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Abstract: Complex concentrated alloys (CCAs) are a new family of materials with near equimolar
compositions that fluctuate depending on the characteristics and destination of the material. CCAs
expand the compositional limits of the traditional alloys, displaying new pathways in material design.
A novel light density Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy was studied to determine the structural particular-
ities and related properties. The alloy was prepared in an induction furnace and then annealed under
a protective atmosphere. The resulted specimens were analysed by chemical, structural, mechanical,
and corrosion resistance. The structural analyses revealed a predominant FCC and BCC solid solution
structure. The alloy produced a compression strength of 500–600 MPa, comparable with conventional
aluminium alloys. The corrosion resistance in 3.5% NaCl solution was 0.3424 mm/year for as-cast
and 0.1972 mm/year for heat-treated alloy, superior to steel, making the alloy a good candidate for
marine applications.

Keywords: complex concentrated alloys; corrosion resistance; transportation applications;
materials design

1. Introduction

The corrosion of metallic materials is a natural and inevitable phenomenon. This
process causes losses in industrial activities estimated at one-third of the total losses in the
world economy. Therefore, this phenomenon has been the base of numerous experimental
studies aimed at preventing or slowing down the damage of metallic parts and equipment
caused by the influence of the contact environment. As a result, the main preoccupations
are the elaboration of materials with anticorrosive properties and the protection of the
metals against corrosion [1].

Alloys with high resistance in corrosive environments contain a high concentration of
elements that ensure corrosion resistance. However, this limits the selection of corrosion-
resistant alloy compositions [2]. For example, major importance for the corrosion resistance
of austenitic steels relates to the chromium content. Chromium facilitates the formation of
a passive film, and molybdenum helps maintain it by promoting repassivation [3].

With the need to cover the demands of a society in continuous progress, efforts have
resulted in the development of new materials with superior properties. The development of
corrosion-resistant alloys with properties that exceed the limits of conventional alloys has
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made significant progress due to the so-called high entropy alloys (HEA), more generally
called complex concentrated alloys (CCA).

The concept of CCA involves developing multicomponent alloys composed of at
least 4 main elements at high concentrations. A specific feature of these types of alloys is
the high configurational entropy that leads to the formation of preferential solid solution
solutions [4].

Slow diffusion and severe lattice distortions are two other characteristics of complex
alloys that directly influence their microstructures and properties. Thus, high hardness
and strength, high corrosion resistance, oxidation, or wear are determined by the above-
mentioned characteristics [5].

Alloys with a single solid solution phase are often the most desirable due to their
superior corrosion resistance [6]. The large space of the compositions in which the mul-
ticomponent alloys are found offers the opportunity to achieve optimal passivation by
choosing the appropriate composition [7,8]. The corrosion behavior of complex concen-
trated (or high entropy) alloys has been reported in numerous scientific papers. Various
studies were based on the CoCrFeNi equimolar system. CoCrFeNi-Cux has also been
studied, and the effects of increasing the Cu content on the microstructure and corrosion
properties have been reported [9]. Besides, the addition of Al in the CoCrFeNi alloy has
a major influence on the internal structure and mechanical characteristics of the alloy,
considering the large atomic radius of aluminum [10]. This statement was reinforced by
Tong et al. and Li et al. They studied the AlxCoCrCuFeNi alloy system and reported the
significant effect of Al content on the phase transformations and mechanical properties of
the alloy [5].

Research on the corrosion behavior of Al0.1CoCrFeNi alloy reveals that the values of
corrosion resistance were higher compared to SS304 stainless steel. This can be explained
by forming a strongly passivated surface layer due to the high Cr and Ni content [10].

The corrosion behavior of CCAs is generally influenced by such factors as the elements
that enter the composition of the alloy, the environment in which the corrosion occurs, and
the process parameters. So far, most of the CCA alloy studies have shown good corrosion
resistance compared to stainless steel due to the high content of elements characterized by
a strong passivating effect. The presence in the alloy of some metals that contain unpaired
electrons confers unsaturation to the surface, so the catalytic activity and the adsorption of
oxygen are favored [10–12].

