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Abstract: Background: The clinical success of post-core restorations is determined by the composite
utilized and the strength of the post-core adhesion. The effectiveness of titanium dioxide nanoparti-
cles (TiO2 NPs) as a multifunctional material with photo-induced activities and better mechanical
characteristics are observed as particle size is reduced to under 50 nm. Aim: The purpose of this
study is to determine the bond strength of fibre-reinforced composite (FRC) posts with TiO2 NP as
fillers and to compare it with conventional composite resin core material. Materials and Methods:
30 single-rooted mandibular premolars were selected and routine root canal procedures were done. A
quantity of 5% TiO2 NPs were synthesized and added as silanized filler to the experimental composite
resin. Post space was prepared and fibre-reinforced composite (FRC) post luting was performed.
The specimens were then grouped into the following groups: Group I consisted of the experimental
composite resin containing 5% TiO2 fillers, Group II consisted of core X flow, and Group III consisted
of Multicore Flow. All test groups were submitted for thermocycling. After this, the samples were
tested for micro tensile bond strength. A stereomicroscope with a magnification of 20× was used to
examine the fractured surfaces. The data were analysed using one-way ANOVA and Tukey HSD
tests. Results: Statistical analysis revealed that Group I showed the highest mean bond strength value
of 35.6180 Mpa. The results obtained with Group III showed the lowest mean bond strength value
of 19.4690 Mpa. Adhesive failures were identified by stereomicroscopy of the fractured surfaces.
Conclusion: The experimental composite resin comprising 5% TiO2 NP had a greater bond to the
FRC post than other materials tested.
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1. Introduction

A cast metal post has traditionally been used to retain an endodontically treated
tooth to facilitate prosthetic rehabilitation once the treatment has been completed. Since
their introduction in the 1990s, fibre posts have been suggested as a possible substitute
to cast metal posts for endodontically treated tooth restoration [1]. Fibre posts have
many advantages over metal posts, including improved aesthetics, better dentin bonding,
corrosion resistance, and a decreased occurrence of vertical root fracture. Although posts
do not reinforce endodontically treated teeth, it was observed that they do play a vital role
in maintaining a core when significant parts or the entire clinical crown are lost [2].

A core build-up is a reconstruction used to repair the majority of the coronal portion
of a tooth that has been badly damaged [3]. The ideal core materials should provide
favourable stress distribution of forces, thereby minimizing the tensile and compressive
fractures. Composite scores are popular because of their command set and retentive
stability. The modulus of elasticity should be equal to or higher than that of dentine [4].

The micro-tensile bond strength test (µ-TBS) is the best surrogate measure of dental
composite restoration retention [5]. Although many techniques are available to evaluate the
bond strength, the µ-TBS allows the researchers to emphasize more the clinically relevant
substrates with three-dimensional surfaces [6].

Titanium dioxide nanoparticles (TiO2 NPs) are non-toxic, chemically inert, have a high
refractive index, have broad-spectrum antibacterial capabilities, are resistant to corrosion,
and have a high hardness. Because of their remarkable photoactivity and exceptional me-
chanical qualities, TiO2 NPs are one of the greatest additions for increasing the performance
of polymeric materials [7,8]. Current literature research did not reveal the bond strength of
TiO2 NP as fillers in the composite resin with the fibre-reinforced composite (FRC) post.

Thus, the objective of this study is to ascertain the bond strength of fibre posts with
titanium dioxide nanoparticles as fillers in experimental dental composite resin and to
compare it to the bond strength of traditional composite resins in use as core materials,
namely Multicore Flow and Core X Flow.

2. Materials and Methods

The study was conducted at the SRM Institute of Science and Technology’s Nanotech-
nology Research Department, ethical clearance number: 1798/IEC/2019.

2.1. Titanium Dioxide Nanoparticle Synthesis

To synthesize 5% of TiO2 NP, the technique previously described by Venkatasubbu et al.
(2012) was utilized. The characterization of the TiO2 NP and the uniform distribution of
the nanoparticles were analysed using samples for transmission electron microscopy (TEM,
JEOL, Tokyo, Japan). The TEM analysis was undertaken by placing TiO2 nanoparticles onto
a carbon-coated copper grid that had been left at room temperature overnight. The images
were captured using a Philips EM400T operating at 200 kV, with a magnification of roughly
50 nanometres (nm) and a point-to-point resolution of 2 A◦ [9].

