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Abstract: Under irradiation, dispersion nuclear fuel meat consists of a three-phase composite of
fuel particles surrounded by an interaction layer dispersed within a metal matrix. Nonuniform
swelling pressures are exerted on the matrix, generated by irradiation swelling of the fuel particles.
As these are considerable, they can cause matrix failure, but they are difficult to calculate. In this
paper, taking into account thermal expansion, nonuniform fission pores and the interaction layer,
nonuniform irradiation swelling pressure has been formulated, based on the equivalent inclusion
method. By means of doubly equivalent transformations, a porous fuel particle, surrounded by
an interaction layer, which is under irradiation, can be simplified as a homogeneous particle with
the eigenstrain. With the aid of Green’s function, nonuniform irradiation swelling pressure can be
numerically analyzed. The simulation results of swelling pressures are in good agreement with
numerical calculations. Furthermore, several simplified examples have been given to investigate the
factors of influence and the impact mechanisms. Conclusions are drawn that nonuniform irradiation
swelling pressure can be analyzed numerically and adopted to explore matrix failure. It is identified
that the number and locations of fission pores inside a fuel particle are key factors for nonuniformity
of swelling pressures. The volatility of swelling pressures is aggravated by burnup, while the average
values of swelling pressures are intensely affected by temperature. This work provides a perspective
to investigate the strength and integrity of dispersion fuel meat under high burnup.

Keywords: failure; the equivalent inclusion method; dispersion fuel meat; porous fuel particle;
interaction layer; irradiation swelling

1. Introduction

By dispersing ceramic fuel particles into the metal matrix, metal-based ceramic disper-
sion fuel meat has advantages of low core temperature, inherent high safety, high radiation
resistance, deep burn-up, long service life, etc. [1–4] Under irradiation, the dispersion
nuclear fuel meat consists of fuel particles surrounded by an interaction layer and are
dispersed within the metal matrix, which is equivalent to the three-phase inclusion prob-
lem [5]. There are massive fission fragments and heat generated by the fission reaction of
nuclear fuel [6]. Under high burnup, uneven fission pores appear inside ceramic fuel parti-
cles, due to gaseous fission fragments [7]. At the same instant, there exists an interaction
layer surrounding the fuel particles, which is induced by solid fission fragments [8,9]. The
swelling of fuel particles is mainly caused by gaseous fission fragments, namely, the effect
of internal pressures of uneven fission pores [10]. Under thermal expansion of fuel particles,
there are intense mechanical interactions [5] among the three components of fuel meat, i.e.,
fuel particles, interaction layer and metal matrix. Simultaneously, the expanding fission
pores enhance the deformations of fuel particles. Therefore, subjected to temperature,
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burnup and fission pores, nonuniform swelling pressures are exerted on the matrix, depen-
dent on thermal expansion and fission gases of the ceramic fuel. The failure mechanism
of dispersion fuel meat is affected greatly by this nonuniform swelling of fuel particles.
However, it is difficult, but important, to calculate the nonuniform swelling pressure for
such a dispersed structure under a severe irradiation environment. Dispersion fuel meat
is the same as an inclusion problem for three-phase materials, which can be analyzed by
the equivalent inclusion method [11]. Accordingly, the need for formulation and analysis
of nonuniform swelling pressures exerted on the dispersion fuel matrix is considerable in
investigating matrix failure, evaluating strength and assessing the integrity of dispersion
fuel meat.

The equivalent inclusion method, which was proposed and developed by J. D. Es-
helby and T. Mura [12–14], has been extensively researched as an effective approach for
inhomogeneity problems, such as the physical fields induced by inhomogeneities [12,15],
the overall elastic moduli and coefficients of thermal expansion of composite materials [16],
inclusion problems with non-uniform axisymmetric eigenstrain distribution [17], physical
fields at crack tip enclosed by a homogeneous inclusion [18,19], size effect analysis in inho-
mogeneous materials [20], etc. It is recognized that the equivalent inclusion method has
advantages for analyzing composites under multi-field coupling conditions. By equivalent
transformation, an inhomogeneous inclusion can be replaced by a homogeneous inclusion,
subject to the eigenstrain. The equivalent eigenstrain can be formulated by the principle of
virtual work [21]. Then the physical fields for the circular homogeneous inclusion problems
can be characterized with the aid of eigenstrain and Green’s function. After transformation,
the equivalent homogeneous inclusion problems have explicit solutions, in terms of the
definite integral. Herewith, the stress and strain fields of inclusion problems within disper-
sion fuel meat are numerically solvable. However, existing research has not taken account
of irradiation conditions in applying the equivalent inclusion method. For dispersion fuel
elements, which possess complex material structures and mechanical-thermal-irradiated
coupling fields, the equivalent inclusion theory must be supplemented by introducing the
fission-gas strain field and the thermal strain field.