The investigations regarding the development of a novel complex concentrated alloy
based on the Al-Cu-Si-Zn-Mg system with emphasis on its corrosion resistance is the main
topic of this study. The alloy was designed to have properties specific to the transport
industry. The alloy should replace steel in various structures due to the high mechanical
resistance, low density, and improved corrosion resistance. The competing aluminum alloys
with high mechanical resistance from the 2000 and 7000 series have low corrosion resistance.
Results of research on phase evolution, microstructure analysis, and the corrosion resistance
of the as-cast and heat-treated alloy were presented. Microstructural analysis of the alloy
was performed before and after the corrosion test.

2. Materials and Methods

Optimisation of modelling criteria values was performed by the Pareto multi-objective
module from MATLAB software (MathWorks, Natick, MA, USA, v 6.02) and by the IMNR
software developed for the calculation and sorting of the optimisation results.

The thermodynamics, multicomponent phase equilibrium, multi-phase precipita-
tion kinetics, and nonequilibrium solidification were studied using MatCalc Pro edition
(MatCalc Engineering GmbH, Vienna, Austria, v 6.03) with aluminum alloys databases
ME-Al1.2 (thermodynamic) and ME-Al_rel1.0e (kinetic).

The proper alloy compositions were obtained using an induction furnace type Linn
MFG-30 (Linn High Therm GmbH, Eschenfelden, Germany), equipped with an inert
atmosphere and cast in a copper mould. The alloy charge was 250 g of technical purity
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raw materials of Al, Cu, Si, Zn, and Mg, placed in an alumina-based crucible. The melting
process reached over 700 ◦C to allow the dissolution of all the elements. The resulted ingot
proceeded to heat treatment in an LHT 04/17 Nabertherm GMBH (Lilienthal, Germany)
electrical furnace under a protective atmosphere (Ar). The annealing stage was conducted at
400 ◦C for 30 h, with slow heating and cooling stages of 0.1 ◦C/s and 0.03 ◦C/s, respectively.

An inductively coupled plasma spectrometry (ICP-OES) of type Agilent 725 spectrom-
eter (Santa Clara, CA, USA) was used to study the chemical composition of the alloys.
To determine the most accurate values, there were taken samples from different areas of
the alloy ingot to be investigated. Optical micrographs were obtained with a Zeiss Axio
Scope A1m Imager microscope (Jena, Germany), with bright field, dark field, DIC, and
polarization features. To increase the grains’ visibility and boundaries, the ingot samples
were previously etched using a Keller solution. An FEI Quanta 3D FEG microscope (FEI
Europe B.V., Eindhoven, The Netherlands) that operates at 20–30 kV and is equipped with
an energy dispersive X-ray spectrometer (EDS) was used to analyse samples by scanning
electron microscopy (SEM). The configuration of the phases was studied with an X-ray
diffractometry (XRD) (FEI Europe B.V., Eindhoven, The Netherlands). Data were acquired
using a BRUKER D8 ADVANCE diffractometer (Bruker Corporation, Billerica, MA, USA),
equipped with DIFFRACplus XRD Commender (Bruker AXS) software (v 2018, Bruker
Corporation, Billerica, MA, USA), Bragg-Brentano diffraction method, Q–Q coupled in a
vertical configuration. The following parameters were used: CuK_radiation, 2Q Region:
20–1240, 2Q Step: 0.020, Time/step: 8.7 s/step, speed of rotation is 15 rot/min. Cuk_
radiation was removed by a SOL X detector (Bruker Corporation, Billerica, MA, USA).
Obtained data were processed with Bruker® Diffracplus EVA Release 2018 software to
identify the ICDD® Powder Diffraction File (PDF4+, 2019 edition) database and the full
pattern appropriate (FPM) module of the same software package.

To determine the Compression strength for the obtained alloys, we used an LBG
testing machine, model TC-100 (LBG Testing Equipment SRL, Azzanos, Paolo, Italy), with a
maximum load of 100 kN. The analyzed samples were alloy bars with a diameter of 6 mm
and a length of 6 mm. The speed of compression was established at 6 mm/min.

To determine the Vickers microhardness, the alloys were analyzed at ambient tem-
perature using microindenter attachment (Anton Paar MHT10, Anton Paar GmbH, Graz,
Austria), which has an applied load of 2 N and slope of 0.6 N/s. To identify the average
values for each sample, 10 measurements were made. The samples obtained before and
after the annealing process were evaluated in terms of corrosion resistance by the linear
polarization resistance technique.

