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Abstract: The electronic and band structures of ternary RNiSb and binary RSb compounds for R = Tb,
Dy, Ho, have been investigated using an ab initio method accounting for strong electron correlations
in the 4f shell of the rare-earth metals. These ternary compounds are found to be semiconductors
with the indirect gap of 0.21, 0.21, and 0.26 eV for Tb, Dy, and Ho(NiSb), respectively. In contrast, in
all binary RSb compounds, bands near the Fermi energy at the Г and X points are shifted relatively to
RNiSb and form hole and electron pockets, so the energy gap is closed in RSb. The band structure
typical for semimetals is formed in all RSb compounds for R = Tb, Dy, Ho. For the first time, we
identify similar features near the Fermi level in the considered binary semimetals, namely, the
presence of the hole and electron pockets in the vicinity of the Г and X points, the nonsymmetric
electron pocket along Γ–X–W direction and hole pockets along the L–Γ–X direction, which were
previously found experimentally in the other compound of this series GdSb. The magnetic moment
of all considered compounds is fully determined by magnetic moments of the rare earth elements,
the calculated effective magnetic moments of these ions have values close to the experimental values
for all ternary compounds.

Keywords: electronic structure; topologic structure; alloys; intermetallics; first principles calculations

1. Introduction

The RTX is a family of compounds, where R is a rare earth element, T designates a tran-
sition metal, and X is a s/p element. These types of compounds have been known for their
unusual electronic and magnetic properties, such as heavy fermion
behavior [1,2], magnetic superconductivity [3,4], the presence of Weyl fermions [5], mag-
netocaloric effect [6–8], large magnetoresistance and negative temperature coefficient of
resistivity [9,10], and more. Another outstanding characteristic of many RNiSb compounds
is giant magnetoresistance [11,12] found in half-Heusler structure [13]. Such ternary ma-
terials with remarkable thermoelectric properties can be used for thermoelectric power
generation and for conversion of waste heat in electricity with high efficiency [14]. High
values of ZT, which is thermoelectric figure of merit, were observed in TmNiSb and Sn-
doped ErNiSb with the value of 0.25 for TmNiSb at 700 K [15] and even higher value of
0.29 at 669 K for ErNiSb [16] and other compounds of this series [15,17–19].

Magnetic susceptibility measurements for RNiSb compounds have also been con-
ducted and experiments show that most of the compounds exhibit Curie-Weiss behavior
where magnetism is dominated by the magnetic moments of rare earth elements [20]. The-
oretical electronic structure calculations for GdNiSb [21], as well as for the close GdNiGe
compound [22], indeed show that the dominant contribution to the total magnetic moment
is due to R while the contribution of Ni and Sb (Ge) is negligible. There is also a close binary
compound GdSb that is found to have a pair of Weyl fermions, the presence of which can
lead to chiral anomaly-induced negative longitudinal magnetoresistance under external
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magnetic field [23]. High-resolution angle-resolved photoemission spectroscopy (ARPES)
measurements for DySb and HoSb were conducted and revealed at least two concentric
hole pockets at the Γ point and two intersecting electron pockets at the X point [24], similar
features were found in the band structure of LuSb calculated within GGA not accounting for
electron correlations reported in [24]. Binary compound DySb was found to have extremely
large positive magnetoresistance from experimental results with the suggested non-trivial
band topology from DFT calculations with an inversion point seated about 0.34 eV below
the Fermi level [25]. A recent experimental study of the binary compound HoSb also found
extremely large magnetoresistance, the close interplay between conduction electrons and
magnetism was suggested [26].

The ternary Tb/Ho/DyNiSb intermetallics, which are studied in this work, are half-
Heusler compounds and crystallize in the cubic MgAgAs-type structure. This structure may
be regarded as NaCl-type structure, where the rare earth and Sb atoms take the positions of
the Na and Cl atoms, while the Ni atoms occupy one half of the tetrahedral voids formed
by the Sb atoms [13]. It has also been shown that compounds in question exhibit large
negative magnetoresistance at low temperatures which is caused by the reduction of spin
disorder scattering due to the alignment of the moments under a magnetic field [11,12].
The ternary DyNiSb compound is found to be a narrow-gap intrinsic p-type semiconductor
with the experimental value of the energy gap of 0.130–0.171 eV [9], 0.089–0.130 eV [15], for
HoNiSb it is estimated as 0.08–0.11 eV [9].

In this study, we consider in detail the band (and electronic) structure, as well as
magnetic properties, of the RSb and RNiSb compounds for R = Tb, Dy, Ho, in order
to identify common topological features of the band structure, electronic structure and
magnetic properties.

