rate of 600 kHz and a translation velocity of
0.1 m/s. As the laser translation velocity increases between 0.2 m/s and 1.0 m/s under a fixed pulsed
beam energy of 50 µJ and a constant pulsed repetition rate of 600 kHz, the micropillar height decreases
from 119.88 µm to 81.79 µm, with the MRC value increasing from 1.998 µm3/µJ to 6.816 µm3/µJ,
while the micropillar bottom angle increases from 68.87◦ to 75.59◦, and the Ra value diminishes from
0.836 µm to 0.341 µm. It is suggested that a combination of a higher pulsed laser beam energy with a
faster laser translation speed is recommended to achieve micropillars with the same height, as well
as an improved processing efficiency and surface finish.

Keywords: silicon carbide (SiC); femtosecond laser; micropillars; profile quality; material removal
capability (MRC)

1. Introduction

Silicon carbide (SiC) has been recognized as a promising material with excellent char-
acteristics for use in mechanical seals, sliding bearings, precision molds, and cutting tools
owing to its high stiffness, hardness, and chemical stability [1,2]. SiC has low specific
gravity, wide bandgaps, high thermal conductivity, and low thermal expansion, in addition
to merits as a third-generation semiconductor [3,4]. SiC can be widely applied in optical
devices, nanotechnology, and nuclear material science [5,6]. Due to its extraordinarily
biocompatibility and chemical inertness, SiC has been used in power systems, including
those related to driving, lighting, and uninterrupted power supplies [7–9]. The innova-
tion of SiC surface treatments was motivated because of the increasing requirements for
high-performance components and low-cost automation systems. The surfaced textur-
ing technique is an effective way to generate specific pillars, grooves, or dimples on the
workpiece surface to significantly improve the performance of devices used under high
temperatures and in extreme environments. SiC fabricated with microstructures can exhibit
improved surface characteristics, including wettability in lubrication, reflectivity in optical
applications, and endurability in sliding [10–12].

A number of technologies are available for surface texturing, such as micromilling,
abrasive jet machining, molding, ultrasonic aided machining, electrochemical machin-
ing and electrical discharge machining [13,14]. Micromachining with lasers on metals,
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semiconductors, polymers, and other materials has become increasingly popular in many
fields [15]. Three kinds of lasers—a CW laser, a pulsed beam with nanosecond duration, or
an ultrafast pulsed beam with picosecond or even femtosecond duration—can be utilized to
produce a surface geometry with high resolution by means of laser ablation as noncontact
processing [16]. Compared to the long-pulsed laser width, the material removal mechanism
could be conducted closer to the conditions of cold processing by means of a femtosecond
laser, which can achieve micro/nanoprocessing accuracy in geometry with a negligible
thermal affects zone, thanks to the ultrashort pulse width and ultrahigh instantaneous
power [17]. Because of the high bonding strength inside SiC with covalent bonds, it is
difficult to obtain various micro/nanostructures on the SiC surface using traditional pro-
cessing approaches [18,19]. Femtosecond laser machining is an ideal processing technology
for achieving surface textures with high processing accuracy on brittle materials with
high hardness.

The femtosecond laser processing of textures on SiC has attracted worldwide atten-
tion and has been proven to have potential research value due to the utilization of SiC
in various important areas of science and engineering. The microscopic mechanism in
femtosecond laser processing of SiC was investigated with the two-temperature model,
considering both the carrier concentration and the temperature change in SiC resulting from
femtosecond laser irradiation [20]. The laser-induced periodic structure of SiC resulting
from femtosecond laser ablation is mainly dominated by material lattice cleavage and
influenced by the intrinsic texture, while the ablation threshold depends on both the laser
pulse number and the processing medium, such as water, to achieve a smoother surface
finish without oxidation on the SiC surface [21]. The microgrooves can be obtained with
a femtosecond laser to achieve a high aspect ratio of approximately 82.67% on SiC by
optimizing the process parameters of laser polarization direction, SiC crystal orientation,
multiple-irradiation translation, and in depth feed rate during femtosecond laser machin-
ing [22]. A square sensor cavity diaphragm on 4 H-SiC with dimensions of 5 × 5 mm
and a depth of 70 µm was generated by means of the etching method with a Nd/YVO4
laser [23]. Femtosecond laser and fluorine-based reactive ion etching can be combined as a
new processing approach for micro/nano texturing on porous SiC, inducing significant
surface morphology modification and tuning the optical properties of SiC as selective solar
absorbers. The surface features could be adjusted by tailoring the scanning velocity and
pulse frequency for laser radiation and radio frequency-power, as well as the mixture of
gas and its pressure, to optimize reactive ion etching [24].