The anticorrosive properties of the coated electrodes were determined in 3.5 wt% NaCl
solution solutions, using the potentiodynamic polarization and electrochemical impedance
spectroscopy (EIS, Lyon, France) methods. The corrosion resistance was determined on
Voltalab 80 PGZ 402 equipment (Radiometer Analytical SAS, Lyon, France), equipped with
a Volta Master 7.0.8 software. To prevent electrical interferences, the cell was installed in a
Faraday cage.

A thermostatic glass cell was used as an electrochemical cell. It was composed of
three electrodes: the counter electrode was made of Pt (wire 2 mm), the reference electrode
was calomel, which was saturated with KCl (SCE/KCl (sat)), and the working electrodes
were: P-115 cast, P115-heat treated and for comparison A570 Gr 40 steel (S = 0.5 cm2).
The standard composition of the A570Gr40 steel was: 99% Fe, 0.25% C and 0.20% Cu,
0.9% Mn, 0.04% P and 0.05% S as impurities. Minimal sample preparation consisted of
placing the electrodes on double-sided carbon tape with no coating. Before measurement,
the working electrodes were burnished with several emery paper sheets of various grades
(250 up to 4000) until a mirror-like surface was reached. After the polishing process, the
electrodes were swilled with acetone and bidi stilled water and then were dried at ambient
temperature and introduced into the electrochemical cell.

Corrosion was evaluated by the polarization method (OCP, linear polarization, and
Tafel plots). Expanding the potential from the cathodic to the anodic potential in the interval
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between −1500 mV to +250 mV (SCE) at a scanning rate of 2 mV/s is useful to explore the
Tafel polarization curves.

Measurements of Electrochemical impedance spectroscopy were realized in frequency
intervals between 100 kHz to 0.01 Hz with an amplitude of 10 mV to an open circuit
potential of the working electrodes in the study.

3. Results
3.1. Selection of the Alloy Composition

Several simulation and criteria calculations were performed for the Al-Cu-Si-Zn-Mg
system. The criteria and calculation methods are presented previously in [13]. The data
obtained for the same alloy system in [13] was further developed with a larger number
of calculations and approximations with the help of the MATLAB optimisation module
and internally developed software for the calculation and sorting of the most appropriate
compositions. Regarding the choice of the adequate composition, calculations based on
the Hume-Rothery criterion were performed, according to which almost any unidentified
composition can be predicted because the necessary thermophysical parameters can be
easily reached [14,15].

It was very important to identify the most appropriate composition of the complex,
concentrated alloy, characterised by good endurance in a corrosive marine environment.
The influence of the alloy composition is very strong because the alloying elements have
a high impact on the properties of CCA. The presence of aluminium in the alloy has
a major influence on the evolution of the phase structure. The aluminium properties,
like ductility, good mechanical resistance, and corrosion resistance, are also important in
element selection. In addition, this element is most often found in the lightweight complex
concentrated alloys, along with other metals like Si, Mg, Ti, and B. As fragility is not a
desired property in the types of applications pursued in this study, an attempt was made
to avoid it by choosing elements such as Cu and Zn, which can improve the material
machinability.

3.2. CALPHAD and Kinetic Simulation

The thermodynamic simulation results for Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy are presented
in Figures 1 and 2 and show a predominant presence of solid solutions (FCC-A1 and
BCC-A2), in the alloy structure. The intermetallic Al2Cu phase is also present in notable
proportion at low temperatures. Several other intermetallic phases (Zn2Mg and Mg2Si) are
also identified, but in minor proportions.

The nonequilibrium solidification behaviour (Figure 2) shows the same solidification
order for the component phases. The phases with termination S represent the cumulative
solidification patterns, containing equilibrium and nonequilibrium values. The first phase
to form during solidification is FCC-A1, followed by BCC-A2 and Si-A4. The Al2Cu phase
is not shown in the Scheil diagram as it is forming at lower temperatures.

