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Abstract: Electron beam additive wire-feed manufacturing of Cu-3wt.%S-0.8wt.%Mn bronze thin
wall on a stainless steel substrate has been carried out at heat input levels of 0.19, 0.25, and 0.31 kJ/mm.
The microstructures of as-deposited metal ranged from low aspect ratio columnar with equiaxed grain
layers to zig-zagged and high aspect ratio columnar, as depended on the heat input. Post-deposition
annealing at 900 ◦C for 6 h resulted in recrystallization of the high aspect ratio columnar grains with
further grain growth by boundary migration. Pre-deformation by 10% thickness reduction and then
annealing at 900 ◦C for 6 h also allowed obtaining recrystallized grain structures with less fraction
of twin boundaries but higher fraction of high-angle ones, as compared to those of only annealed
sample. Pre-deformation and ensuing annealing allowed simultaneous increasing of the ultimate
tensile strength and strain-to-fracture.

Keywords: additive manufacturing; heat input; silicon bronze; microstructure; zigzagged columnar
grains; tensile strength; hardness

1. Introduction

Copper alloys are widely used in many industrial processes as heat and electro-
conductive as well as tribotechnical materials. Among them, silicon copper alloys are
applied for fabricating components that should combine very high levels of mechani-
cal characteristics with good processability and high corrosion and wear resistance, for
example, fittings, journal bearings, vessels, etc.

Traditional production of copper alloy components is undertaken by casting with the
ensuing mechanical processing [1,2]. As-cast bronze microstructures are usually repre-
sented by large columnar grains that are detrimental for mechanical characteristics, and
therefore various thermomechanical post-treatments such as forging and rolling should be
used to improve them. However, it is very difficult to apply these treatments for processing
either large-sized or shaped additively manufactured components [3–7].

Another approach is feasible that allows modifying only subsurface layer structures by
irradiation the targets with concentrated energy sources, such as electron beam, laser, and
arc discharge. For instance, arc surfacing was used to improve hardness and wear resistance
of silicon copper alloy by grain refining [8]. Laser surfacing on C63200 bronze resulted in
reducing ductility and increasing the yield strength, while keeping the ultimate strength
constant [9]. These surface treatments cannot indeed provide grain structure modification
in the bulk of the component, which is not always acceptable from the viewpoint of loading.

Nowadays, there is a fast development of additive manufacturing that allows obtain-
ing near net shape components, which require only minimal post-processing. Another
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advantage is a potential for fabricating shaped components with internal cavities that are
very hard to obtain by subtractive metal processing.

Research literature sources [10–13] show that microstructures of the additively man-
ufactured components may be similar with those obtained by casting, i.e., there may be
coarse dendrites or columnar grains that impair mechanical and even functional character-
istics of the manufactured components. For example, samples obtained using electron beam
additive manufacturing (EBAM) from copper wire [14] and wire-arc additive manufactur-
ing (WAAM) from a silicon bronze wire [15] were characterized by coarse columnar grain
structures and corresponding anisotropy of the mechanical characteristics. The ultimate
tensile strength varied from 145 to 394 MPa depending upon the sampling zone. The grain
size was changing from ~9 µm to ~1 mm.

Solutions to improving the columnar grain structures lie either with post-processing
or with adjusting the additive process parameters in order to control solidification of the
melted pool, and thus improve the grain structure uniformity.

Heat input is the most important parameter to control during additive manufactur-
ing (AM) on various metals and alloys. Such an approach was applied by a number of
researchers during additive manufacturing on alloys inclined to forming large columnar
grains, namely nickel superalloys [16], Ti-6Al-4V alloy [17], copper [18], Cu-Al-Si-Mn
bronze [19], NiTi shape memory alloy [20,21], etc. Nevertheless, despite improving the
grain structure, the use of only heat input control did not necessarily mean improving
the mechanical characteristics. It was shown [22] that despite some uniform grain refin-
ing effect being achieved due to the heat input control, the mechanical strength of the
as-deposited thin-walled Cu-7wt.%Al bronze could be higher.

More encouraging results were obtained on post-processing the as-deposited thin-
walled Cu-7wt.%Al bronze with the use of heat treatment and deformation [23]. The
recrystallized grains were almost equiaxed with numerous twin boundaries, which served
for simultaneous improvement of both ultimate strength and plasticity. Similar results were
obtained elsewhere [24].

It was shown earlier [25–27] that additive manufacturing on silicon aluminum bronze
(SAB) also resulted in forming non-homogeneous grain structures, as viewed from the
bottom to the top of the wall. Therefore, each of the above-described approaches can
be used for improving the characteristics of the additively manufactured samples. The
cold-metal transfer fabricated SAB was subjected to cryogenic treatment that not only
allowed forming fine-grained structures with high amount of high-angle grain boundaries,
but also improved the ultimate tensile strength by 20%, as compared to that of the as-
deposited SAB [26]. Laser metal deposition (LMD) additive manufacturing was used to
fabricate a Cu-9Al-5Fe-5Ni bronze, where structures and mechanical characteristics of the
additive samples were controlled by changing the heat input level [28]. WAAM fabricated
nickel aluminum bronze (NAB) was subjected to annealing at 350 ◦C for 2 h, 550 ◦C for
4 h and 675 ◦C for 6 h [29]. The results showed improvements of both structural and
mechanical characteristics. WAAM was used also to obtain samples of Cu-9Al-4Ni-4Fe-
1Mn bronze, the mechanical and corrosion characteristics of which were determined by
κ-phase precipitates [30].