2.2. Synthesis of an Experimental Composite Using Titanium Dioxide as a Filler

The monomer synthesis and silanization of filler particles, as well as the fabrication of
the experimental composite resin, were done using the technique previously published by
Sihivahanan et al. (2021) [10].

The monomer matrix was composed of bisphenol A glycidyl methacrylate (bis-GMA)
and triethylene glycol dimethacrylate (TEGDMA). In addition, diketone was employed as
a photoinitiator, and N, N-dimethylaminoethyl methacrylate (DMAEMA) was used as a
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co-initiator in matrix preparation. All of the ingredients were acquired from Sigma-Aldrich
in St. Louis, MO, USA.

Preheating BisGMA to 500 ◦C for 60 min in a glass container made handling the
substance easier. Amber glass vials were then used to contain the monomer TEGDMA
to prevent the photoinitiator from activating (500 mL, Sigma-Aldrich, St. Louis, MO,
USA). A magnetic stirrer was then used to add 0.5 percent weight CQ and 0.5 percent
weight DMAEMA to the monomer solution, which was then mixed for 60 min. It was
then packaged in amber bottles with aluminium foil on top to protect the freshly mixed
monomer from light. All components were weighed with a digital scale (0.01 g readability)
using a digital scale (PERCISION Advanced: OHAUS, Troy Hills, NJ, USA).

Two types of reinforcing fillers were used: 10% silanized amorphous silica and
55% silanized aluminium silicate (Evonic Industries, Essen, Germany). Additionally, TiO2
NP was used as a filler at a concentration of 5%. At room temperature, the reinforcing fillers
were mixed into a matrix in 50 mL crystal Griffin form beakers. An alkoxy-terminated sila-
nating agent (1.0 vol-% of 3-methacryloxypropyltrimethoxysilane (Sigma Aldrich, St. Louis,
MO, USA) was used as silane coupling agent to silanize amorphous silica, aluminium
silicate fillers, and titanium dioxide nanoparticles (TiO2 NP).

The silane treatment of the fillers was prepared by the modified method (Sousa et al.,
2003). Amorphous silica and aluminium silicate fillers were silanated using alkoxy-
terminated silanating agents. A 1.0 vol-% of 3-methacryloxypropyltrimethoxysilane (Sigma
Aldrich, St. Louis, MO, USA) solution was prepared using a pre-prepared solvent mixture
of 90 vol-% ethanol and 10 vol-% deionised water. The pH of the solvent mixture was
adjusted to 4 by 3.0 M acetic acid. The silane solution was next stirred and allowed to
hydrolyse (activate) for 1 h. The filler, silanizing agent and a ketonic solvent were placed
in a glass vessel. The content was stirred for 5 to 8 h at 40 to 50 ◦C, then the solvent was
decanted off and the filler dried at 105 deg C for 2–3 h and sieved before use in the com-
posite. Fillers were added and dispersed by ultrasonication for 15 min. Following this, the
reaction mixture was stirred for 24 h at room temperature. After the silane grafting process,
the reaction mixture was filtered and rinsed with absolute ethanol to remove physically
adsorbed silanes. The powder was dried overnight at room temperature and then dried at
60 ◦C in an oven for 72 h to enhance the condensation of surface silanol molecules and to
remove any remaining solvent.

The ingredients were weighed and placed in a mortar and pestle in the correct se-
quence. To make a composite mass, the mass was manually mixed and heated in the oven
overnight between 40 to 50 ◦C. Approximately an hour after it was wetted at 40 to 50 ◦C for
24 h, it was manually blended in the mortar and held in the oven at 40 to 50 ◦C. This process
was performed a further five to seven times or until the required consistency was attained.

2.3. Sample Preparation

A total of 30 freshly extracted single-rooted mandibular premolars for orthodontic
purposes were collected. To prevent dehydration, a saline solution was used to preserve
the samples until they were used.

The experimental procedure was done by a single investigator. The samples were
examined under a stereomicroscope to evaluate them for any external cracks or defects.
The samples were then decoronated at a level of 2 mm above the cementoenamel junction
(CEJ) to aid in simulating the ferrule effect, which protects the tooth from fracture.

Access openings were made using a round diamond point bur; cleaning and shaping
were performed using K files ranging from no. 15 to no. 50 with 5.25% sodium hypochlorite
solution used as irrigating solution. Obturation was completed using gutta-percha and
zinc oxide eugenol as a sealer using the lateral compaction technique. For the complete
setting of the sealer, the samples were kept idle for two weeks.