Figure 3 shows the results for the simulation of precipitation of intermetallic phases
during the annealing process. To present the as-cast structure at the beginning of the
annealing stage, the system was set up to start with the solidification of the alloy after
the preparation process (Figure 3a). The solidification process was simulated according
to the furnace characteristics as the alloy was cast in a copper mould, at about 800 ◦C,
with rapid solidification up to 400 ◦C. A lower rate was then involved in cooling to room
temperature. The heating and cooling rates for the annealing process were very low
to avoid phase interface cracks due to dissimilar thermal expansion coefficients. The
precipitation behaviour of the intermetallic phases indicates, as expected, a high fraction of
the Al2Cu phase followed distantly by the Mg2Si phase (Figure 3b). Very low proportions
of the Zn2Mg were identified. The precipitation number count and size (Figure 3c,d) show
different behaviour from the as-cast and annealed state, as the minor intermetallic phases
(Mg2Si and Zn2Mg) have much closer values with the Al2Cu phase. This is due to the
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less stable character of the minor intermetallic phases, present in higher proportion in
nonequilibrium as-cast structures.
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3.3. Experimental Results
3.3.1. Chemical Analyses

The nominal and experimental composition of the alloy are presented in Table 1. It can
be observed that the values are very close, the differences between the two compositions
being around 2 wt%. Unlike the other elements of the alloy composition, aluminum is an
exception, for which it is registered as a nominal composition, which exceeded by 5 wt%
the experimental composition. Considering that the alloy elements are found in a high
percentage, the variation of 2 wt% in two types of compositions does not significantly affect
the structural integrity of the alloy.

Table 1. Chemical composition of the alloy expressed in weight percentage.

Type of Composition Al Cu Si Zn Mg

Nominal 49 11.55 2 35.6 1.8
Experimental 45.48 11.49 2.08 38.87 2.05

3.3.2. Microstructure Analyses

The optical micrographs of the analysed alloy (Figure 4) showed substantial differences
regarding the as-cast and heat-treated sample morphologies. The optical images for the
as-cast alloy revealed a fine and well dispersed dendritic microstructure (Figure 4a). Several
constituent phases were also observed in the interdendritic area, including a Chinese script
morphology eutectic and a punctiform and lamellar eutectic. The heat-treated sample
(Figure 4b) also shows a dendritic structure with a large interdendritic area. The four
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interdendritic phases are present in the form of platelets trapped in the main phase matrix.
The eutectic structure was also identified in the interdendritic area.
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Figure 4. Optical micrographs of (a) as-cast and (b) annealed Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy.

Scanning electron microscopy analyses (Figure 5) show a substantial difference be-
tween the as-cast and annealed states. The as-cast alloy (Figure 5a) was characterized
by multiple phases homogeneously arranged in the material. Thus, two distinct main
phases can be identified; one of these is constituted by dendrites, and the second phase is
placed in the interdendritic area. As a result of heat treatment, it can be distinguished by
a large dendritic alloy structure and clearly defined eutectic structures (Figure 5b). Four
well-distributed phases were identified by scanning electron analysis. One of the phases has
an acicular shape, while three of them occurred in the form of platelets. The composition
of Al5Cu0.5Si0.2Zn1.5Mg0.2 phase structure in as-cast and annealed states are presented in
Table 2 and Figure 6. According to EDS analyses of the as-cast alloy, a high concentration
of Al and Zn in the dendritic area (DR) was spotted. The interdendritic area (ID) consists
mainly of Cu, which along with Al, Zn, and Mg, forms well-defined phases (ID1, ID2,
ID3, and ID4). The eutectic structures, investigated with EDS mapping (Figures 6 and 7),
show a basic composition consisting of Al and Zn. It can be observed that Mg and Si are
concentrated in common material regions, constituting intermetallic compounds.
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Table 2. EDS composition for the Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy, in at.%.

State Phase
Composition, at.%

Al Cu Si Zn Mg

As-cast

DR 82.79 2.51 1.83 11.38 1.49

ID 1 63.41 30.75 2.26 1.95 1.62

ID 2 68.02 7.60 2.60 18.99 2.77

ID 3 22.53 1.26 71.77 3.84 0.58

ID 4 39.12 7.38 22.49 4.48 26.51

ID 5 15.76 8.57 5.68 49.35 20.63

Heat-treated

DR 82.66 1.68 - 15.65 -

ID 1 66.96 33.04 - - -

ID 2 55.86 8.54 - 34.6 -

ID 3 7.87 - 90.57 1.56 -

ID 4 40.45 10.27 30.35 - 38.93

ID 5 18.37 13.75 - 46.26 21.62

ID 6 48.65 34.27 - 12.34 4.64Materials 2022, 15, x FOR PEER REVIEW 9 of 19 
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Figure 6. EDS mapping of the Al5Cu0.5Si0.2Zn1.5Mg0.2 as-cast alloy.