The present work investigates the process of micropillar formation on SiC using
femtosecond laser scanning in a spiral mode. The impacts of pulsed beam energies and
pulsed translation velocities on the micropillar profiles, dimensions, micropillar bottom
angle, surface roughness, and material removal capability were examined.

2. Experimental Procedures
2.1. Fabrication of Micropillars on SiC with a Femtosecond Laser

As shown in Figure 1, a femtosecond laser processing system was set up to achieve
micropillar arrays on an SiC substrate. The SiC workpiece was located on the workbench
and monitored with a charge-coupled device for the laser spot of focus on the SiC surface.
The laser processing path and parameters were scheduled and implemented through the
computer control program. A femtosecond laser with a maximum pulsed beam energy
of 400 µJ, a wavelength of 1028 nm, a pulse duration of 218 fs, and a base pulse repeti-
tion rate of 1 MHz was selected as the power supply (Carbide-40 W, Light Conversion,
Vilnius, Lithuania). A galvanometer was used to control the scanning path to process the
micropillars on the SiC plate.
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Figure 1. The setup of the femtosecond laser processing system for SiC surface treatment.

The processing parameters for the femtosecond laser to obtain micropillars on a SiC
substrate are listed in Table 1. A focused spot radius of 6 µm in the laser beam and a laser
pulse repetition rate of 600 kHz were chosen to process the workpiece of SiC via 10 spiral
scanning cycles. The laser processing parameters were scheduled from the combination of
different laser pulsed beam energies in the range of 10–70 µJ and laser translation speeds
varying between 0.2 m/s and 1.0 m/s.

Table 1. The processing parameters with the femtosecond laser.

Parameter Value

Wavelength 1028 nm
Pulse duration 218 fs

Pulse repetition rate 600 kHz
Laser spot radius 6 µm
Processing cycles 10
Scanning strategy Spiral scanning

Translation velocity 0.2, 0.4, 0.6, 0.8, 1.0 m/s
Pulsed beam energy 10, 20, 30, 40, 50, 60, 70 µJ

To achieve a micropillar with a diameter of 300 µm, the femtosecond laser scanned in
a helical approach with a radial thread interval of 5 µm for 10 cycles, resulting in a blind
ring with a starting diameter d1 of 300 µm and a finished diameter d2 of 400 µm around the
micropillars, as shown in Figure 2. The micropillar array of blind rings was processed with
a pitch of 500 µm in the row and column directions. When the processing range is more
than 60 mm over the interval of the galvanometer, the worktable to fix the SiC specimen
will be used for positioning the micropillars.

Regarding the affecting depth of the laser beam, a Rayleigh length of approximately
110 µm can be predicted according to the laser wavelength, as well as Gaussian beam
radius [25] from Table 1, corresponding to a depth of field of approximately 220 µm,
indicating that vertical feeding is not needed for processing micropillars with heights less
than 220 µm. The profiles of the micropillars were examined using a three-dimensional
(3 D) profilometer (VK-X3000, Keyence, Osaka, Japan). The surface topographies of the
micropillars on SiC were detected utilizing a scanning electron microscope (SEM, VEGA3
TESCAN, Brno, Czech Republic). The micropillar with a tapered form is directly related
to the femtosecond laser radiation variables, where the upper appearances and bottom
appearances were primarily affected by the pulse beam energies and transition velocities.
The micropillar bottom angle, shown in Figure 3, can be indicated as follows [26]:

α = tan−1[
2H

D1 − D2
] (1)

where α is the micropillar bottom angle, H represents the height of the micropillar, D2
denotes the upper diameter, and D1 denotes the bottom diameter determined with pulsed
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laser beam energy and transition velocity. A larger micropillar bottom angle indicates a
better perpendicularity of the micropillars.
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2.2. Material Removal Capability of the Femtosecond Laser

The material removal capability (MRC) demonstrates the capacity of the material
removal volume subjected to the pulsed laser beam energy, which also implies the fem-
tosecond laser processing efficiency. The MRC is expressed in terms of η as follows:

η =
V
Q

(2)

where V represents the material removal volume, and Q is the total pulse energy applied
to the material during the processing time. The material removal volume, V, can be
derived from:

V =
π(d2

2 − d1
2)

4
∗ H (3)

where d1 is the starting diameter, d2 is the finished diameter of the blind ring after spiral
scanning, and H is the height of the micropillar. The total pulse energy applied to the
processed material, Q, can be denoted as:

Q = E ∗ f ∗ t (4)

where E is the single pulsed beam energy, f is the pulse frequency, and t denotes the whole
processing time.
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Since the laser scanning path is an isometric helix with an offset of 5 µm, the machining
time, t, can be approximately calculated as:

t =
π(d1 + d2)

2ν
∗ n (5)

where ν represents the laser translation speed, and n is the scanning cycles.
According to Equation (2) to Equation (5), the material removal capability can be

deduced as follows:

η =
(d2 − d1) ∗ ν ∗ H

2E ∗ n ∗ f
(6)

Therefore, the MRC is closely related to the laser translation velocity, pulsed beam
energy, and pulsed repetition rate.

3. Results and Discussion
3.1. Effect of Pulsed Laser Beam Energy on Micropillar Processing

To explore the influence of femtosecond pulsed beam energies on the material re-
moval capability, micropillar geometric profiles, and surface roughness, micropillar arrays
were produced with pulsed beam energies in the range of 10–70 µJ, with a constant laser
translation velocity of 1.0 m/s and the same pulse repetition rate of 600 kHz. Under each
pulsed beam energy, 9 micropillars were fabricated, and the profile errors were measured.
The mean height of the micropillar array generated with different laser pulse energies is
illustrated in Figure 4a, where the mean height increases from 18.33 µm to 101.93 µm, and
the height variance of 9 micropillars varies from 0.61 to 1.08 µm, with the relative variation
ranging from 0.03 to 0.01 as the pulsed laser beam energy varies from 10 µJ to 70 µJ, with
10 cycles of helical tracing of the laser beam around every micropillar. Figure 4b indicates
the linear fitting of micropillar height against laser pulse energy, with a variation rate of
1.463 and an intercept of 5.085, showing a constant increment of micropillar height with
the laser pulse energy. This is attributed to more laser ablation energy acting on the SiC
substrate with increasing pulsed laser beam energy. When the pulsed laser beam energy
exceeds 50 µJ, the increase in micropillar height resulting from the increase in pulsed laser
beam energy starts to fade.
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Figure 4. Effect of pulsed beam energies on the mean height of micropillars with a translation velocity
of 1.0 m/s and a pulsed repetition rate of 600 kHz. (a) Measurements of micropillar height against
laser pulse energy. (b) Linear fitting of micropillar height against laser pulse energy.