2. Materials and Methods

The ternary Tb/Dy/HoNiSb compounds have MgAgAs-type half-Heusler structure
(space group F-43m, number 216) [13] with the lattice parameters: a = b = c = 6.304 Å
for TbNiSb, a = b = c = 6.298 Å for DyNiSb and a = b = c = 6.262 Å for the HoNiSb
compound [20] with following atomic positions Tb/Dy/Ho in 4a (0, 0, 0), Ni in 4c (1/4,
1/4, 1/4) and Sb in 4b (1/2, 1/2, 1/2). Binary RSb compounds have similar cubic crystal
structure with the same atomic positions of rare earth element and Sb atoms with the
following lattice parameters: a = b = c = 6.170 Å for TbSb, a = b = c = 6.150 Å for DySb and
a = b = c = 6.130 Å for the HoSb compound [27].

The crystal structure of Tb/Dy/HoNiSb is plotted in Vesta [28] in Figure 1. The unit
cell of RNiSb contains 1 rare-earth atom, 1 nickel atom and 1 antimony atom. The Sb atom
has an environment of four Ni atoms in the form of a tetrahedron.

Figure 1. Crystal structure of RNiSb compounds. R atoms are shown in blue, Ni—in green, Sb—in red.
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Electronic structure calculations were conducted in the Quantum Espresso pack-
age [29,30] using GGA+U version of LSDA+U method. Such method is widely used to
take into account strong electron correlations between electrons of 4f shells in ions of rare
earth elements. Parameters in GGA+U method have following values: Hund’s exchange
parameter J = 0.7 eV for all three considered elements and direct Coulomb interaction
U is equal to 5.4 eV for Tb, 5.8 eV for Dy and 5.9 eV for Ho [2,31]. In this work we as-
sume that magnetic moments of rare earth elements have ferromagnetic ordering. The
exchange correlation potential was employed in generalized gradient approximation (GGA)
of Perdew-Burke-Ernzerhof (PBE) [32]. The calculations used the standard ultrasoft poten-
tials from the pseudopotential library of Quantum ESPRESSO for Ni and Sb [33], projected
augmented wave method (PAW) scalar-relativistic potentials for rare-earth elements from
work [34]. Wave functions were expanded in plane waves, Bloechl’s tetrahedron method
was employed for Brillouin-zone integration on a 12 × 12 × 12 k-point mesh, interactions
between ions and valence electrons were taken into account within the framework of the
method of plane augmented waves.

3. Results
3.1. TbNiSb and TbSb Intermetallic Compounds

In Figure 2, the total and partial densities of electronic states of the TbNiSb and TbSb
intermetallic compounds are given for two opposite spin directions. Two intense peaks in
the total density of states for the majority spin direction of the TbNiSb (TbSb) compound
in Figure 2a are formed by the 4f states of Tb at following energies: −7.2 (−7.8) eV and
−6.1 (−6.6) eV below the valence band. Another two noticeable intense peaks in Figure 2a
for the minority spin projection are found in the conduction band at energies 2.9 (2.3) eV
and 3.3 (2.7) eV. One can see that valence band in TbNiSb compound is mostly formed by
non-spin-polarized Ni 3d states Figure 2b with some contribution from Tb-5d and Sb-5p
states. In binary TbSb compound the biggest contribution to the valence band is due to
Sb-5p states Figure 2c. For both compounds and both spin projections Tb-5d states lay
in the conduction band mostly unoccupied Figure 2b. The other electronic states are not
shown in this figure due to their negligible contribution.

Figure 2. Densities of electronic states from DFT+U for (a–c) TbNiSb; (d–f) TbSb. (a,d) Total and
partial Tb-4f densities of states; (b,e) Partial density of states for Tb-5d (Ni-3d); (c,f) Partial density of
states for Sb-5p. The plot is shifted relatively to the Fermi energy shown at zero as a vertical line.

The band structure for the majority and minority spin projections of TbNiSb is shown
in Figure 3. One can see the energy gap of 0.43 eV in the majority spin projection in
Figure 3a and energy gap of 0.21 eV for the other spin projection in Figure 3b. Point Г
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is the highest point in the valence band and the lowest point in the conduction band is
X, so the compound is a semiconductor with an indirect gap. There are localized bands
at the energies of eV −7.2 eV and −6.1 eV in Figure 3a and at the energies of (2.9; 3.3)
eV in Figure 3b which correspond to intense peaks at the same energies in the density of
states Figure 2a. There is also the presence of the occupied states near the Г point at the
Fermi level.