In view of the foregoing advantages, the equivalent inclusion method and Green’s
function can be effectively employed to analyze the nonuniformity of irradiation-induced
swelling effect associated with thermal expansion and fission gases of ceramic fuel. Through
nonuniform analysis of irradiation swelling, the strength, failure and integrity problems of
dispersion fuel meat can be investigated. In order to validate the accuracy of numerical
results, finite element analysis can be carried out for the representative volume element
model of fuel meat with single particle. Taking into account the temperature, burnup and
interaction layer, the irradiation effects can be reflected into the formulation of swelling
pressure of a fuel particle exerting pressure on the matrix. Furthermore, to improve
computability and convergence, the effects of porous fuel particles on their surrounding
matrix can be replaced by nonuniform swelling pressures as internal loading conditions in
simulation of full-sized dispersion fuel elements, which saves on experimental consumption
and raises efficiency in optimizing fuel elements.

In this paper, the nonuniform irradiation swelling pressure exerted on a matrix is
formulated under given irradiation conditions. In Section 2, the general formulations for
the equivalent inclusion method are reviewed. In Section 3, taking into account three-
phase composite and irradiation conditions, the nonuniform irradiation swelling pressure
Pf , associated with temperature and fission gases of ceramic fuel particles, is formulated
by doubly equivalent transformations of a fuel particle surrounded by an interaction
layer. Several simplified examples are calculated in Section 4 to demonstrate the analytical
process of the obtained nonuniform irradiation swelling pressure. By comparison with finite
element simulations, the accuracy of the presented formalism was validated. Subsequently,
several analytical results have been discussed about the influences of the numbers and
locations of fission pores, temperature and burnup. The representative volume element
model for a porous fuel particle is analyzed with our presented method. In Section 5, some
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conclusions are drawn. The presented formalism for the nonuniform swelling pressure
exerted on a matrix of dispersion fuel meat is expected to provide a feasible method to
evaluate the failure of dispersion fuel meat, due to the synthesis effect of temperature,
burnup, material properties, etc.

2. The Equivalent Inclusion Method

As illustrated in Figure 1, the inhomogeneous inclusion problem can be transformed
into a homogeneous inclusion problem with eigenstrain by equivalent transformation.
The eigenstrain is defined as the general name for stress-free strains, thermal expansion
strains, plastic strains, phase transformation strains, residual strains, inhomogeneous
strains, etc. [13]. Consider an infinite matrix, having fourth-order elastic tensor C, subjected
to a stress-free strain ε′ distribution in an inclusion which has the fourth-order elastic tensor
C∗. The inhomogeneous system is equivalent to another that the matrix is subjected to,
a second-order eigenstrain tensor ε′′ in a homogeneous inclusion with elastic tensor C.
Therefore, the derivation of physical fields in inclusions and matrix is the process by means
of which to determine eigenstrain.
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Figure 1. Equivalent transformation of (a) an inhomogeneous inclusion to (b) a homogeneous
inclusion subjected to eigenstrain ε′′ .

For inhomogeneous inclusion, the total stress tensor σI is the sum of applied stress σ0

and disturbance stress σ′ due to stress-free strain ε′. That is

σI = σ0+σ′ (1)

According to Hooke’s law, the Equation (1) can be rewritten as

σI = C∗ : (ε0+ε′) (2)

With respect to equivalent homogeneous inclusion with eigenstrain ε′′ , the total stress
σI can be expressed as

σI = C∗ : (ε0 + ε′ − ε′′ ) (3)

Hence, on the basis of the equivalent transformation as depicted in Figure 1, there
must be same stress states in an inclusion before and after the transformation, i.e.,