The objective of this work was to study the effect of heat input, annealing, and pre-
deformation/annealing on grain structures and mechanical characteristics of an EBAM
grown thin-walled Cu-3wt.%Si-Mn bronze.

2. Materials and Methods

Thin-walled samples were manufactured using EBAM from Cu-3wt.%Si-0.8wt.%Mn
bronze ∅1.2 mm wire on a stainless steel substrate mounted on a water-cooled table inside
the vacuum chamber of an electron beam wire-feed additive machine (Figure 1). Residual
pressure in a chamber was ~8 × 10−4 Pa.
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Figure 1. Electron beam wire-feed additive machine. 1—as-deposited wall, 2—wire guide, 3—wa-
ter-cooled table, 4—vacuum chamber, 5—wire reel, 6—wire feeder, 7—control panel. 

Different levels of heat input (Table 1) were used in EBAM. These heat input values 
were derived from previous experimenting and our earlier works [22,23]. The pre-defor-
mation rate was evaluated experimentally for aluminum Cu-Al7 and silicon bronzes by 
applying successively thickness reduction values as follows: 3%, 6%, 9%, 12%, and 15%. 
It was established that ~9% deformation was enough to observe noticeable structural 
changes only in aluminum bronze but not in the silicon bronze. Additional experiments 
were carried out with 10–15% reduction, and it turned out that 10% was optimal while 
deformations at 12 and 15% were odd ones. 

Table 1. EBAM process parameters. 

Regime Beam Current, 
mA 

Layer Deposition Rate, 
mm/min 

Accelerating 
Voltage, kV 

Heat Input, 
kJ/mm 

1 25 240 30 0.19 
2 33 240 30 0.25 
3 41 240 30 0.31 

Using 0.19–0.31 higher heat input values resulted in lack of fusion between the suc-
cessively deposited layers and severe geometry distortions, respectively (Figure 2a,c), 
which made it impossible to cut samples for mechanical testing. The best quality wall was 
obtained when using 0.21 kJ/mm heat input (Figure 2b). 

 
Figure 2. Optical images of thin walled samples obtained at heat input levels 0.19 kJ/mm (a), 0.21 
kJ/mm (b), and 0.31 kJ/mm (c) (Table 1). 

Samples for microstructure examination and phase detection (Figure 3, pos. 8, 9), me-
chanical characteristics such as microhardness (Figure 3, pos. 9), and tensile strength (Fig-
ure 3, pos. 3–6) were cut off the as-built walls. 

  

Figure 1. Electron beam wire-feed additive machine. 1—as-deposited wall, 2—wire guide, 3—water-
cooled table, 4—vacuum chamber, 5—wire reel, 6—wire feeder, 7—control panel.

Different levels of heat input (Table 1) were used in EBAM. These heat input val-
ues were derived from previous experimenting and our earlier works [22,23]. The pre-
deformation rate was evaluated experimentally for aluminum Cu-Al7 and silicon bronzes
by applying successively thickness reduction values as follows: 3%, 6%, 9%, 12%, and
15%. It was established that ~9% deformation was enough to observe noticeable structural
changes only in aluminum bronze but not in the silicon bronze. Additional experiments
were carried out with 10–15% reduction, and it turned out that 10% was optimal while
deformations at 12 and 15% were odd ones.

Table 1. EBAM process parameters.

Regime Beam Current, mA Layer Deposition Rate, mm/min Accelerating Voltage, kV Heat Input, kJ/mm

1 25 240 30 0.19
2 33 240 30 0.25
3 41 240 30 0.31

Using 0.19–0.31 higher heat input values resulted in lack of fusion between the suc-
cessively deposited layers and severe geometry distortions, respectively (Figure 2a,c),
which made it impossible to cut samples for mechanical testing. The best quality wall was
obtained when using 0.21 kJ/mm heat input (Figure 2b).
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Figure 2. Optical images of thin walled samples obtained at heat input levels 0.19 kJ/mm (a),
0.21 kJ/mm (b), and 0.31 kJ/mm (c) (Table 1).

Samples for microstructure examination and phase detection (Figure 3, pos. 8, 9),
mechanical characteristics such as microhardness (Figure 3, pos. 9), and tensile strength
(Figure 3, pos. 3–6) were cut off the as-built walls.

Post-treatment approaches such as high-temperature annealing of both as-deposited
samples and pre-deformed samples were applied to refine their columnar grains and
improve the mechanical characteristics. Samples intended for post-treatment were cut
of the wall grown with heat input 0.31 kJ/mm, annealed at 900 ◦C for 6 h in a muffle
furnace SNOL 7.2/1300 (SNOL, Utena, Lithuania), and then quenched in water (Figure 3,
pos. 7). Another number of samples were pre-deformed by compression with thickness
reduction 10% and then annealed according to the above-described procedure (Figure 4).
It was mentioned above that parameters of such a treatment were determined from our
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earlier experience [22,23] using data of the Cu-Si diagram [31,32] and thermodynamic
analysis [33,34].