Around the coronal tooth structure, a shoulder finish line with a width of 1.5 mm was
formed. Peso reamers of size no. 1 to 5 (Mani, Tokyo, Japan) were used to prepare the post
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space. As per the researcher’s recommendation, 4 to 5 mm of gutta-percha was left from
the apex.

A fibre-reinforced composite (FRC) (FRC Postec Plus, Ivoclar Vivadent, Schaan,
Liechtenstein) post of size 2 with a diameter of 1.5 mm was selected. The post was trimmed
to 11 mm in length, leaving 2 mm coronally protruding. Using a micro brush, a thin layer
of Monobond N (Ivoclar Vivadent) was applied to the FRC post. Ivoclar Vivadent Multilink
Speed resin luting cement was mixed based on the manufacturer’s (Ivoclar Vivdent, New
York, NY, USA) instructions and applied to the FRC post and the prepared post area. Once
inserted evenly, they were light-cured for 40 s. The samples were randomly assigned to the
following groups for core cementation (Table 1).

Table 1. Composition of composite resin used in this study.

Group Composite Resin Composition Percentage of Filler

Group 1
Experimental

composite resin
with 5% of TiO2

BisGMA, TEGDMA,
aluminium silicate fillers, TiO2,

diketone photoinitiator,
DMAEMA, UV stabilizer.

Aluminium silicate—55 wt%
Amorphous silica—10 wt%
Titanium dioxide—5 wt%

Group 2 Core X Flow

EBPADMA urethane resin,
urethane dimethacrylate resin,

trimethylolpropane
trimethacrylate, 2,2′-

ethylendioxydiethyldimethacrylat,
dibenzoyl peroxide

70 wt%

Group 3 Multicore flow

Dimethacrylate, barium glass,
fillers, Ba-Al-fluorosilicate

glass, silicon dioxide, ytterbium
trifluoride, catalysts, stabilizer,

pigments

Base: 54.9 wt% Catalyst:
54.4 wt%

Group I: The experimental composite resin with 5% of TiO2 fillers. (N = 10)
Group II: Core X Flow (Dentsply Sirona) (N = 10)
Group III: Multicore flow (Ivoclar Vivadent) (N = 10)
Two coatings of Tetric N (Ivoclar Vivadent) bond were applied to the post and light-

cured for 20 s before the core build-up procedure.
The core was fabricated using a prefabricated core former template having dimensions

of 2 mm in length and 4 mm in diameter (Figure 1). Each surface was light-cured for 20 s
after the composite resin core material from each group was dispensed and condensed
into the prepared matrix. The hardened core was then removed from the template. All the
samples were submitted to thermocycling in deionized water baths for 15 s, at 5–55◦ for
5000 cycles.

Universal testing equipment (EZ Test, Shimadzu Co., Kyoto, Japan) with a crosshead
speed of 0.5 mm/min was used to test the samples for microtensile bond strength according
to the methods provided by Khamverdi et al. (2011). The prepared samples for microtensile
bond strength were around 0.5 to 1.0 mm thick (Figure 1) [2].

By dividing the specimen’s failure load (N) by its surface area, the microtensile bond
strength was determined in Mpa. The data were analysed using the one-way ANOVA
followed by Tukey HSD tests. The degree of confidence was set at 95 percent for all tests.
The fractured surfaces were magnified 20 times using a stereomicroscope (Nikon Eclipse
E600, Tokyo, Japan). The three types of failures observed were cohesive breakdowns (failure
within the post and core material), adhesive failures (failure in between the post and the
core material), and hybrid failures (failure between the post and the core material).

Data regarding the microtensile bond strength of three composite resin core materials
on FRC post were entered into Microsoft Excel and analysed using IBM SPSS Statistics for
Windows, Version 20 (IBM Corp., Armonk, NY, USA). Data were explored for normality
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using the Shapiro–Wilk test. Descriptive statistics and microtensile bond strength across
three groups were analysed using a one-way analysis of variance (ANOVA), followed by
multiple comparisons using Tukey’s honest significant difference test (α = 0.05). The level
of statistical significance was determined at p ≤ 0.05.
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Figure 1. Schematic representation of samples prepared for micro-tensile bond strength.

3. Results

The transmission electron microscope (TEM) analysis of the TiO2 NP showed a spheri-
cal smooth shaped uniform distribution of the nanoparticles. The nanoparticles were in the
range of 250–300 nm scale (Figure 2—TiO2 NP under TEM with a magnification of roughly
50 nanometres).
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Figure 2. TiO2 NP under TEM with a magnification of roughly 50 nanometres.