C∗ : (ε0+ε′) = C : (ε0 + ε′ − ε′′ ) (4)

where the disturbance strain ε′ can be defined as ε′ = S−1 : εr. S denotes the Eshelby’s
tensor, defined as a function corresponding with the Poisson rate and inclusion shape [22].
And εr is the restraint strain of the matrix on the inclusion. It is noted that the disturbance
strain can also be presented according to real conditions.
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3. Formalism of Irradiation Swelling Pressure by Equivalent Inclusion Method

Under irradiation, the dispersion fuel meat is equivalent to the three-phase inclusion
model with thermal strain, mechanical strain and acts of fission fragments. As shown in
Figure 2a,b, within the dispersion fuel meat, the single particle representative of the volume
element is composed of a porous fuel particle, interaction layer and metal matrix.
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fuel element; (b) Single particle representative volume element with three-phase components under
irradiation; (c) The transformed mechanical model in which swelling pressure is exerted on the
interface Γ.

There are internal pressures Pg in fission pores produced by gaseous fission fragments.
Subjected to solid fission fragments, there exists an interaction layer with thickness of dIL
between a fuel particle and matrix. Let Ω ⊂ R3 denote the inclusion domain Ω of a fuel
particle embedded in an infinite matrix in the three-dimensional Euclidean space R3. Γ is the
interface between the metal matrix and the interaction layer. And let an infinitely extended
matrix be subjected to an eigenstrain ε∗∗ distribution of a porous fuel particle surrounded
by the interaction layer, as depicted in Figure 2c. The factors, u, ε andσ denote second-order
tensors of displacement, strain and stress, respectively. Due to environmental pressure
Pm, there exists the applied strain field of matrix ε0. The physical fields of interaction
layer are uIL, εIL and σIL, respectively. The elastic tensors of matrix, interaction layer and
fuel are CM, CIL, and C f , respectively. After equivalent transformation, a porous fuel
particle could be transformed as a homogeneous inclusion embedded in the matrix with
the interaction layer and fission pores, as presented in Figure 2c. Under irradiation, there
exists nonuniform swelling pressure Pf exerting itself on the matrix, produced by uneven
expansion of the fuel particle. In this section, according to the equivalent inclusion method,
the composite of a porous fuel particle surrounded by an interaction layer was transformed
into a homogeneous spherical inclusion with the eigenstrain ε∗∗, by doubly equivalent
transformations, as shown in Figure 3. Then, the nonuniform irradiation swelling pressure
Pf can be derived by the condition of strain continuity on the interface Γ between matrix
and interaction layer.

Within a porous fuel particle, the quantities of fission pores ascend with increasing
burnup. The diffusion coefficient of fission gas in the fuel phase is very small and hardly
migrates from one fission pore to another through thermal activation diffusion [23]. Addi-
tionally, due to the inhomogeneous distribution of pores inside a fuel particle, the strain
field of interaction layer is affected by the inhomogeneity strain field εH, fission gas strain
field εG and thermal strain field εT. Based on the equivalent inclusion method, a porous
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fuel particle can be transformed into a homogeneous particle subjected to the eigenstrain
ε∗, as presented in Figure 3b. And there exists

ε∗ = εH + εT + εG + ε0 (5)
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second transformation.

Hence, through the first equivalent transformation, a porous fuel particle surrounded
by an interaction layer has been translated into am homogeneous particle subjected to
the eigenstrain ε∗ and surrounded by an interaction layer, as depicted in Figure 3b. The
influence of uneven fission pores is eliminated. Moreover, the composite in Figure 3b can
be transformed into a homogeneous particle with the second eigenstrain ε∗∗, as illustrated
in Figure 3c. According to the equivalent inclusion method of Equation (4), an equilibrium
condition exists, as follows

C f : (εIL + ε∗) = CIL : (εIL + ε∗ − ε∗∗) (6)

Substituting Equation (5) into (6) yields

C f : (εIL + εG + εH + εT + ε0) = CIL : (εIL + εG + εH + εT + ε0 − ε∗∗) (7)

so, the eigenstrain ε∗∗ is derived as

ε∗∗ = [(CIL −C f ) : (CIL)
−1

] : (εIL + εG + εH + εT + ε0). (8)

After the second equivalent transformation, inhomogeneity between the fuel particles
and interaction layer is eliminated.