Materials 2022, 15, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 3. Sample cut-off scheme. 1—wall; 2—substrate; 3—sample with tensile axis orientation 
along the wall height; 4–6—samples with tensile axis orientation perpendicular to the wall height 
(along the layer deposition direction); 7—sample for post-treatment; 8—sample for XRD; 9—metal-
lographic view sample. 

Post-treatment approaches such as high-temperature annealing of both as-deposited 
samples and pre-deformed samples were applied to refine their columnar grains and im-
prove the mechanical characteristics. Samples intended for post-treatment were cut of the 
wall grown with heat input 0.31 kJ/mm, annealed at 900 °C for 6 h in a muffle furnace 
SNOL 7.2/1300 (SNOL, Utena, Lithuania), and then quenched in water (Figure 3, pos. 7). 
Another number of samples were pre-deformed by compression with thickness reduction 
10% and then annealed according to the above-described procedure (Figure 4). It was 
mentioned above that parameters of such a treatment were determined from our earlier 
experience [22,23] using data of the Cu-Si diagram [31,32] and thermodynamic analysis 
[33,34]. 

 
Figure 4. Scheme of pre-deformation and annealing of sample obtained at 0.31 kJ/mm. 1—sample 
before thickness reduction, 2—annealed after pre-deformation sample, 3—tensile test sample, 4—
columnar grains. P—pressure, HT—heat treatment. 

Tensile tests were carried out using a tensile machine Testsystems 110M-10 (Test-
systems, Ivanovo, Russia). The fracture surfaces were examined using a scanning electron 
microscope (SEM) Microtrac SemTrac mini (Microtrac Inc., Montgomeryville, PA, USA). 

Metallographic polished views were prepared by grinding the cut-off samples on a 
grit 400–4000 emery paper and then polishing them on a 1 μm diamond paste. The pol-
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HCL + 60 mL of distilled water. After the etching the samples were washed in distilled 
water and dried, the microstructural characterization was performed with the use of a 
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Figure 3. Sample cut-off scheme. 1—wall; 2—substrate; 3—sample with tensile axis orientation along
the wall height; 4–6—samples with tensile axis orientation perpendicular to the wall height (along
the layer deposition direction); 7—sample for post-treatment; 8—sample for XRD; 9—metallographic
view sample.
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Figure 4. Scheme of pre-deformation and annealing of sample obtained at 0.31 kJ/mm. 1—sample
before thickness reduction, 2—annealed after pre-deformation sample, 3—tensile test sample, 4—
columnar grains. P—pressure, HT—heat treatment.

Tensile tests were carried out using a tensile machine Testsystems 110M-10 (Testsys-
tems, Ivanovo, Russia). The fracture surfaces were examined using a scanning electron
microscope (SEM) Microtrac SemTrac mini (Microtrac Inc., Montgomeryville, PA, USA).

Metallographic polished views were prepared by grinding the cut-off samples on a grit
400–4000 emery paper and then polishing them on a 1 µm diamond paste. The polished
surfaces were etched in a solution of composition as follows: 6 g FeCl3·H2O + 30 mL HCL +
60 mL of distilled water. After the etching the samples were washed in distilled water and
dried, the microstructural characterization was performed with the use of a laser confocal
microscope Olympus LEXT 4100 (Olympus Corporation, Tokyo, Japan).

Shimadzu XRD-7000S X-ray diffractometer (Shimadzu, Kyoto, Japan) was used to
detect phases formed in the samples. High-resolution field emission scanning electron mi-
croscope (HR FESEM) Apreo 2 S (Thermo Fisher Scientific, Waltham, MA, USA), equipped
with Velocity Super (EDAX, Mahwah, NJ, USA) with EBSD detector was used for obtaining
grain orientation maps. The EBSD mode parameters were: 20 kV accelerating voltage and
25 nA probe current.

Specimens for EBSD were prepared by mechanical grinding on sandpaper from #400
to #2000 grit, diamond and colloidal silica polishing. Final step was ion polishing at 10 kV
for 15 min using SemPrep 2 ion mill (Technoorg Linda, Budapest, Hungary).

3. Results
3.1. Metallography

Optical metallography allowed evaluation of the heat input effect on the macrostruc-
ture of both as-deposited and post-treated silicon bronze samples. The as-deposited sam-
ples demonstrated grain structure differences depending upon the heat input values used
during the additive manufacturing (Figures 5–7). A profile view of the wall deposited at
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0.19 kJ/mm in Figure 5a allows the observation of its non-uniform thickness as well as cold
laps. A layer-by-layer nonhomogeneous macrostructure with alternating fine equiaxed
and low aspect ratio columnar grains can be clearly seen in Figure 5b. The fine-grained
interlayers are more clearly expressed in the bottom part of the wall where heat removal to
the cold substrate was more effective as compared to that in the top part of the wall.
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Figure 7. Profile (a) and front (b) cross section optical views of Cu-3wt.%Si-Mn bronze wall obtained
at heat input of 0.31 kJ/mm with enlarged insets representing the bottom, medium, and top parts of
the wall.