Table 2 shows the mean and standard deviations of microtensile bond strength for
the three groups. Group I showed a mean bond strength value of 35.6180 Mpa. Group
II showed a mean bond strength value of 24.4040 Mpa. Group III showed a mean bond
strength value of 19.4690 Mpa.
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Table 2. Microtensile bond strength in Mpa of three composite resin core materials among the
study groups.

Microtensile Bond
Strength in Mpa N Mean Std. Deviation

Group I 10 35.6180 1.14364

Group II 10 24.4040 1.00244

Group III 10 19.4690 0.61122

Table 3 shows the post hoc comparison analysis between the groups. The mean bond
strength difference between Group I and Group II was 11.2 Mpa and the mean bond
strength difference between Group I and Group III was 16.14 Mpa. The bond strength
difference between Group II and Group III was 4.9 Mpa.

Table 3. Post hoc analysis of microtensile bond strength of core material between three different
composite resins (Tukey HSD).

(I) Groups (J) Groups Mean
Difference (I–J) Std. Error p-Value

1
2 11.21400 * 0.42319 0.000

3 16.14900 * 0.42319 0.000

2
1 −11.21400 * 0.42319 0.000

3 4.93500 * 0.42319 0.000

3
1 −16.14900 * 0.42319 0.000

2 −4.93500 * 0.42319 0.000
* Mean difference is significant at the 0.05 level.

The broken surfaces were examined stereomicroscopically, and it was discovered that
in all the groups the majority of failures were due to adhesive failures seen between the
post and the core material (Figure 3).
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The usage of resin composites as core materials has a substantial impact on microtensile
bond strength (p ≤ 0.05), according to statistical analysis. The Group 1 experimental
composite with 5% TiO2 shows a higher bond strength to the FRC post than the other
materials compared.
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4. Discussion

The prognosis of endodontic treatment is contingent upon both the effectiveness of the
endodontic procedure and the post endodontic reconstruction with an ideal core material.
The core material must maintain functional loadings by minimizing stress concentrations
at the tooth/post interface. If the adhesion at these interfaces of the core material is weak,
then there is a higher incidence of debonding of post and core leading to a catastrophic
failure [1,11,12].

As a core material, the material should have a high strength to resist fracture and
good bond strength to the post as well as to the residual tooth structure for it to function.
A previous study on incorporating TiO2 NP in composite resin has shown improved
mechanical properties compared to traditional composite resin [10]. Hence, in this study,
the TiO2 NP was incorporated to evaluate the bondable property of the experimental
composite resin core material.

Silane was applied to the post before luting with the resin cement. The silane coupling
agent will improve the adherence of the resin cement with the post layer. Because of their
low viscosity, silane coupling agents aid in substrate wetting. If an adequate interaction
occurs between the interface materials, van der Waals forces kick in, resulting in a physical
adhesion that might aid chemical interactions [13].

Bond strength can be evaluated using a variety of mechanical measures. Since multiple
specimens can be collected from a single tooth, the microtensile bond strength (µ-TBS)
is more flexible, allowing for more creative set-ups and better control of substrate vari-
ables [14].

This study’s objective was to determine the bond strength of fibre-reinforced composite
(FRC) posts with 5% TiO2 NP as fillers in experimental dental composite resin and to
compare it with traditional composite resin core material. Two conventional core materials
were chosen as the comparative groups from a spectrum of composite resin core materials
currently available, which were Core X Flow from Dentsply Sirona and Multicore Flow
from Ivoclar Vivadent. The rationale for selecting the material for the comparative group is
to evaluate the effect of the type of filler and the filler percentage on the bond strength with
the FRC post.

Based on the results from previous studies, the percentage of TiO2 as fillers in the
experimental composite resin was selected as 5%. Studies have shown that increasing
the percentage of fillers above 5% results in the loss of bond strength with the tooth
structure [15].

Table 2 shows the result of mean and SD values of the microtensile bond strength test
in Mpa. Group I (experimental composite resin with 5% of TiO2) showed a higher mean
microtensile bond strength of 35.61 Mpa. Table 3 shows the difference between the microten-
sile bond strength of composite core material. The difference between Group I and Group II
was 11.21400 Mpa and the difference between Group I and Group III was 16.14900 Mpa.
The results of the study indicate that the 5%TiO2 fillers performed significantly better than
the Core X Flow, followed by the Multicore Flow.