Figure 3. Band structure of TbNiSb: (a) majority and (b) minority spin projections. The blue rectangle
points out the bands involved in the band gap formation.

The band structure for the majority and minority spin projections of TbSb is shown in
Figure 4. The bands near the Fermi energy at the Г and X points are shifted relatively to the
band structure of TbNiSb shown in Figure 3 and here they form hole and electron pockets
(see the blue rectangle in Figure 4), so there is no energy gap for both spin projections. Such
a band structure is typical for a semimetal. There is also a presence of similar to Figure 3
localized bands from 4f states of Tb at pretty much the same energies, only a few tenths of
eV lower, one can find narrow intense peaks at these energies in the total density of states
in Figure 2d.

Figure 4. Band structure of TbSb: (a) majority and (b) minority spin projections. The blue rectangle
points out the bands involved in the formation of pockets, see in the text.
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3.2. DyNiSb and DySb Intermetallic Compounds

In Figure 5, the total and partial densities of electronic states of the DyNiSb and
DySb intermetallic compounds are given for two opposite spin directions. In Figure 5a,d
one can find similar to Figure 2a,d narrow intense peaks which manifest 4f states of rare
earth metals. For the DyNiSb (DySb) compound and the majority spin projection such
peaks are found at following energies: −7.8 (−8.3) eV and −6.6 (−7.3, −6.9) eV below the
valence band. For the minority spin projection intense peaks are found at 2.4 (1.7) eV and
3.0 (2.2) eV. There is also a noticeable peak at −4.1 (4.6) eV contrary to Figure 2a,d for the
minority spin projection for both DyNiSb and DySb in the bottom part of the valence band.
The densities of Ni-3d, Dy-5d, and Sb-5p states in Figure 5 exhibit the behavior identical to
those plotted in Figure 2.

Figure 5. Densities of electronic states from DFT+U for (a–c) DyNiSb; (d–f) DySb. (a,d) Total
and partial Dy-4f densities of states; (b,e) partial density of states for Dy-5d (Ni-3d); (c,f) partial
density of states for Sb-5p. The plot is shifted relatively to the Fermi energy shown at zero as a
vertical dashed line.

The band structure for the majority and minority spin projections of DyNiSb com-
pound is shown in Figure 6. The electronic states near the Fermi energy are mostly dom-
inated by the Ni-3d and Dy-5d states, so the band structure near this level looks similar
to the one in Figure 3 with the main difference being the value of the energy gap (see
the blue rectangle in Figure 6). Thus, we conclude that the ternary DyNiSb compound is
a semiconductor with an indirect gap of 0.39 eV for the majority spin projection and of
0.21 eV for the minority spin projection. It is in a good agreement with the experimen-
tal value of the energy gap of 0.130–0.171 eV [9], 0.089–0.130 eV [15] for DyNiSb. The
localized bands from the 4f states of dysprosium similarly to previous Tb-compounds in
Figures 3 and 4 produce intense peaks at the same energies in the density of states in
Figure 5a.
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Figure 6. Band structure of DyNiSb: (a) majority and (b) minority spin projections. The blue rectangle
points out the bands involved in the band gap formation.

The band structure for DySb is shown in Figure 7. One can see that this picture is
resembling Figure 4 where the band structure for the TbSb compound is shown, since
the largest contribution to the states near the Fermi level is due to the Sb 5p and Dy 5d
electronic states. The calculated band structure is similar to the one proposed for DySb
in [25]. From Figure 7 and the blue rectangle pointing out the bands near the Fermi level,
one can conclude that DySb is a semimetal with the hole and electron pockets in the band
structure around Г and X points in the Brillouin zone.

Figure 7. Band structure of DySb: (a) majority and (b) minority spin projections.
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3.3. HoNiSb and HoSb Intermetallic Compounds

In Figure 8, the total and partial densities of electronic states of the HoNiSb and HoSb
intermetallic compounds are given for two opposite spin directions. Densities of states for
both compounds look similar to ones in Figures 2 and 5 with the main difference being
due to the holmium 4f shell. The positions of the intense peaks for this shell in the energy
spectrum Figure 8a,d are following: −7.9 (−8.4) eV and −6.7 (−7.4) eV below the valence
band for the majority spin projection and 2.0, 2.8 (1.7) eV for the minority spin projection.
There is also another Ho-4f intense peak for the minority spin direction at −4.8 eV at the
lower part of the valence band for the HoNiSb compound in Figure 8a, such as a peak
which seems to be isolated from the Ho-5d and Sb-5p states in the binary HoSb compound
at −5.5 eV (Figure 8d), it is not similar to that in the previous compounds.