Additive deposition at medium heat input 0.25 kJ/mm resulted in forming a wall
with smooth sides and some defects in the bottom part close to the substrate (Figure 6a).
Columnar zig-zagged grain structures (Figure 6b) were formed in this sample. The layer-
by-layer macrostructures are less expressed as compared to those formed at 0.19 kJ/mm.
Only a singular small grain layer can be seen in the bottom part of the wall, where the heat
removal rate was high enough.

Applying the maximum heat input of 0.31 kJ/mm allowed the growing of a uniform
profile wall with smooth sides (Figure 7a). The typical as-cast microstructures with only
high aspect ratio columnar grains formed there (Figure 7b). No zig-zagged or equiaxed
smallgrains can be observed in this sample. This type of columnar grain microstructure is
usual for the additive manufacturing and has a detrimental effect on mechanical character-
istics of as-deposited metals, especially as soon as the copper alloys are concerned [1].

To sum up, three types of microstructures were obtained in response to varying
the heat input, or to be more accurate, in response to the heat removal condition and
solidification rate. Small equiaxed grains usually form at a high solidification rate while
either dendrites or high aspect ratio columnar grains grow slowly from the melt. Some
crossover regime can be achieved when premelting of the already-deposited layer is only
superficial and part of melted wire bronze pool solidifies fast, thus forming these small
grain layers. The upper portion of the pool solidifies slowly, thus giving the low-aspect
ratio columnar grains.

It was shown above that post-deposition treatment is a commonly accepted approach
for mending such a coarse structure. Therefore, annealing of both as-deposited and pre-
deformed 0.31 kJ/mm samples was carried out in an attempt to improve their characteristics.
Annealing and quenching of the as-deposited 0.31 kJ/mm sample resulted in its essential
structural modification by recrystallization (Figure 8a). The long columnar grains almost
disappeared, thus giving a place to coarse irregular shaped ones transfixed with numerous
annealing twins. Both coarse irregular shape grains and smaller equiaxed ones can be seen
so that the microstructure can be characterized as nonhomogeneously sized grains, formed
as a result of secondary recrystallization.
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Figure 8. The microstructure of annealed at 900 ◦C for 6 h (a) and pre-deformed/annealed (b) sample
of the Cu-3wt.%Si-Mn bronze deposited at 0.31 kJ/mm.

Annealing and subsequent quenching of the pre-deformed sample allowed the form-
ing of new, finer recrystallized grains (Figure 8b). Pre-deformation at 10% served for
introducing dislocations and deformation twins that facilitated recrystallization, and thus
formed the microstructures as shown. Annealing twins also came into the picture, and it
seems that they also became wider.

3.2. XRD

All as-deposited and post-treated samples were subjected to X-ray diffraction to detect
and identify phases formed in them. It was established that all samples were composed
of an FCC α-Cu phase that actually was a solid solution of the alloying elements in the
Cu lattice. (Figure 9a). The inverse ratio of (111)α and (200)α peak intensities allows
the suggestion of the existence of crystallographic textures (Figure 9b) in all as-deposited
samples 1, 2, and 3, as well as in the as-annealed sample 4. Normal situation is observed
only in the pre-deformed and annealed sample 5 where the (111)α peak’s intensity is higher
than that of (200)α, and the texture inherent in the as-deposited sample was destroyed
by recrystallization.
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Figure 9. The XRD pattern (a) and texture intensity relationship (b) of Cu-3wt.%Si-Mn bronze
samples: 1—heat input 0.19 kJ/mm, 2—heat input 0.25 kJ/mm, 3—heat input 0.31 kJ/mm, 4—as-
annealed, 5—pre-deformed/annealed.

3.3. Grain Orientation Maps

Using the EBSD method, it becomes possible to confirm or dispel the suspicion of the
existence of crystallographic texture in our samples by reconstructing grain orientation
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maps (GOM). Studying the grain boundary misorientation distributions is another valuable
method of microstructure examination.

The EBSD grain orientation map obtained from the 0.19 kJ/mm sample allows the
observation of no preferential orientation of the grains, with approximately equal numbers
of them oriented with their normals close to those found in the standard triangle corners
(Figure 10a).
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Figure 10. EBSD grain orientation map (a) and grain boundary misorientation angle distribution
(b) in a cross section of the Cu-3wt.%Si-Mn bronze wall obtained at heat input of 0.19 kJ/mm.

The thickness of the layer with low aspect ratio columnar grains is about 900 µm. The
grains have both low and high angle boundaries, with a small percentage of special Σ3
ones belonging to annealing twins (Figure 10b). Grain boundary misorientation histograms
in Figure 10b allow the quantitative observation of the changes that occurred in samples
after deposition and post-treatments. An almost normal misorientation angle distribution
of grain boundaries in the as-deposited 0.19 kJ/mm sample (Figure 10b) is slightly shifted
to the high angle end.