Based on the analysis done by Xia et al. (2008) on the TiO2 NP, it has been shown that
the nano-TiO2 particles are encased with an organosilane to improve their adhesion to the
resin matrix and extend the bond strength of the composite core material [16].

Ziental et al. (2020) have shown that the photochemical ability of titanium dioxide
help in the polymerization reaction. Becker-Willinger et al. (2010) have also proven in their
research that the TiO2 nanoparticles can be used as photosensitive initiators to produce
free radical polymerization. Raorane et al. (2019) in their research and based on studies
done by Rastelli et al. (2012) have shown that 5% TiO2 NP lowers the polymerization
shrinkage [17–19].

The increased bond strength with 5% TiO2 NP can be due to the complete polymer-
ization of the resin matrix. The increased polymerization led to decreased polymerization
contraction and in turn improved the bond strength. This resultant increased bond strength
is due to the unique photochemical activity along with the silanization of TiO2 NP.
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The results of this study with regards to the comparative groups of the dual-cured
flowable composite resins follow a previous study by Asim Al-Ansari et al. (2015). In
their study, the evaluated dual-polymerized core foundations, when implemented with
chemically polymerized adhesives, had lower bond strengths. These data could imply a
reduced degree of adhesive polymerization due to a lack of peroxide/amine concentration—
the less chemical activator/initiator, the lower the degree of adhesive polymerization [20].

The evaluation of the comparative groups shows that Group II (Core X Flow) had
a mean microtensile bond strength of 24.40 Mpa, which is lower than the experimental
composite core material but higher than Group III (Multicore Flow). The difference between
Group II and Group III was 4.93500 Mpa, which shows that the Core X Flow performed
better than the Multicore Flow.

The Core X Flow composite resin showed a better bond strength value than the
Multicore Flow. The Core X Flow composite resin has 70 wt% filler content. Condon et al.
(2000) and Baroudi et al. (2007) in their studies have concluded that there is a relationship
between filler content and contraction stress and it has already been established that densely
filled composites exhibit lower volumetric shrinkage and exhibit less contraction stress.
Koçak MM et al. (2012) have also concluded in their study that the composites with a
higher filler content will have less shrinking. According to this hypothesis, the highest
bond strength for fibre posts was found in light-core composites with greater filler content.
The findings of this investigation were consistent with the findings of a previous study
by Srinu et al. (2020), who concluded in their research that the filler concentration and
density of filler particles were higher in specimens with Core X Flow as the core material,
at 1.95 g per centimetre cubed. The tightly packed fillers on the resulting surface aid in
better bonding with the tooth structure [21–23].

The Multicore Flow composite resin has the lowest bond strength values. The filler
content of Multicore Flow composite resin is 55 wt%, which is lower than the Core X Flow
composite resin.

Although the filler content of the Multicore Flow is lower, it can be used as a core
material. The findings of this investigation match those of a previous study by Sadek et al.
(2005); in their study it was shown that the flowable composites showed good flexibility at
the post surface due to their low viscosity, making them suitable options for core build-up
materials. Since the filler content is less, there are decreased bond strength values. This was
conformed with the findings of a study conducted by Bayne et al. (1998), who have shown
that the high resinous concentration of these materials might cause substantial contraction
during polymerization. The interfacial bond can be weakened by shrinkage-strain stress,
decreasing the strength of the bond to the post surface [1].

All the samples used in the study had an adhesive failure. The bond failure occurred
between the FRC post and the core composite material. This was in accordance with the
study done by Al-Ansari et al. (2015), who has concluded in their study that the chemically
or dual-polymerized adhesive layer did not offer enough reactive resin radicals for the
foundation resin to form a good bond, and hence the adhesive failure. Research done
by Koçak MM et al. (2012) has also shown adhesive failure could be attributable to the
weakened interfacial bond by shrinkage strain, and hence the decreased bond strength to
the post surface [20,22].

The current study investigated a packable experimental composite resin in comparison
with commercial variants of dual-cured flowable composite resin, used as the core in a
“post and core” set-up. However, the results of this study could have been more distinctive
if the experimental composite resin had been compared to packable composite resins rather
than the flowable composite ones. Because all of the samples failed to adhere, comparing
different adhesives with different etching processes may yield different results.

5. Conclusions

Within the limitations of the investigation, it can be inferred that the experimental
composite resin containing 5% TiO2 NP has a stronger bond to the FRC post than the other



Materials 2022, 15, 3312 9 of 10

materials studied, and the Multicore Flow composite resin has the weakest bond to the
FRC post.
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