The diffraction patterns of the Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy in as-cast condition
(Figure 8) indicate a structure composed mainly of two solid solution phases (A1-Al with
reference PDF No: 01-077-6849 and A3-Zn with reference PDF No: 01-078-9363) and Al2Cu
intermetallic (PDF No: 04-001-0923). Complex and less stable Mg8Cu2Al4Si7 (PDF No:
04-009-1416) and Mg2Zn11 (PDF No: 04-007-1412), and Si (PDF No: 00-026-1481) were also
detected in the as-cast structure of the alloy. The phase count has changed in the annealed
state (Figure 9), showing a less stable formed phase Al4.2Cu3.2Zn0.7 (PDF No: 00-047-1393).
The X-ray analysis showed that the crystal structure is almost identical for the as-cast and
heat-treated alloy, with sharp, high peak intensities for FCC-A1 and HCP-A3 between
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38–45◦. Knowing that Al and Zn have the highest atomic proportions in the alloy, the high
peak intensities for FCC-A1 and HCP-A3 also show a possible high proportion of these
two phases in the alloy mass. There is no significant difference between the as-cast and
heat-treated alloy samples regarding peak intensities, showing the high stability of the
alloy structure.
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3.3.3. Mechanical Tests

Characteristic diagrams of the compression tests are presented in Figure 10. The graph
analysis shows that the yield strength of the material is between 500 and 600 MPa, and
the ultimate strength is between 800 and 900 MPa. These values are considered superior
to most aluminium alloys. Plastic deformation behavior was observed for the studied
alloy. The deformation slope has a linear ascending aspect in the plastic range, finishing
with a descending rupture curve at approximately 800 MPa compression strength and
0.04 compression strain. The material does not show a sudden brittle rupture which allows
for use in various complex applications, where high strength and low density are required.
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HEA alloy samples (Al5Cu0.5Si0.2Zn1.5Mg0.2) with low density were tested for micro
hardness and mechanical strength.
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The results of Vickers microhardness tests are presented in Table 3. The results showed
that the as-cast samples have higher microhardness than the annealed specimen. This
is mostly due to the phase morphology, which has changed from sharp dendrites to a
more rounded phase configuration. The microhardness range is similar to the 2000 and
7000 series aluminium alloys.

Table 3. Microhardness results for the obtained alloy.

Specimen HV

as-cast 238
annealed 168

3.3.4. Corrosion Tests

The corrosion resistance of the samples was analyzed by potentiodynamic polariza-
tion measurements (linear polarization resistance (LPR), Tafel plots) and electrochemical
impedance spectroscopy. Tests were performed in aerated 3.5 wt% NaCl solution. The
polarization of A570 Gr 40 carbon steel was studied for comparison.

Polarization curves are presented in Figure 11, while Table 4 presents the suitable
kinetic parameters (corrosion potential-Ecorr, and corrosion current density-icorr), as well
as the calculated corrosion parameters: polarization resistance -Rp and corrosion rate -CR
(determined by Tafel’s extrapolation method).
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Table 4. The corrosion parameters of the tested samples in 3.5 wt% NaCl at 25 ◦C.

Samples EOCP
(V)

Rp
(Ω)

Ecorr
(V)

icorr·10−4

(A/cm2)
CR

(mm/Year)

OL44 −0.589 11.76 −0.687 1.416 0.6984

as- cast −0.986 554.20 −1.014 0.741 0.3424

heat treated −0.995 2119.44 −0.959 0.213 0.1972
Rp = polarization resistance; Ecorr = corrosion potential; icorr = corrosion current density; CR = corrosion rate.
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The Ecorr values for the as-cast and heat-treated samples were very close to each
other, −1.014 VSCE and −0.959 VSCE, respectively, significantly lower than the Ecorr value
for the steel sample (−0.687 VSCE). The icorr values for as-cast (7.4 × 10−5 A) and heat-
treated (2.1 × 10−5 A) samples are an order of magnitude smaller than the steel sample
(1.4 × 10−4 A). These large differences result in a significant improvement of the overall
corrosion rate for the selected alloy in either obtaining state. There is also a significant
difference between the corrosion results of the two alloy samples, as the heat-treated
state indicates twice as good corrosion resistance. The corrosion rate for both studied
alloys proved to be significantly lower than steel (0.6984 mm/year). As expected, the
corrosion rate of the heat-treated binder (0.1972 mm/year) is lower than that of the as-
cast alloy (0.3424 mm/year), which demonstrates that the heat treatment improves the
corrosion resistance of the alloy. The passivation regions for all the samples are forming
late, at approx. 0.1 A/cm2. This suggests the formation of a thin or penetrable oxide
layer at the alloy surface. Overall, the results show a good corrosion resistance for the
Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy, compared to A570 Gr 40 steel, and are in good agreement with
the polarization resistance obtained by LP. The alloy impedes the attack of the aggressive
ions (Cl−) on the electrode surface. As the above data shows, the best corrosion rate was
obtained for the heat-treated alloy.

