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Abstract: Microstructural evolution and dynamic recrystallization (DRX) behaviors of a Ni-Cr-Mo
alloy were researched utilizing hot compressive experiments. The changed features of dislocation,
subgrain and grain structure correlating to forming parameters were examined by transmission
electron microscope (TEM) and electron backscatter diffraction (EBSD). Results illustrate that the
consumption of dislocation and the coarsening of substructure/DRX grain are prominently enhanced
with an increased forming temperature. However, the annihilation/interaction of dislocation and the
expansion of subgrain/DRX grain boundary can be limited at a larger strain rate. Meanwhile, consid-
ering the discrepancy in DRX variation rates concerning the strain rate’s ranges, an improved DRX
kinetic model was developed. Compared to the classical DRX kinetic model, the good consistency
between the forecasted and tested results demonstrates that the established improved DRX kinetic
model can precisely characterize the DRX features of the Ni-Cr-Mo alloy over a wide strain rate range.
Additionally, the EBSD’s quantitative statistical results proved that the variation of DRX grain size
can be supremely defined as the power formulation of the forming temperature and strain rate.

Keywords: hot deformation; dynamic recrystallization; kinetics equations; Ni-Cr-Mo alloy

1. Introduction

In hot forming, sophisticated microstructural changes often occur and markedly affect
the deformation characteristics of alloys [1–7]. The changes in microstructures during
hot forming are closely correlated to several metallurgical mechanisms, including work-
hardening (WH), dynamic recrystallization (DRX) and dynamic recovery (DRV) [8–13].
Normally, DRX is characterized as one of the representative grain refinement mechanisms
of alloys in hot deformation [14–18], and it can prominently affect the properties of compo-
nents [19]. Therefore, analyzing the kinetic feature and microstructural variations of DRX
is significant for machining metallic parts.

In past, the kinetic behaviors and microstructural changes of alloys during DRX were
widely investigated [20–22]. Firstly, the microstructural variation mechanisms, consisting
of substructure evolution [23], the change of grain structure [24–27] and phase transforma-
tion [28] of several alloys in DRX, were studied. The microstructural changes had an impact
on the DRX’s nucleation mechanism [29] and could affect the DRX grain boundary expan-
sion of alloys simultaneously. Moreover, according to the features of flow curves, some
DRX kinetic models were proposed to strictly forecast the DRX fractions of alloys [30–32].
Xu et al. [33] developed the JMAK-type DRX kinetic model to precisely characterize the
DRX behavior of a 22MnB5 alloy. Based on the analysis of the true stress-true strain results,
Quan et al. [34] studied the evolution of DRX characteristics during hot deformation, and a
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DRX kinetic model was proposed to accurately forecast the DRX behavior in AlCu4SiMg
alloys. Considering the impact of DRV on the critical dislocation density of DRX, Mo-
meni et al. [35] proposed a modified DRX kinetic model to accurately describe the DRX
behaviors of AISI 410 martensitic stainless steel in hot forming. Additionally, some preci-
sion models of the DRX grain size were developed and utilized to exactly characterize the
variations of DRX grain in alloys [36].

Due to the outstanding resistance of oxidation and corrosion, Ni-Cr-Mo alloys are
extensively applied in the nuclear industry [37–39]. Recently, the hot forming features of the
Ni-Cr-Mo alloys were researched, and the available constitutive models were proposed to
describe flow characteristics [40,41]. Meanwhile, several processing maps were established
to identify the optimum forming parameters of Ni-Cr-Mo alloys [42–44]. Furthermore, mi-
crostructural changes including substructure variation, the interaction of dislocations with
twins and grain structural evolution were researched [45,46]. Additionally, the correlations
of recrystallization kinetic features (involving the mechanism of discontinuous dynamic
recrystallization (DDRX) and continuous dynamic recrystallization, DRX grain evolution
and DRX textures) and forming parameters were characterized by some recrystallization
kinetics models [47,48]. As analyzed in previous references, many investigations reported
the flow features and microstructural variations of Ni-Cr-Mo alloys. However, there were
limited reports on the interactions of substructure and grain structure, as well as the DRX
kinetic feature of Ni-Cr-Mo alloys.

In the present work, the changes and interactions of substructure/ DRX grain structure
of a Ni-Cr-Mo alloy in hot compression are studied. The variation of DRX kinetic with
forming parameters is investigated. An improved dynamic recrystallization kinetic model
is established, and its forecasted precision is analyzed.

2. Experimental Material and Procedure

In the present investigation, the utilized material is a commercial Ni-Cr-Mo alloy,
and its chemical composition (wt. %) is shown in Table 1. Cylindrical samples were
machined from a forged bar, and their dimensions measured Φ8 mm × 12 mm. Isothermal
compression tests were performed on Gleeble-3500 at 1000–1150 ◦C and 0.001–10 s−1,
according to the standard of GB/T 9327.4-1988. The Gleeble-3500 simulator is produced
by the DSI company. The total height reductions in the tested specimens were set as 60%.
The concrete step of hot formation can be formulated as follows. Every tested specimen
was firstly heated to a forming temperature at 10 ◦C/s and maintained for 300 s. Then,
the hot forming of each tested specimen was conducted, respectively. The compressed
samples were swiftly cooled by water after hot compression. To investigate the changes of
dislocations and substructures, TEM was utilized. Simultaneously, the changes of grain
structure were examined by EBSD. For TEM and EBSD analyses, the deformed objects were
primarily polished and then etched in a solution (180 mL CH3CH2OH + 20 mL HClO4).
As illustrated in Figure 1, the initial microstructures clearly consist of equiaxed grains
and twins.