It is known that the total displacement field of the interaction layer is equal to the
displacement field induced by eigenstrain ε∗∗ of the homogeneous inclusion [14], that is

u(x) =
∫

Ω
∇⊗G

(
x− x′

)
: (C : ε∗∗

(
x′
)
) dx′ (9)

where x′ and x denote the geometric positions of an influence point set with eigenstrain ε∗∗

and a research point set with induced strain ε in R3, respectively. It submits to the relations
of x′ ∈ Ω and x ∈ R3. ∇ is the gradient operator. And G(x) is Green’s function, which
indicates a mathematical function for solving non-homogeneous differential equations
with boundary or initial conditions [24]. It characterizes the interaction of source and field.
Based on the Green’s functions of specific problems, amounts of practical problems can be
easily represented and analyzed with integral equations [25–27].

According to the Voigt notation expression, the elastic tensor C can be presented as
Cijkl . For brevity, all tensors will follow the Voigt notation hereinafter.
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On the isotropic assumption of the interaction layer, the relevant Green’s function
is [28],

Gij(x, x′) =
1

4πµIL

δij

|x− x′| −
1

16πµIL(1− νIL)

∂2

∂xi∂xj

∣∣x− x′
∣∣in R3 (10)

where δij is the Kronecker delta. νIL and µIL are Poisson’s ratio and the shear modulus,
respectively. x(xi) and x′(xi) are functions of spatial coordinates xi. And it submits to
|x− x′|2 = (xi − x′i)(xi − x′i).

Combining Equations (8)–(10), the total strain field of interaction layer is expressed as

ε(x) =
∫

Ω
(C f −CIL) : (εIL + εG + εH + εT + ε0) : ζ(x, x′) dx′ (11)

where ζ(x, x′) denotes a four-tensor influence function. In Voigt notation expression,
there exists

ζijkl(x, x′) = −1
2

[
Gik,l j(x, x′) + Gjk,li(x, x′)

]
(12)

The matrix deforms due to the act of eigenstrain of the fuel particles. There is irradia-
tion swelling pressure Pf exerted on the matrix. On the interface Γ in Figure 2c, the stress
field is noncontinuous while the strain field is continuous, that is

ε(x, x ∈ Γ) = εM(x, x ∈ Γ) (13)

where εM(x, x ∈ Γ) is the strain field on interface Γ of the matrix. The total strain field of
the interaction layer is equal to the strain field of the metal matrix on the interface Γ. The
stress field on the interface Γ of the matrix can be solved by

σM(x, x ∈ Γ) = CMεM(x, x ∈ Γ) (14)

Ceramic materials generally possess elastic constitutive relations, even in irradiation
environments [29]. The interaction layer between UO2 and metal materials possesses com-
plex chemical compositions, which generally consist of oxides of metals and uranium [9].
Therefore, because the mechanical characterizations of the interaction layer are difficult
to test and have not been reported, it will be considered as embrittlement metal after
irradiation, for the sake of brevity. After equivalent transformations, the anisotropic elastic
constants of the fuel and interaction layer can be expressed as{

C f
klmn = λ f δklδmn + µ f (δkmδln + δknδlm)

CIL
klmn = λILδklδmn + µIL(δkmδln + δknδlm)

(15)

where λ f , µ f , λIL and µIL denote the Lamé constants of fuel and the interaction layer, respectively.
For the sake of simplification, the mutual negative of the fission pore’s internal pres-

sures are characterized by porosity f. Then, substituting Equations (11)–(13), the strain field
on the interface Γ of the matrix can be rewritten as

εM(x, x ∈ Γ) =
∫

Ω
(C f −CIL) : (εIL + f · εG + εH + εT + ε0) : ζ(x, x′) dx′ (16)

The total strain on the interface Γ is deduced by substituting Equations (15) and (16) as

εM(x, x ∈ Γ) =
∫

Ω

{
(λ f − λIL) · [δ : (εIL + fεG + εH + εT + ε0)]

+2(µ f − µIL) · (εIL + f · εG + εH + εT + ε0)
}

: ζ(x , x′
)

dx′
(17)

Hence, the relation of Equation (15) and the stress field σ on the interface Γ of the
matrix can be expressed as
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σij(x, x ∈ Γ) =
[
λMδklδij + µM(δkiδl j + δkjδil)

]∫
Ω

{
(λ f − λIL)δij(ε

IL
mm + f εG

mm + εH
mm + εT

mm + ε0
mm)