Electrochemical impedance spectroscopy (EIS) provides additional specific informa-
tion on the corrosion behavior of CCA steel and alloy samples. The EIS experimental
tests were performed for the open circuit potential (OCP), on the frequency range from
100 kHz to 40 MHz, with an AC wave of ±10 mV (peak-to-peak). The impedance spectra
of the samples, analysed in a solution of NaCl, are shown in Figure 12. The electrochem-
ical impedance spectra are presented by a semicircle, with a high-frequency capacitance
loop and a low-frequency inductive loop. However, these capacitive loops are not perfect
semicircles, which is attributed to the frequency scattering effect due to the roughness and
inhomogeneity of the metal surface.
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Mainly, the capacitive loop in the Nyquist diagrams assumes a time constant, corre-
lated with the charge transfer process of the corrosion compounds on the electrode surface.
From the analysis of the impedance spectra of the samples, it can be seen that the diameter
of the semicircles varies with the evolution of the corrosion process due to the presence of
the film composed of corrosion compounds.

The impedance modulus, at low frequencies, increases with the increase of the cor-
rosion formed by the corrosion compounds, and an increase in Zmod denotes a higher
protection capacity. Consequently, the heat-treated Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy has better
corrosion resistance in 3% NaCl solution than the as-cast specimen regular steel, and the
heat-treated specimen provides even better resistance than the as-cast specimen and steel.

The Bode diagrams (Figure 13) show a single time constant, suitable for a well-
established phase angle of approx. 38◦ for steel, 47◦ for cast alloy, and 58◦ for the heat-
treated alloy, which reveals that at high frequencies have a capacitive behaviour, and at
low frequencies, they have an inductive behaviour, with a low diffusive tendency. An
equivalent circuit was presented for the obtained EIS data. To provide an accurate fit,
the phase element constant (CPE) was introduced instead of the usual pure double-layer
capacitor (Cdl). The significance of CPE is the deformation of the capacitive semicircle,
showing the heterogeneity of the corroded surface. The CPE impedance can be defined as:
ZCPE = Y0 − 1 (jω)−n, whereω is the angular frequency, j is the imaginary number (j2 = −1),
Y0 is the amplitude comparable to capacitance, and n is the phase change. The phase shift
value provides details on the degree of inhomogeneity of the metal surface. The higher the
value of n, the lower the surface roughness, i.e., a reduced surface inhomogeneity. CPE
can be established as resistance when n = 0, (Y0 = R), capacitance when n = 1 (Y0 = C) and
inductance when n = −1 (Y0 = 1/L) or Warburg impedance when n = 0.5 (Y0 = W) based
on the value of n.
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Figure 13. Bode plots for the as-cast alloy, heat-treated alloy, and steel.

The analysis of the experimental data was performed by processing the results at the
appropriate equivalent circuit shown in Figure 14 and the various impedance characteristics
such as solution resistance (Rs) and load transfer resistance (Rct). L1 and R3 are inductive
elements. The double-layer capacity (Cdl) was calculated along with other parameters and
indicated in Table 5.
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Table 5. Impedance test results parameters.

Sample

CPE1

Rs
ohm·cm2

Q-Yo
S·s−n·cm−2 Q-n Rct

ohm·cm2
L

(H·cm2)
RL

ohm·cm2 χ2 Rp
Cdl

(µF·cm−2)

steel 0.6694 0.01775 0.6083 31.06 34.48 3.622 × 1010 6.791 × 10−3 67.949 521

As-Cast alloy 1.621 0.006374 0.6195 44.99 5.885 30.51 4.153 × 10−3 77.121 620

Heat treated alloy 2.103 0.004072 0.6201 99.38 14.84 28.96 3.971 × 10−3 130.443 815

Notation signification: Rs—solution resistance, Rct—the charge transfer resistance, CPE—phase element constant,
L, RL—inductive elements.