Figure 5 shows the variations in both the mean upper and bottom diameters for
micropillar arrays under different laser pulse energies. When the pulsed laser beam energy
varies from 10 µJ to 70 µJ, the upper diameter shrinks from 281.67 µm to 264.55 µm, and
the bottom diameter expands from 311.36 µm to 318.11 µm. The differences in bottom
diameters and upper diameters increase with increasing pulsed beam energies. When the
pulsed laser beam energy exceeds 50 µJ, the diameter difference between the upper and
bottom circles reaches a higher value of more than 49 µm.
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The influence of pulsed beam energies on the micropillar bottom angle can be seen in
Figure 6, where the bottom angle increases from 51.0◦ to 75.59◦ as the pulsed laser beam
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energy increases from 10 µJ to 50 µJ and saturates from 50 µJ to 70 µJ as the bottom angle
decreases slightly from 75.59◦ to 75.28◦. The micropillar bottom angle obtains the largest
value of 75.59◦ under a pulsed beam energy of 50 µJ, which results from the fact that a
laser pulse energy of 50 µJ brings about a higher increment (1.71 µm/µJ) in the micropillar
height, as shown in Figure 4, while the increasing rate remains constant (1.01 µm/µJ) from
50 µJ to 70 µJ. On the other hand, a smaller diameter difference between the upper and
bottom cross sections is demonstrated in Figure 5. This is attributed to the fact that the
material removal capability decreases with increasing pulsed beam energy, as shown in
Figure 7, where the declining rate remains the same (0.04 µm3/µJ2) from 50 µJ to 70 µJ,
resulting in a narrower valley bottom and therefore, a larger micropillar bottom diameter,
as shown in Figure 8. Both the increase in the micropillar height at a constant rate and
the increase in the micropillar bottom diameter, due to the declining material removal
capability, account for the saturation of the micropillar bottom angle, as the pulsed beam
energy varies from 50 µJ to 70 µJ.
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Three-dimensional (3 D) microscope images and geometric profiles for various laser
beam energies with a constant laser translation velocity of 1.0 m/s are displayed in Figure 8.
Spiral scanning will bring about a shallow blind ring, with a larger fillet radius under a
lower pulsed laser beam energy, but a deeper blind ring with a smaller fillet radius and a
steeper sidewall under a higher pulsed laser beam energy.

The impacts of pulsed beam energies on the MRC and surface roughness Ra value are
exhibited in Figure 7, with a laser translation speed of 1.0 m/s and a pulse repetition rate
of 600 kHz. The MRC value declines gradually from 7.637 µm3/µJ to 6.067 µm3/µJ, and
the Ra value increases continuously from 0.219 µm to 0.502 µm as the pulsed laser beam
energy varies from 10 µJ to 70 µJ. The pulsed beam energy of 50 µJ separates both the MRC
variation rate and Ra variation rate. When the pulsed beam energy exceeds 50 µJ, the MRC
value declines rapidly, and the Ra value increases quickly.
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Figure 8. 3 D microscope images and profiles of the micropillars obtained through various pulsed
beam energies at a fixed translation velocity of 1.0 m/s and a pulsed repetition rate of 600 kHz:
(a) 10 µJ; (b) 40 µJ.

This can be due to both the Gaussian energy distribution degradation from the focal
aperture plane in the direction of the micropillar height, leading to the processing efficiency
declining with the increase in the micropillar height, and more heat deposition at the
bottom of the processing area with the layer-by-layer spiral scanning path when the pulsed
laser beam energy increases from 10 µJ (a shallow micropillar) to 70 µJ (a deep micropillar),
while the laser translation speed remains steady at 1.0 m/s, with a fixed translation rate of
600 kHz, leading to the surface morphology being coarser. In addition, the rapid deposition
of melting sputtered materials on the micropillar bottom [27] accounts for the MRC value
decreasing and the Ra value increasing with increasing micropillar height.

3.2. Effect of Laser Translation Velocity on Micropillar Processing

The laser translation velocity is another parameter correlated with the geometric
profiles, micropillar bottom angle, MRC, and Ra value of micropillars processed with a
femtosecond laser. The micropillars obtained with the laser translation velocity varied
between 0.2 m/s and 1.0 m/s, with a fixed pulse laser beam energy of 50 µJ and the same
pulse frequency of 600 kHz. Figure 9a indicates that the mean height of the micropillars
drops from 119.88 µm to 81.79 µm as the laser translation velocity changes in the range of
0.2–1.0 m/s. Figure 9b illustrates the linear fitting of the micropillar height against the laser
translation velocity, with a variation rate of −0.048 and an intercept of 129.852, showing a
constant decrease in the micropillar height with the laser translation velocity. Less pulsed
beam energy applied to the SiC surface due to shorter processing time over the 10 scanning
rounds at a higher laser translation speed accounts for the decrease in micropillar heights.
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Figure 9. Influence of laser translation velocities on the mean height of micropillars, with a pulse
energy of 50 µJ and a pulsed repetition rate of 600 kHz. (a) Measurements of micropillar height against
laser translation velocity. (b) Linear fitting of micropillar height against laser translation velocity.