+2(µ f − µIL)(εIL
ij + f εG

ij + εH
ij + εT

ij + ε0
ij)
}

ζijkl(x, x′) dx′
(18)

It is noted that the stress of the interior wall equals the pressure exerted on the interior
wall for a hollow sphere. The swelling pressure Pf of a fuel particle to the matrix should
be numerically equal to the radial stress distributed on the interface of the matrix. The
irradiation pressure can be expressed as

Pf = σrr(x, x ∈ Γ) (19)

It is observed from Equation (18) that the nonuniformity of swelling pressure comes
from the influence function which characterizes the induced relation of eigenstrain on
arbitrary position, and anisotropic strains of fuel particles, such as thermal strain, fission
gas strain, inhomogeneous strain, etc. Under irradiation, nonuniform swelling pressure
can be analyzed as long as the influence function and strains have been determined.

By equivalent transformations of the porous fuel particle model surrounded by an
interaction layer, the physical fields of the metal matrix and the swelling pressure exerted
on the matrix by fuel particles can be formulated taking into account thermal expansion, the
act of gaseous fission fragments, i.e., fission pores, and the act of solid fission fragments, i.e.,
interaction layer and the mechanical response of three-phase composites. The presented
formalism will be analyzed numerically in the next section. Moreover, replacing the fuel
particles with nonuniform swelling pressures provides a feasible and simplified way for
simulating dispersion fuel elements with porous fuel particles.

4. Numerical Examples
4.1. Analytical Solution

To analyze the irradiation swelling pressure, the variables and parameters in Equation (18)
must be determined. Considering the isotropic linear thermal strain and applied strain,
there exist, εIL = εIL · δ, ε0 = ε0 · δ and εT = αT · δ, where α and T denote thermal
coefficient of fuel and temperature, respectively. It is noted that the applied strain of the
interaction layer equals he thermal strain, that is εIL = αILT. αIL denotes the thermal
coefficient of the interaction layer. The inhomogeneity strain field has been given [22] for
isotropic materials. Let the radius of circular fission pores be expressed as Ra the number
of fission pores is N with position x′. Fission gas strain εG equals the superposition of each
fission pore under internal pressure Pg as depicted in Figure 2b, which is presented as [2]

Pg =
ngRT

Vg

(
1 +

nga
Vg − ngb

)
(20)

where ng is the total concentration of fission gases. The total volume of fission gases, gas
universal constant, temperature, parameters of real gas state equation, density of fuel
particles, production of fission gas, burnup, and mole mass of fuel phase, respectively, is
denoted by ng = 4πR3

f D f βBU/(3M f ). Vg, R, T, a, b, D f , β, BU, M f , Let the applied strain
and the strain of the interaction layer be isotropic, and Equation (17) can be simplified as

εM(x ∈ Γ) = δ : εIL + αT · δ+ δ : ε0 +
N

∑
n=0

∫
Ω

{
λ∗( f · εG + εH) + 2µ∗( f · εG + εH)

}
: ζ(x , x′

)
dx′ (21)

where N is the number of fission pores. After expansion, Equation (21) can be rewritten as

εM
ij (x ∈ Γ) = δijε

IL + δijαT + δijε
0 +

x

Ω

[
Dζij11(x, x′) + Eζij12(x, x′) + Fζij21(x, x′) + Hζij22(x, x′)

]
dx′ (22)

where D, E, F, H are parameters which are expressed as
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D = λ∗(εG
11 + εG

22 + εH
11 + εH

22) + 2µ∗(εG
11 + εH

11)
E = λ∗(εG

11 + εG
22 + εH

11 + εH
22) + 2µ∗(εG

12 + εH
12)

F = λ∗(εG
11 + εG

22 + εH
11 + εH

22) + 2µ∗(εG
21 + εH

21)
H = λ∗(εG

11 + εG
22 + εH

11 + εH
22) + 2µ∗(εG

22 + εH
22)

According to Equations (10) and (12), the influence function can be expanded as

ζij11(x, x′) = − 1
2 (Gi1,1j + Gj1,1i)

= − 1
2


∂2

∂x1∂xj

[
1

4πµIL
δi1
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xi∂x1
|x− x′|

]
+ ∂2

∂x1∂xi

[
1

4πµIL
δj1
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xj∂x1
|x− x′|

]  (23)