The inductive behaviour present in the low-frequency domain is due to the relaxation
process of some added species (corrosion compounds) to the surface of the working elec-
trode. It is a process of adsorption on the surface of the electrode. The results obtained
from the EIS tests indicate that the load transfer resistance Rct has increased, and the Cdl
double layer capacity has been reduced with the consolidation of the film from protective
corrosion compounds.

The EIS measurements results confirm the polarization data obtained from OCP, LP,
and Tafel, respectively, that the heat-treated alloy has the best corrosion resistance compared
to cast alloy and steel.

The microstructural characterisation results of the corroded films are presented in
Figures 15 and 16. It was generally distinguished as an irregular structure with various
phases of different morphologies. The corrosion layers investigated on both samples
appeared to be partially fractured either due to the chemical attachment of the testing
solution or due to the sample preparation process. There are no large cracks between the
corrosion film areas. The layers’ appearance showed a significantly finer morphology for
the heat-treated sample. The EDS analysis results, presented in Table 6, show many phases
with different compositions. As expected, oxygen is predominant in most of the phases. Al
and Zn were also found as the main elements. Nevertheless, there are some areas in the
corroded films that have higher concentrations of Cu and Si. In general, Si presence in a
higher percentage determines a lower oxygen content, as identified in phases 2 and 6 from
the as-cast sample and phases 3, 6, and 8 from the heat-treated sample.
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Figure 15. BSE-SEM images of the corroded surface of the as-cast alloy sample after the impedance
tests. The marked areas were studied for EDS composition in Table 6.
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Table 6. Phase composition for the corroded layer of the as-cast and heat-treated samples.

State Phase
Composition, at.%

Al Cu Si Zn Mg O Na Cl

As-cast

1 26.46 - - 5.37 - 66.09 1.05 1.03
2 39.55 4.06 8.43 6.32 10.02 31.41 - 0.20
3 29.16 0.87 - 9.57 0.73 56.89 2.32 0.46
4 48.82 2.64 - 10.67 1.13 35.99 0.75 -
5 24.23 - 0.32 3.30 0.34 70.24 1.00 0.57
6 31.96 3.14 3.28 3.98 6.11 48.62 1.76 1.15
7 79.61 1.92 0.87 11.13 - 6.47 - -

Heat treated

1 20.73 0.49 3.33 5.98 1.38 67.61 0.21 0.26
2 33.19 15.97 - 5.28 - 38.95 6.34 0.27
3 72.42 1.78 5.76 19.71 - - 0.33 -
4 15.40 19.60 - 27.07 1.41 29.20 4.25 3.07
5 31.66 1.67 - 11.91 1.34 49.71 2.12 1.59
6 39.17 6.01 8.66 25.51 10.08 8.61 1.01 0.95
7 24.68 0.77 3.03 11.48 1.79 55.77 0.20 2.27
8 21.58 6.72 7.78 23.98 5.76 30.24 2.86 1.08
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4. Discussions

The experimental results show a relatively complex structure with one main dendritic
phase and several interdendritic phases. The SEM-EDS and XRD investigations identified
5 interdendritic phases for the as-cast alloy and 6 phases for the annealed alloy. The main
dendritic phase is FCC-A1, with a large representation in the alloy structure. The heat-
treated sample contains, in addition, an Al4.2Cu3.2Zn0.7 phase (t′ phase), which shows to be
stable in the annealed structure. The EDS and XRD analyses seem to illustrate the same
type of phases as the element proportions are similar to the lattice type.

From the comparison of the modelling and experimental results, it can be observed
that the number of phases agrees between the as-cast sample and CALPHAD findings,
but have a reduced agreement on the type of phases. The BCC-A2, Zn2Mg, and Mg2Si
phases, obtained by the simulation process, were replaced by HCP-A3, Mg8Cu2Al4Si7, and
Mg2Zn11 in the experimental samples. The Al4.2Cu3.2Zn0.7 phase was not predicted by the
simulation process.