The variations in both the mean upper and bottom diameters for micropillar arrays
at different laser translation speeds are exhibited in Figure 10, where the upper diameter
increases, but the bottom diameter decreases with increasing laser translation speed. When
the laser translation velocity is in the range of 0.2–1.0 m/s, the upper diameter increases
in the range of 261.73–271.56 µm, and the bottom diameter decreases from 354.41 µm to
313.59 µm. This results from the material removal mechanism at which higher translation
speeds, laser energy would be applied to a larger processing area with a smaller thick-
ness on the SiC workpiece surface. The high translation velocity brings about a larger
material removal rate in the blind ring; hence, the small fillets and bottom diameters of
micropillars remain.
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Figure 10. Influence of laser translation velocities on the average upper and bottom diameters of
micropillars, with a pulse energy of 50 µJ and a pulsed repetition rate of 600 kHz.

Figure 11 indicates the variation in the bottom angle with increasing laser translation
velocity, where a high translation velocity accompanies a large micropillar bottom angle
with better perpendicularity. Due to the spiral scanning approaches, the micropillars
generated were cone shaped. Moreover, the emergence of the truncated corners would
increase the diameters of the bottom. At a higher laser translation speed, laser energy
would be applied to a larger processing area, with a smaller thickness on the SiC workpiece
surface, which helps more of the SiC surface to absorb laser energy sufficiently, resulting in
a higher MRC and a smaller heat affecting thickness, leading to a lower Ra.
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Figure 11. Influence of laser translation velocities on the bottom angle of micropillars, with a pulse
energy of 50 µJ and a pulsed repetition rate of 600 kHz.
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Figure 12 displays the impacts of laser translation velocity on the MRC and Ra values,
with a constant pulsed laser beam energy of 50 µJ and the same pulse frequency of 600 kHz.
It indicates that the MRC value increases from 1.998 µm3/µJ to 6.816 µm3/µJ, whereas the
Ra value diminishes from 0.836 µm to 0.341 µm as the laser translation velocities vary in
the range of 0.2–1.0 m/s. It can be known from Equation (6) that the MRC is positively
correlated with the laser translation speed and micropillar height at a constant pulsed laser
beam energy and pulsed repetition rate. The offset between two conterminous pulsed
laser beams ranges from 0.33 to 1.67 µm, according to the pulse frequency of 600 kHz,
and the laser translation velocities vary in the range of 0.2–1.0 m/s, which is within the
laser spot radius of 6 µm, indicating an obvious overlap of conterminous laser spots. The
higher laser translation velocity will bring about less overlap, resulting in more material
removal volume from the current layer and less material removal volume from the next
layer. Since the material removal capability corresponds to the distance from the focused
laser height, a higher laser translation velocity means a higher material removal capability.
With decreasing laser translation speed, more heat is accumulated at the bottom of the blind
ring around the micropillar, leading to a rougher surface finish, as exhibited in Figure 13.
This shows that there is a rough profile on the top appearance of the micropillar at a laser
translation velocity of 0.2 m/s. The surface quality can be improved with a faster laser
translation speed at the same pulsed laser beam energy and pulse frequency.
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Figure 12. Effect of laser translation velocities on the material removal capability and surface
roughness of micropillars, with a pulsed laser beam energy of 50 µJ and a pulsed repetition rate of
600 kHz.
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Figure 13. The cross-section profile and SEM image of the micropillars fabricated with a laser
translation velocity of 0.2 m/s at a pulse energy of 50 µJ and a pulsed repetition rate of 600 kHz.

3.3. Optimum Parameter Combination to Enhance Processing Efficiency and Surface Finish

The above experiments verified that both the pulsed laser beam energy and laser
translation speed have significant effects on the processing efficiency and surface finish
of micropillars at the same pulsed repetition rate. The question still remains as to which
combination of these parameters is better for enhancing processing efficiency and surface
finish: a lower pulsed laser beam energy with slower laser translation speed or a higher
pulsed laser beam energy with faster laser translation speed.