ζij12(x, x′) = − 1
2 (Gi1,2j + Gj1,2i)

= − 1
2


∂2

∂x2∂xj

[
1

4πµIL
δi1
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xi∂x1
|x− x′|

]
+ ∂2

∂x2∂xi

[
1

4πµIL
δj1
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xj∂x1
|x− x′|

]  (24)

ζij21(x, x′) = − 1
2 (Gi2,1j + Gj2,1i)

= − 1
2


∂2

∂x1∂xj

[
1

4πµIL
δi2
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xi∂x2
|x− x′|

]
+ ∂2

∂x1∂xi

[
1

4πµIL
δj2
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xj∂x2
|x− x′|

]  (25)

ζij22(x, x′) = − 1
2 (Gi2,2j + Gj2,2i)

= − 1
2


∂2

∂x2∂xj

[
1

4πµIL
δi2
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xi∂x2
|x− x′|

]
+ ∂2

∂x2∂xi

[
1

4πµIL
δj2
|x−x′ | −

1
16πµIL(1−υIL)

∂2

∂xj∂x2
|x− x′|

]  (26)

Let the parameters be given for convenience as I = 1
4πµIL , K = I · 1

4(1−υIL)
and

X = |x− x′|2, the strain on interaction Γ of matrix can be expressed as,

εM
11(x, x ∈ Γ) = εIL + ε0 + α f T −

∫ θ2

θ1

∫ r2

r1

 D · ∂2

∂x2
1
(I · 1

X − K · ∂2

∂x2
1

X) + E · ∂2

∂x2∂x1
(I · 1

X − K · ∂2

∂x2
1

X)

+ F · ∂2

∂x2
1
(−K · ∂2

∂x1∂x2
X) + H · ∂2

∂x2∂x1
(−K · ∂2

∂x1∂x2
X)

dx′1dx′2 (27)

εM
22(x, x ∈ Γ) = εIL + ε0 + α f T−

∫ θ2

θ1

∫ r2

r1

 D · ∂2

∂x1∂x2
(K · ∂2

∂x2∂x1
X) + E · ∂2

∂x2
2
(K · ∂2

∂x2∂x1
X)

+ F · ∂2

∂x2∂x1
(−I · 1

X + K · ∂2

∂x2
2

X) + H · ∂2

∂x2
2
(−I · 1

X + K · ∂2

∂x2
2

X)

dx′1dx′2 (28)

εM
12(x, x ∈ Γ) = εM

21(x, x ∈ Γ)

= − 1
2

∫ θ2
θ1

∫ r2
r1



∂2

∂x1∂x2

[
−(D + H) · I · 1

X + K
(

D ∂2

∂x2
1

X + H ∂2

∂x2
2

X + (F + E) ∂2

∂x1∂x2
X
)]

+ ∂2

∂x2
2

[
−E · I · 1

X + K(E ∂2

∂x2
1

X + H ∂2

∂x1∂x2
X)

]
+ ∂2

∂x2
1

[
−F · I · 1

X + K(D · ∂2

∂x2∂x1
X + F ∂2

∂x2
2

X)

]


dx′1dx′2

(29)

The swelling pressures Pf of fuel particles to matrix should be numerically equal to
the radial stresses distributed on the interface of the matrix. As a consequence, nonuniform
irradiation swelling pressure Pf can be calculated by substituting Equation (26) into (18).
Under irradiation, the swelling pressure exerted on the matrix in fuel meat is a function
of temperature T, burnup BU, geometric coordinates xi, fuel particle radius R f , thickness
of interaction layer dIL, the material constants of fuel µ f , λ f , interaction layer µIL, λIL and
matrix µM, λM,

Pf = Pf (T, BU, xi, R f , dIL, µ f , λ f , µIL, λIL, µM, λM) (30)
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With the assumption of isotropic linear thermal strain, the nonuniform swelling
pressures exerted on the matrix have been induced by inhomogeneous distribution of fission
pores. Once the location of every pore is determined, swelling pressure can be analyzed.