Figure 8. Densities of electronic states from DFT+U for (a–c) HoNiSb; (d–f) HoSb per cell. (a,d) Total
and partial Ho-4f densities of states; (b,e) partial density of states for Ho-5d (Ni-3d); (c,f) partial
density of states for Sb-5p. The plot is shifted relatively to the Fermi energy shown at zero as a vertical
dashed line.

The band structure for the majority and minority spin projections of HoNiSb com-
pound is shown in Figure 9. Once again, we can see that ternary HoNiSb compound is
a semiconductor with an indirect gap in the band structure resembling that of TbNiSb
and DyNiSb in Figures 3 and 6, respectively. The value for the energy gap is 0.37 eV
for the majority spin projection and 0.26 eV for the minority spin projection. It is in a
good agreement with the experimental value of the energy gap of 0.08–0.11 eV [9] for
HoNiSb. Worth mentioning that the localized bands above the Fermi level from the 4f
states of holmium are closest to the Fermi energy for HoNiSb in Figure 9b among all three
ternary compounds.
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Figure 9. Band structure of HoNiSb: (a) majority and (b) minority spin projections. The blue rectangle
points out the bands involved in the band gap formation.

The band structure for the majority and minority spin projections of the HoSb com-
pound is shown in Figure 10. There is a noticeable flat band from the Ho-4f states in the
minority spin projection Figure 10b only 1.8 eV above the Fermi level which is closest of all
compounds. We can also see another localized band below the valence band in the minority
spin projection which was discussed earlier. In the band structure near the Fermi level
several bands are touching at X, see the blue rectangle in Figure 10. It is clearly seen that
the binary HoSb compound is a semimetal with the band structure near the Fermi level
very similar to that of the TbSb and DySb compounds shown in Figures 4 and 7.

Figure 10. Band structure of HoSb: (a) majority and (b) minority spin projections.
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3.4. Magnetic Moments

In addition to the densities of states and band structures, the values of the magnetic
moments of compounds were calculated within the framework of GGA+U. Magnetic
moments of the nickel and stibium ions in the compounds are found to be negligible so
we can consider it zero. Then all of the magnetic properties of considered RNiSb and RSb
compounds are determined by those of rare earth elements [20]. The spin moments of rare
earth ions, which are mostly defined by the 4f electronic states [22], as calculated in the
present work, have following values: 5.92 µB for the Tb ions in both TbSb and TbNiSb
compounds, 4.92 µB for Dy in DySb and DyNiSb compounds and 3.94 µB for the Ho ions in
HoSb and HoNiSb. These values are close to the ones for the corresponding R3+ ions, but
do not exactly coincide, see [20]. We can get the values of orbital momentum as for R3+ ions,
L = 3, 5, and 6 for Tb, Dy, and Ho, respectively. Now, we are able to calculate the effective
magnetic moments, and the results are 9.64 µB for TbSb and TbNiSb, 10.56 µB for DySb and
DyNiSb, 10.55 µB for HoSb and HoNiSb vs. the experimental values reported as 10.2(4) µB
for TbNiSb, 10.6(4) µB for DyNiSb, 10.7(4) µB for HoNiSb [20], 10.8 µB for HoSb [26].

4. Conclusions

In this work, we investigated the electronic and band structures of three ternary com-
pounds Tb,Dy,Ho(NiSb) and three binary compounds Tb,Dy,Ho(Sb). Calculations were
carried out in the framework of the GGA+U method and revealed that these ternary com-
pounds are semiconductors with an indirect gap and the binary compounds are semimetals.
The Tb,Dy,Ho(NiSb) semiconductors have the following values of the energy gap: 0.43,
0.39, and 0.37 eV for the majority spin projection and 0.21, 0.21, and 0.26 eV for the mi-
nority spin projection, respectively, which are in a good agreement with the published
experimental values. From the band structure, we identify similar to each other topological
features near the Fermi level in the Tb,Dy,Ho(Sb) binary semimetals, these are the hole
and electron pockets in the vicinity of Г and X points, the non-symmetric electron pocket
along Γ-X-W direction and hole pockets along the L-Γ-X direction. It is emphasized that the
corresponding band structures can be found experimentally in the other compound of this
series GdSb. It was also shown that the magnetic moment of all considered compounds
is fully determined by magnetic moments of rare earth elements, the calculated effective
magnetic moments of such ions have values close to experimental values.
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