The input sample deposited at 0.25 kJ/mm heat demonstrates its long zig-zagged
grains with orientations close to [101] corner and [112] direction of the standard triangle
(see the inset in Figure 11a). Judging by XRD, this sample is characterized by the highest
number of grains oriented with respect to the [001] axis, i.e., has cubic growth texture
value. However, EBSD results show the absence of [001] oriented grains in the same
metallographic polished view. Such a discrepancy may be explained by the small number
of grains visualized in the field of interest during EBSD as compared to that in XRD. In
addition, the zig-zagged grains are not perfectly in line with the plane of view, in fact, they
are inclined towards the back side of the wall. Such an inclination may interfere with the
accuracy of the EBSD orientation detection. The biggest parts of the grain boundaries are
the low angle ones (Figure 11b).

Materials 2022, 15, x FOR PEER REVIEW 9 of 19 
 

 

grains visualized in the field of interest during EBSD as compared to that in XRD. In ad-
dition, the zig-zagged grains are not perfectly in line with the plane of view, in fact, they 
are inclined towards the back side of the wall. Such an inclination may interfere with the 
accuracy of the EBSD orientation detection. The biggest parts of the grain boundaries are 
the low angle ones (Figure 11b). 

 
Figure 11. EBSD grain orientation map (a) and grain boundary misorientation angle distribution (b) 
in a cross section of the Cu-3wt.%Si-Mn bronze wall obtained at heat input of 0.25 kJ/mm. 

Long columnar grains found in the 0.31 kJ/mm sample have their orientations close 
to those in the [001] corner of the standard triangle (Figure 12a). Such a finding can be 
confirmation by the cubic texturing. Grain boundaries are mostly the low angle ones (Fig-
ure 12b). 

 
Figure 12. EBSD grain orientation map (a) and grain boundary misorientation angle distribution (b) 
in a cross section of the Cu-3wt.%Si-Mn bronze wall obtained at heat input of 0.31 kJ/mm. 

Annealing the 0.31 kJ/mm sample at 900 °C followed by quenching in water resulted 
in fixing the high-temperature state that can be characterized by destroying the cubic tex-
ture, forming the non-homogeneous grain structure and annealing twins (Figure 13a). An-
nealing the 0.31 kJ/mm sample gives almost 100% of high-angle boundaries including 
~65% of twin ones (Figure 13b). Correspondingly, there are numerous Σ3 twin boundaries 
(Figure 13b). 

Figure 11. EBSD grain orientation map (a) and grain boundary misorientation angle distribution
(b) in a cross section of the Cu-3wt.%Si-Mn bronze wall obtained at heat input of 0.25 kJ/mm.



Materials 2022, 15, 3209 9 of 18

Long columnar grains found in the 0.31 kJ/mm sample have their orientations close
to those in the [001] corner of the standard triangle (Figure 12a). Such a finding can be
confirmation by the cubic texturing. Grain boundaries are mostly the low angle ones
(Figure 12b).
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Figure 12. EBSD grain orientation map (a) and grain boundary misorientation angle distribution
(b) in a cross section of the Cu-3wt.%Si-Mn bronze wall obtained at heat input of 0.31 kJ/mm.

Annealing the 0.31 kJ/mm sample at 900 ◦C followed by quenching in water resulted
in fixing the high-temperature state that can be characterized by destroying the cubic
texture, forming the non-homogeneous grain structure and annealing twins (Figure 13a).
Annealing the 0.31 kJ/mm sample gives almost 100% of high-angle boundaries including
~65% of twin ones (Figure 13b). Correspondingly, there are numerous Σ3 twin boundaries
(Figure 13b).
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Figure 13. EBSD grain orientation map (a) and grain boundary misorientation angle distribution
(b) in a cross section of annealed Cu-3wt.%Si-Mn bronze annealed at 900 ◦C for 6 h.

Annealing the 10% pre-deformed 0.31 kJ/mm sample also gives the non-homogeneous
grain structures with annealing twins (Figure 14a). However, in this case, the grains look
smaller. There are no enormous larger 1 mm grains that can be seen in Figure 13a. As
suggested, plastic deformation served to recrystallize the grains during annealing so that
some of them then grew to reach the size of ~500 µm. Many equiaxed grains appeared there
as a result of primary recrystallization. Annealing of the pre-deformed 0.31 kJ/mm sample
gives ~45% of twin boundaries but higher percentage of the boundaries with misorientation
angles in the range 25 to 59◦ (Figure 15b).
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Figure 15. The “stress-strain” curves obtained from tensile tests on Cu-3wt.%Si-Mn bronze samples
3 (a), 4 (b), 5 (c) and 6 (d) cut off the different parts of the wall.

3.4. Mechanical Characteristics

Tensile test samples were cut off different as-deposited wall parts to help analyze the
effect of grain structure nonhomogeneity on their mechanical characteristics (Figure 3, pos. 4,
5, 6). This, however, was not fulfilled in case of testing the post-treated samples when samples
were cut off so that their tensile axes were oriented along the wall height (Figures 3 and 4,
pos. 3).