4.2. Numerical Results and Discussions

Three examples are investigated analytically and simulated to investigate the factors
of influence and to validate the accuracy of the proposed formalism. The three simplified
models have one pore, two symmetric pores and four symmetric pores, respectively. Finite
element analysis was carried out for the three models by using the program ABAQUS/CAE.
Symmetric boundary conditions were applied on the boundary of the matrix in finite sim-
ulations. Meanwhile, as depicted in Figure 2, the boundary of the matrix was subjected
to an environmental pressure of 15 MPa. Accounting for the conditions of 300 ◦C and
0.2 FIMA, the internal pressures of fission pores were obtained from Equation (20) [2].
The material properties of stainless steel [30] and UO2 ceramics [31] at 300 ◦C were ap-
plied for the matrix and fuel particles, respectively. Compared with thermal expansion,
the observation and analysis implied small creep strains in the hypothetical steady-state
irradiation creep regime of ceramics [32]. The material properties of stainless steel were
tested after irradiation so that the creep effect was included in material plasticity. For
calculation and simulation, the thickness of the interaction layer was set as 9.1 µm [33,34].
The distributions of irradiation swelling pressures exerted on the matrix interface Γ could
be calculated according to the presented formalism and simulated by the finite element
method. Comparisons of analytical and simulated irradiation swelling pressures exerted
on the matrix interface Γ, i.e., along the path ABCDA, are depicted in Figure 4. It can
be observed that there were nonuniform swelling pressures exerted on the matrix. The
analytical swelling pressures matched well with the simulated values. Accordingly, the
formalism presented was validated as being accurate and could be adopted to analyze
more problems under different conditions. The swelling pressures of fuel particles to the
matrix possessed nonuniformity under irradiation.

As shown in Figure 4a, the irradiation swelling pressure Pf is uniformly exerted on
the matrix when there is a central fission pore. As for when there were two symmetric
fission pores, the nonuniform distribution of the swelling pressure is presented in Figure 4b.
There were two peak values that emerged at the location closed to two pores. Analogously,
Figure 4c demonstrates that four peak values emerged at the location closed to four pores.

Consequently, there were substantial effects of the numbers and locations of fission
pores on nonuniform irradiation swelling pressure. With increasing pore numbers, the
nonuniformity rises. The swelling pressure appears to surge at the location where the
fission pores are closed to the matrix. The peak value is associated with distances be-
tween fission pores and the interface. With same distances, the number of peak values
increases with numbers of fission pores, while the magnitudes of all peak values remain
constant. The nonuniform swelling pressures can be analyzed if the locations of fission
pores are determined.

Figure 5 depicts the effects of burnup and temperature on nonuniform swelling pres-
sures when there are two symmetric pores. With increase in burnup, the average swelling
pressure remains invariant while peak values ascend. With respect to temperature, the
average swelling pressures increased with increasing irradiation temperature. Nonetheless,
under the same burnup, the peak values hardly changed with variation in temperature.

As commonly known, the interior pressures inside fission pores are mainly influenced
by burnup. Hence, the peak values alter greatly with rising burnup. On the other hand,
due to the assumption of isotropic linear thermal expansion, average swelling pressure
was affected by temperature. Notwithstanding, it was noted that the maximum of irradi-
ation swelling pressure under high temperature is larger than under high burnup. The
nonuniformity of swelling pressures appears to be aggravated under high burnup, rather
than high temperature. Accordingly, high temperature tends to be more deleterious for the
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integrity of the matrix under irradiation. For safety of fuel elements, it is more dangerous
to have high temperature than high burnup.
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It is noted that failure in dispersion fuel meat originates from the interaction layer and
propagates to the matrix. It is the initial damages and failures that distribute at the location
with maximum stress. As a consequence, the nonuniformity analysis of swelling pressure
exerted on the matrix is considerable. Through calculating distributions of maximum
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principal stresses by means of the presented formalism, it is convenient to investigate the
failure of dispersion fuel meat further.

4.3. The Numerical Analysis of a Porous Fuel Particle

The fission pores in fuel particles are generated unevenly under irradiation. The
swelling pressures Pf of the porous fuel particle to matrix can be calculated according to
the upper analytical process. Meanwhile, the physical fields in a metal matrix can also be
constructed and analyzed numerically. Similarly, with the presented formalism, the strain
field of the metal matrix is directly expressed as

εM(x) =
∫

Ω
(CM −CIL) : ε∗∗ : ζ(x , x′

)
dx′ (31)