An additional two processing experiments were carried out to examine the effects
of different combinations of pulsed beam energies and laser translation velocities on the
micropillar bottom angle, MRC, and Ra at the same micropillar height of 92 µm and
102 µm, respectively, as shown in Tables 2 and 3. The quality parameters indicate that
for micropillars of the same height, the use of a higher pulsed laser beam energy with
a faster laser translation speed could achieve micropillars with a larger bottom angle,
higher material removal capability, and lower surface roughness. The geometric profile and
SEM image of the micropillars fabricated at the same heights of 92 µm and 102 µm, with
different combinations of laser machining parameters, are displayed in Figures 14 and 15,
respectively. It can clearly be shown that there is a better surface quality for micropillars
generated with a higher pulsed beam energy with a faster laser translation speed than for
those generated with a lower pulsed laser beam energy with a slower laser translation
speed. Therefore, a higher pulsed beam energy with a faster laser translation speed is
a better combination of laser ablation parameters to enhance processing efficiency and
surface finish.

Table 2. Effect of different laser pulse energies and laser translation speeds on the micropillar bottom
angle, MRC, and Ra at the same micropillar height of 92 µm.

Laser Ablation Parameters Micropillar Bottom Angle (◦) MRC (µm3/µJ) Ra (µm)

50 µJ–0.8 m/s 74.71 6.115 0.475
60 µJ–1.0 m/s 75.36 6.403 0.419
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Table 3. Effect of different laser pulse energies and laser translation speeds on the micropillar bottom
angle, MRC, and Ra at the same micropillar height of 102 µm.

Micropillar Bottom Angle (◦) MRC (µm3/µJ) Ra (µm)

50 µJ–0.6 m/s 73.83 5.129 0.623
70 µJ–1.0 m/s 75.28 6.067 0.502
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Figure 15. The cross-section profile and SEM image of the micropillars fabricated at the same height
of 102 µm with different laser machining parameters: (a) 50 µJ–0.6 m/s; (b) 70 µJ–1.0 m/s.

4. Conclusions

The processing of micropillars on SiC by utilizing a femtosecond laser with a helical
scanning strategy was explored. According to the investigations of the influence of pulsed
beam energies and laser translation speeds on the micropillar bottom angle, material
removal capability, and surface roughness, the conclusions can be demonstrated as follows:

(1) The micropillar height increases constantly with a variation rate of 1.463 as the
pulsed laser beam energy increases from 10 µJ to 70 µJ at the same laser translation velocity
of 1.0 m/s and a constant pulsed repetition rate of 600 kHz, while the material removal
capability (MRC) declines slightly from 7.637 µm3/µJ to 6.067 µm3/µJ, and the Ra value
increases continuously from 0.219 µm to 0.502 µm. When the pulsed laser beam energy
exceeds 50 µJ, the increase in micropillar height resulting from the increase in pulsed laser
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beam energy starts to fade. The micropillar could obtain the best perpendicularity with a
bottom angle of 75.59◦ at a pulsed laser beam energy of 50 µJ.

(2) As the laser translation velocities vary in the range of 0.2–1.0 m/s at the same
pulsed beam energy of 50 µJ and a constant pulsed repetition rate of 600 kHz, the micropillar
height decreases with a variation rate of −0.048 and an intercept of 129.852, while the MRC
value increases obviously from 1.998 µm3/µJ to 6.816 µm3/µJ, the bottom angle increases
from 68.87◦ to 75.59◦ with a better perpendicularity, and the Ra value diminishes from
0.836 µm to 0.341 µm, with a better surface finish. It is suggested that the higher laser
translation speed with correspondingly increased MRC value will bring about both a better
surface finish and a better micropillar perpendicularity, resulting from the material removal
mechanism in which the laser energy would be applied to a larger processing area, with a
smaller thickness, on the SiC workpiece surface at a higher laser translation speed.

(3) To achieve micropillars with the same height using the proposed spiral scanning
approach, a combination of a higher pulsed laser beam energy with a faster laser translation
speed is recommended to improve the processing efficiency and surface finish.
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