Stress/strain curves in Figure 15a characterize the tensile loading behaviors of as-
deposited samples cut off the walls according to Figure 3, pos. 3, with their tensile axes
oriented along the wall height. All the as-deposited samples demonstrated rather high
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levels of ductile properties so that strain-to-fracture values were in the range 60–90%.
The magnitudes of both yield stress (YS) and ultimate tensile strength (UTS) vary in the
ranges 78–109 MPa and 234–250 MPa, respectively, with the maximum value inherent
with the 0.19 kJ/mm sample. Two other samples obtained at 0.25 and 0.31 kJ/mm demon-
strated lower UTS but higher strain-to-fracture values. These results can be explained by
microstructural differences among all three samples.

Specific zig-zagged grain structures of the 0.25 kJ/mm sample manifested in the specific
shape of corresponding stress/strain curve in Figure 15a, with easy plastic deformation stage.

The annealed sample demonstrated the plasticity characteristic close to those of
0.31 kJ/mm sample but with higher UTS values. The pre-deformed and annealed sample
showed simultaneously improved strength and plasticity.

The as-deposited tensile samples 4, 5, and 6 sampled from the bottom, medium, and
top parts of the wall, respectively (Figure 15a–c), were oriented by their tensile axes across
the wall’s height, i.e., along the layer deposition direction. Corresponding stress/strain
curves revealed decreasing UTS and increasing strain-to-fracture as the heat input increased.
The difference between the curves in Figure 15b is minor as compared to those in Figure 15c,
and especially in Figure 15d.

The UTS values increase with the heat input only for sample 4 that was cut from the
bottom parts of the walls, while the UTS values of samples 5 and 6 reduce as the heat input
increases (Figure 16a); the latter is true also for sample 3 with its tensile axis oriented along
the wall’s height. The YS values of sample 4 are higher than those of samples 5 and 6
(Figure 16b). Sample 5 demonstrates minimal YS value for heat input 0.25 kJ/mm when
the zig-zagged structure is formed.
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Figure 16. UTS (a) and YS (b) vs. heat input dependencies for tensile samples cut off different wall
parts. 3 to 6 relate to testing samples representing the different parts the wall (see Figure 3).

In general, there is an inverse correlation between UTS and columnar grain width
(Figure 17), i.e., UTS (Figure 16a) is reduced when columnar grains become wider at higher
heat input. Similar results were reported for additively manufactured Cu-7.5 wt.%Al [23].
However, the UTS values of the as-deposited sample 4–cut off the bottom part of the
walls–show a tendency to increase the UTS with the heat input. Such a tendency can be
explained by the existence of a transition bronze/steel zone, which becomes more saturated
with steel at higher heat input.

The effect of heat input on ductility characteristics of the samples is more pronounced.
Samples 5 and 6 that represent the medium and top parts of the walls, respectively, show
an increasing of strain-to-fracture with the heat input values (Figure 18). The same is true
for sample 3, the tensile axis of which is parallel to the wall’s height. Sample 4–cut off the
bottom part of the wall–revealed an inverse behavior when strain-to-fracture decreased
as the heat input increased. All samples demonstrated minimal strain-to-fracture value
scatter in samples deposited at 0.25 kJ/mm.
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Figure 18. Strain-to-fracture vs. heat input dependencies for tensile samples cut off different Cu-
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Figure 3).

Annealing of the 0.31 kJ/mm sample resulted in increasing the UTS by 13%
(Figure 19a) and decreasing YS and strain-to-fracture by 13% (Figure 19b) and 2.5%, re-
spectively (Figure 19c). Pre-deformation and annealing increased the UTS (Figure 19a) and
strain-to-fracture (Figure 19c) by 35% and 20%, respectively, as well as decreased the YS by
20% and 2.5% (Figure 19b).

The microstructures formed in the samples after the post-treatments provided im-
proved strength characteristics by eliminating the as-deposited columnar grains and cre-
ating new high angle grain boundaries, including the twin boundaries, which are very
effective barriers against dislocation gliding.

It is known [8] that plastic deformation mechanisms in silicon bronze occur by dislo-
cation movement and twinning. The behavior of samples and contributions of different
mechanisms of plastic deformation can be analyzed using a dependence of strengthening
rate dσ

dε on the strain (Figure 20). The first decaying portions of the curves correspond to the
dislocation movement in the grains; the easiest dislocation gliding occurs in the 0.25 kJ/mm
sample (red line). It is suggested, then, that starting from ε = 0.15 ÷ 0.2, all curves except
that of 0.31 kJ/mm reveal strengthening rate growth due to deformation twinning.

High ductility of the 0.31 kJ/mm sample can be the effect of forming the high aspect
ratio columnar grains, which can easily elongate during tensile testing. Such an effect was
reported earlier [23]. Therefore, dislocation gliding is the main deformation mechanism
with this sample.
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ples with tensile axis along the wall’s height (see position 3 in Figure 3 and diagrams in Figure 16a).

The 0.25 kJ/mm sample shows some specifics in tensile behavior due to its zig-zagged
columnar grains. These grains easily elongate at low strain values but, starting from ε = 0.15,
a rising portion of the curve that can be referred to as the twinning stage was observed. This
stage lasts up to the ε = 0.3 point.
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Nonhomogeneous microstructures of the 0.19 kJ/mm sample combine low aspect
ratio columnar grains with interlayers of equiaxed smaller ones. In fact, dislocation gliding
becomes easy in the columnar grains, while small grain interlayers with many grain
boundaries offer more dislocation barriers.