Accounting for the dangerous conditions of 500 ◦C and 0.3 FIMA, the distributions
of pores in a porous fuel particle submit to Weibull distribution, as shown in Figure 6a.
The fission porosity is 15 percent. The internal pressure of the fission pore is obtained
from Equation (20) [2] in terms of the material properties of stainless steel [30] and UO2
ceramics [31] at 500 ◦C. The swelling pressures Pf of the fuel particle to the matrix should be
numerically equal to the radial stress on the matrix interface Γ. The radial stress state of the
matrix can be calculated according to Equation (31). Removing the fuel particle, the contour
diagram of radial stress in the matrix is demonstrated as Figure 6b. It is observed that there
is a nonuniform stress state on the matrix interface Γ. Consequently, there is great effect on
the stress state in dispersion fuel meat due to porous fuel particles under irradiation.
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For the porous structure of Figure 6a, the swelling pressure exerted on the matrix
can be calculated according to Equation (18), as depicted in Figure 7. Therefore, on the
basis of the proposed formalism, the pressures exerted on the matrix by a fuel particle
swelling can be numerically calculated for dispersion fuel meat under different irradiation
conditions. Furthermore, the irradiation-induced swelling pressures can be adopted to
investigate strength and failure of the matrix. It is noted that the simulated investigation of
dispersion fuel elements with porous fuel particles is difficult to converge and compute.
When replacing the act of porous fuel particles with nonuniform swelling pressure exerted
on the matrix, the macro fuel element model possesses better convergence and computation.

Explicit analysis of nonuniform irradiation-induced pressure exerted on the dispersion
fuel matrix by a fuel particle swelling is expected to analyze the failure problems of disper-
sion fuel meat and provide a calculable way to investigate fuel elements. The formalism
presented in this study, which is applied for ceramic fuel, can be further developed for other
inelastic fuels. Accordingly, the presented analytical method about irradiation-induced
swelling pressure exerted on dispersion fuel matrix lays the foundation for analyzing the
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failure of dispersion fuel meat, reducing computational effort and possessing better conver-
gence in macroscopic simulation of a dispersion fuel element with porous fuel particles.
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5. Conclusions

In this study exploring the effects that lead to the failure of dispersion fuel meat,
nonuniform irradiation-induced pressure exerted on the metal matrix by ceramic fuel
swelling was formulated on the basis of the equivalent inclusion method and calculated
numerically with the aid of Green’s function. Several examples have been given to demon-
strate the application of the presented formalism and to investigate the influencing factors
of nonuniformity. The main conclusions are as follows:

The nonuniform irradiation swelling pressure Pf exerted on the matrix can be analyti-
cally formulated and calculated, based on the equivalent inclusion method. By comparing
the analytical results and the simulated results, the proposed formalism is validated to be
relatively precise.

The numbers and distributions of fission pores inside a fuel particle are the primary
factors affecting the uniformity of swelling pressures. It is identified that swelling pressures
surge at the location where the fission pores are closed to the matrix. The stress states in
the metal matrix can be analyzed once the distributions of fission pores are determined
under irradiation.

The swelling pressure increases with rising temperature and burnup. The nonuni-
formity of swelling pressure appears to be aggravated under high burnup more than
high temperature. The maximum increases more under high temperature than under
high burnup.

Based on the proposed formalism, the swelling pressures exerted on the matrix inter-
faces and the stress states in the metal matrix can be numerically analyzed for porous fuel
particles under different irradiation conditions. The nonuniformity analysis of swelling
pressures can be employed to investigate the failure, strength and integrity of dispersion
fuel meat.
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Nomenclature

Ω The inclusion domain of a fuel particle
R3 The three-dimensional Euclidean space
Γ The interface between metal matrix and interaction layer
C The fourth-order elastic tensor
u The second-order displacement tensor
ε The second-order strain tensor
σ The second-order stress tensor
f , IL, M Superscripts which denote variables of fuel particle and interaction layer, respectively
H, G, T Superscripts which denote variables of inhomogeneous, fission gaseous fragments

and temperature, respectively
ε∗ The eigenstrain of the first equivalent transformation
ε∗∗ The eigenstrain of the second equivalent transformation
ε0 The applied strain produced by environmental pressure
Pf The irradiation swelling pressure exerting on matrix
Pm The environmental pressure
Pg The internal pressure in fission pores
G(x− x′ ) The Green’s function
x The point set out of a fuel particle
x′ The point set inside a fuel particle
σrr The radial stress
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