The solidification behaviour simulated with the Sheil-Gulliver method through the
MatCalc software shows that the first phases to form are FCC-A1 (aluminum-based), BCC-
A2, and Si-A4. The dendrite formation identified in the optical and SEM-EDS analyses
seems to have a composition with a large Al proportion, suggesting the FCC-A1 type of
phase, which was also identified in the XRD analyses. Dendrites are known to be the first
phases to form in an alloy, so the modelling results and experimental results are similar
in this regard. However, it is hard to tell what is the BCC-A2 phase in the experimental
sample as the XRD results show an A3-Zn-based phase instead.

The simulation of precipitation kinetics showed a stable Al2Cu intermetallic phase,
doubled by Mg2Si, but at a significantly lower concentration. The Mg2Si was not identified
either in the as-cast or heat-treated samples, which demonstrates the high difficulty in
predicting phase structures in complex concentrated alloys. The Al2Cu intermetallic phase
was also identified by the XRD analyses and presented the suggested composition for the
ID1 phase in SEM-EDS analyses. As in the simulation results, the ID1-Al2Cu phase shows
smaller dimensions in the heat-treated state than in the as-cast state.

The mechanical resistance tests showed relatively high values compared to the con-
ventional aluminum alloys from the 2000 and 7000 series. The complex structure of the
alloy and the presence of the Al2Cu intermetallic phase contributes significantly to the
high values obtained at mechanical resistance tests. Moreover, the corrosion resistance
shows a substantial improvement versus regular steel. Al5Cu0.5Si0.2Zn1.5Mg0.2 presented
a corrosion rate six times slower than the steel sample. The impedance corrosion results
also pinpoint a significant improvement in corrosion resistance for the studied complex
concentrated alloy. Due to the structural, mechanical, and corrosion results obtained, the
developed alloy provides the required characteristics for applications in an offshore envi-
ronment where lightweight, high mechanical resistance, and good marine water corrosion
resistance are required.

5. Conclusions

A new lightweight complex concentrated alloy, composed of more common elements,
is studied in the paper. The behaviour of the alloy in the as-cast and heat-treated states was
presented in terms of structural, mechanical, and corrosion resistance analyses. Simulation
results with dedicated software were also presented and compared to the experimental
findings. Simulation of the alloy structure performed by CALPHAD showed a structure
composed mainly of solid solutions of FCC and BCC types. The main intermetallic phase
suggested by the thermodynamic and diffusion simulation was the Al2Cu phase, in sig-
nificant proportion at low temperatures. Complex structures were identified by: optical,
SEM-EDS, and XRD analyses with a predominant dendritic phase containing Al in large
proportion. The interdendritic phase that is shown to present a larger proportion is Al2Cu.
The BCC type phase, determined by the simulation software, was replaced with a Zn-based
A3 solid solution identified in the XRD analyses. Other complex intermetallic phases
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were shown to be stable in the studied alloy at room temperature (Mg8Cu2Al4Si7 and
Al4.2Cu3.2Zn0.7). Si was found mostly segregated in the alloy structure. The mechanical
characterization of the Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy revealed high values for compression
yield strength (500–600 MPa) and microhardness (238 HV) in the as-cast state. The anneal-
ing process had a softening effect, as expected. The determined values are comparable with
the 2000 and 7000 series aluminum alloys.

The corrosion tests showed a relatively low value for the corrosion rate, either in
as-cast (0.3424 mm/year) or heat-treated state (0.1972 mm/year). The passivation regions
for all the samples are forming late, at approx. 0.1 A/cm2, which suggests the formation of
a thin or penetrable oxide layer at the alloy surface. It is obvious that the alloy impedes the
attack of the aggressive ions (Cl−) on the electrode surface. The best corrosion rate was
obtained for the heat-treated alloy. Good corrosion resistance was also identified by the
impedance tests in the annealed (6.5 ohm·cm2) and the as-cast samples (5.5 ohm·cm2). The
inductive behaviour present in the low-frequency domain is due to the relaxation process
of some added species (corrosion compounds) to the surface of the working electrode. It is
a process of adsorption on the surface of the electrode. The results obtained from the EIS
tests indicate that the load transfer resistance Rct has increased, and the Cdl double layer
capacity reduced, with the consolidation of the film from protective corrosion compounds.

The characterisation results showed good potential for the novel alloy in applications
that involve low density, high mechanical resistance, and good corrosion resistance.
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