Annealing of the 0.31 kJ/mm sample resulted in structurally non-homogeneous struc-
tures with new coarse grains and twin boundaries. The twinning stage starts from ε = 0.15,
reaches its maximum at ε = 0.3, and then decays. The same behavior could be observed in
case of tensile test of the pre-deformed and annealed sample, except for a faster decay stage.

3.5. Fractography

Fracture surfaces of all as-deposited and post-treated samples were examined for
dominating fracture mechanism. Corresponding SEM SE images demonstrated that all
fracture surfaces resulted from a quasi-viscous fracture (Figure 21). The fracture surface of
the 0.19 kJ/mm sample (Figure 21a) revealed relatively smooth areas in addition to viscous
mode dimples, while both 0.25 (Figure 21b) and 0.31 kJ/mm samples (Figure 21c) were
characterized by coarse ridges that could appear from the intercrystalline fracture. Both
annealed (Figure 21d) and pre-deformed (Figure 21e) 0.31 kJ/mm samples demonstrated
pure viscous fracture surfaces without any coarse ridges or smooth areas.
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3.6. Microhardness

Microhardness profiles obtained along the wall’s height on as-deposited samples
demonstrated a steel/bronze transition zone in the bottom part of the wall where melted
steel substrate intermixed with the deposited bronze (Figure 22a). Since copper and iron
are immiscible metals, intermixing provides enhanced hardness due to the presence of steel
grains. It is also possible that some nickel was dissolved in the bronze grains and thus
somewhat contributed to hardening [14]. The as-deposited bronze microhardness is at the
level of ~0.8–1.1 GPa.

Materials 2022, 15, x FOR PEER REVIEW 16 of 19 
 

 

  

(a) (b) 

Figure 22. Microhardness profiles obtained along the walls height for as-deposited (a) and post-
treated (b) Cu-3wt.%Si-Mn bronze samples. 

4. Discussion 
This work is part of research focused on finding methods for improving microstruc-

tural and mechanical characteristics of additively manufactured metals and alloys. Cu-
3wt.%S-0.8wt.%Mn bronze is a single phase FCC alloy with low stacking fault energy, the 
plastic deformation of which occurs by dislocation gliding and twinning [8]. It is structur-
ally similar to the earlier reported additively manufactured Cu-7.5wt.%Al bronze [23], 
and therefore one of the objectives was to compare between types of microstructures ob-
tained at different heat input levels. 

The above results showed that microstructures formed in the additively manufac-
tured Cu-3wt.%S-0.8wt.%Mn depended on the heat input level. The insufficient heat in-
put resulted in forming cold laps on the wall sides, uneven thickness, poor fusion between 
the successively deposited layers, etc. The small grain structures were the result of fast 
solidification of insufficiently heated pool by fast heat removal across the fusion bound-
ary. Such a type of structure is often observed in the vicinity of the cold substrate and 
disappears with an increase in the number of layers deposited and/or heat input. This type 
of microstructure could be desirable if spread over the total wall’s volume. However, 
there were columnar type grains with an aspect ratio that depended on the heat removal 
conditions too. 

Medium heat input resulted in forming the zig-zagged long grains according to 
mechanisms reported elsewhere [35]. Let us note that the same type of structure was 
formed in Cu-7.5wt.%Al bronze at heat input of 0.225 kJ/mm [23]. It seems that this type 
of microstructure is a crossover from the fast-cooled equiaxed grained type to a fully high 
aspect ratio columnar. Tensile tests show that the zig-zagged grains attain less plasticity 
to the samples as compared to that of pure columnar ones. Such a behavior was also ob-
served in tensile tests of the Cu-7.5wt.%Al bronze samples [23]. However, crystallo-
graphic orientation of these grains with respect to tensile axis will play more important 
role. The zig-zagged shape of such a grain may have its effect on deformation and reori-
entation of its differently directed parts. Furthermore, these grains clearly demonstrated 
the twinning stage starting from ε = 0.15, i.e., later than that of 0.19 kJ/mm samples (Figure 
21). 

Fully columnar high aspect ratio grains obtained at 0.31 kJ/mm demonstrated higher 
ductility and a slightly lower strength as compared to the zig-zagged ones obtained at 0.25 
kJ/mm. No twinning stage was observed for these samples (Figure 21). 

A tendency for reduction of UTS with an increase in heat input and, correspondingly, 
the grain size, can be explained by taking into account the Hall-Petch law. The larger is 
the grain, the longer the dislocation free run path, and the less plausible twinning is. 

Figure 22. Microhardness profiles obtained along the walls height for as-deposited (a) and post-
treated (b) Cu-3wt.%Si-Mn bronze samples.

The microhardness numbers of the annealed and pre-deformed 0.31 kJ/mm samples
are ~0.73 GPa and ~0.8 GPa (Figure 22b), i.e., somewhat lower than ~0.96 GPa of the parent
as-deposited samples.

4. Discussion

This work is part of research focused on finding methods for improving microstruc-
tural and mechanical characteristics of additively manufactured metals and alloys. Cu-
3wt.%S-0.8wt.%Mn bronze is a single phase FCC alloy with low stacking fault energy, the
plastic deformation of which occurs by dislocation gliding and twinning [8]. It is struc-
turally similar to the earlier reported additively manufactured Cu-7.5wt.%Al bronze [23],
and therefore one of the objectives was to compare between types of microstructures
obtained at different heat input levels.

The above results showed that microstructures formed in the additively manufac-
tured Cu-3wt.%S-0.8wt.%Mn depended on the heat input level. The insufficient heat input
resulted in forming cold laps on the wall sides, uneven thickness, poor fusion between
the successively deposited layers, etc. The small grain structures were the result of fast
solidification of insufficiently heated pool by fast heat removal across the fusion bound-
ary. Such a type of structure is often observed in the vicinity of the cold substrate and
disappears with an increase in the number of layers deposited and/or heat input. This
type of microstructure could be desirable if spread over the total wall’s volume. However,
there were columnar type grains with an aspect ratio that depended on the heat removal
conditions too.

Medium heat input resulted in forming the zig-zagged long grains according to mech-
anisms reported elsewhere [35]. Let us note that the same type of structure was formed
in Cu-7.5wt.%Al bronze at heat input of 0.225 kJ/mm [23]. It seems that this type of
microstructure is a crossover from the fast-cooled equiaxed grained type to a fully high
aspect ratio columnar. Tensile tests show that the zig-zagged grains attain less plasticity
to the samples as compared to that of pure columnar ones. Such a behavior was also ob-
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served in tensile tests of the Cu-7.5wt.%Al bronze samples [23]. However, crystallographic
orientation of these grains with respect to tensile axis will play more important role. The
zig-zagged shape of such a grain may have its effect on deformation and reorientation of
its differently directed parts. Furthermore, these grains clearly demonstrated the twinning
stage starting from ε = 0.15, i.e., later than that of 0.19 kJ/mm samples (Figure 21).

Fully columnar high aspect ratio grains obtained at 0.31 kJ/mm demonstrated higher
ductility and a slightly lower strength as compared to the zig-zagged ones obtained at
0.25 kJ/mm. No twinning stage was observed for these samples (Figure 21).

A tendency for reduction of UTS with an increase in heat input and, correspondingly,
the grain size, can be explained by taking into account the Hall-Petch law. The larger
is the grain, the longer the dislocation free run path, and the less plausible twinning is.
Therefore, high aspect ratio columnar grains were deformed only by the dislocation gliding
mechanism without initiation of any twinning stage.

Annealing of the 0.31 kJ/mm samples resulted in recrystallization and grain growth of
the recrystallized grains according to the secondary recrystallization mechanism. Numer-
ous annealing twins are the result of primary recrystallization, and can serve as barriers
against dislocations. It seems that no primary high aspect ratio grains survived the anneal-
ing at 900 ◦C for 6 h, judging by the fact that none of them (Figure 13a) demonstrate their
long axis orientation coinciding with [001]-axis (Figure 12a). Large ~1 mm sized grains that
have grown according to secondary recrystallization mechanism can be seen in Figure 13.
The presence of such a grain size nonhomogeneity is the result of exposing the samples
to high temperatures for a long time. Using lower temperatures and less annealing time
would allow the obtaining of more uniform grain size distribution. Nevertheless, even such
non-optimal annealing conditions allowed the strength improvement of the as-deposited
samples. All the above can be related to the pre-deformed and annealed samples that
had a strength that was not only higher than that of just the annealed sample, but where
simultaneous improvement of ductility and strength was also achieved.

5. Conclusions

The effects of both heat input during additive manufacturing and post-processing
treatments on structural evolution and mechanical characteristics of the electron beam
additive manufactured Cu-3wt.%Si-Mn thin walls have been investigated.

Increasing the heat input in electron beam additive manufacturing of Cu-3wt.%Si-0.8
wt.%Mn on a cooled stainless steel substrate resulted in microstructural modification of wall
samples from a bimodal equiaxed/low aspect columnar grain structure to zig-zagged, and
then to fully high aspect ratio columnar.

Annealing at 900 ◦C for 6 h resulted in elimination of the high-aspect ratio columnar
grains and forming non-homogeneous grain structure and annealing twins. The annealed
sample’s ultimate tensile strength increased by 13%, while yield stress and strain-to-fracture
decreased by 13% and 2.5%, respectively, as compared to those of the as-deposited at
0.31 kJ/mm sample.

The use of pre-deformation and subsequent annealing allowed completely destroy
the columnar grain structure to the advantage of obtaining a polycrystalline, texture-less
equiaxed one. Simultaneous improvement of strength by 20% and ductility by 11% has
been achieved, as compared to those of the as-deposited at 0.31 kJ/mm sample. Therefore,
the post-processing that combined deformation and annealing proved to be more effective,
as compared to annealing.

The above-disclosed results can be used for developing new methods to control
structure formation during electron beam additive manufacturing. However, the use of
pre-deformation/annealing treatment on shaped or large-scale components is rarely easy.
Therefore, further development in electron beam additive manufacturing of bronzes can be
associated with the use of in-situ interlayer deformation methods.
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