Table 1. Composition of the experimental Ni-based superalloy (wt. %).

Elements C Si Cr Mo Fe Co W V P S Ni

Contents 0.007 0.06 15.8 16.2 6.5 1.9 4.2 0.30 0.035 0.025 Bal



Materials 2022, 15, 3161 3 of 16
Materials 2022, 15, x FOR PEER REVIEW 3 of 16 
 

 

  

Figure 1. Initial microstructures of the researched Ni-Cr-Mo alloy. 

3. Results and Discussion 

3.1. High-Temperature Compression Characteristics  

Figure 2 displays the representative flow curves of the researched Ni-Cr-Mo alloy. 

The similar tendency of all curves is that the true stress (  )firstly increased when true 

stain (  ) increased. At a small value of  , the work-hardening (WH) induced by the vast 

generation of dislocations and interaction with grain boundaries is distinct, while the dy-

namic softening correlated to the consumption of dislocations and the development of 

substructures/DRX grains cannot counteract the WH  behaviors [5,9]. Then, the values 

of   were markedly raised in the early forming period of the researched Ni-Cr-Mo al-

loy. As   surpasses the peak strain, the values of   were dramatically reduced due to 

strong DRX behaviors. Moreover, the value of   is noticeably reduced as the forming 

temperature ( T ) ascends or the strain rate (  ) diminishes. As noted in the TEM images 

of Figure 3a, high-density dislocations are generated and accumulated to form dislocation 

cells and networks around grain boundaries and inner grains at 1000 °C. Meanwhile, 

many refined DRX grains with dimensions measuring less than 1.5 µm can be observed, 

while the DRX grains coarsen significantly and the dimension of most DRX grains ex-

ceeded 4 µm as T  increased toward 1150 °C (Figure 3b). Simultaneously, the distinct an-

nihilation of dislocations and the coarsening of subgrains can be found. This indicates that 

DRV and DRX are promoted at high T . Therefore, the values of   decreased at high 

T . Furthermore, the depletion of dislocations and the formation of dislocation cells/net-

works became obvious with the amplification of  , as observed in Figure 3c,d. Moreover, 

the coarsening of DRX grains is prominently inhibited at large  . Thus, the development 

of DRV and DRX is restrained at larger values of  . Therefore, the values of   remark-

ably increased with the increase in  . 

Figure 1. Initial microstructures of the researched Ni-Cr-Mo alloy.

3. Results and Discussion
3.1. High-Temperature Compression Characteristics

Figure 2 displays the representative flow curves of the researched Ni-Cr-Mo alloy.
The similar tendency of all curves is that the true stress (σ) firstly increased when true
stain (ε) increased. At a small value of ε, the work-hardening (WH) induced by the vast
generation of dislocations and interaction with grain boundaries is distinct, while the
dynamic softening correlated to the consumption of dislocations and the development of
substructures/DRX grains cannot counteract the WH behaviors [5,9]. Then, the values of σ
were markedly raised in the early forming period of the researched Ni-Cr-Mo alloy. As ε
surpasses the peak strain, the values of σ were dramatically reduced due to strong DRX
behaviors. Moreover, the value of σ is noticeably reduced as the forming temperature (T)
ascends or the strain rate (

.
ε) diminishes. As noted in the TEM images of Figure 3a, high-

density dislocations are generated and accumulated to form dislocation cells and networks
around grain boundaries and inner grains at 1000 ◦C. Meanwhile, many refined DRX
grains with dimensions measuring less than 1.5 µm can be observed, while the DRX grains
coarsen significantly and the dimension of most DRX grains exceeded 4 µm as T increased
toward 1150 ◦C (Figure 3b). Simultaneously, the distinct annihilation of dislocations and
the coarsening of subgrains can be found. This indicates that DRV and DRX are promoted
at high T. Therefore, the values of σ decreased at high T. Furthermore, the depletion of
dislocations and the formation of dislocation cells/networks became obvious with the
amplification of

.
ε, as observed in Figure 3c,d. Moreover, the coarsening of DRX grains is

prominently inhibited at large
.
ε. Thus, the development of DRV and DRX is restrained at

larger values of
.
ε. Therefore, the values of σ remarkably increased with the increase in

.
ε.
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Figure 2. Typical flow curves at (a)   = 0.1 s‒1; (b) 1100T =  °C. 
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Figure 3. TEM images at (a) T = 1000 ◦C,
.
ε = 0.01 s−1; (b) T = 1150 ◦C,

.
ε =0.01 s−1; (c) T = 1150 ◦C,

.
ε = 1 s−1; (d) T = 1150 ◦C,

.
ε = 10 s−1.

Normally, the values of peak strain (εp) are immensely influenced by the Z parameter,
and εp can be formulated as follows [13]:

εp = APZkp (1)

where AP and kp represent material parameters.
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Normally, the Zener–Hollumon (Z) parameter is generally characterized as follows [13]:

Z =
.
ε exp(

Q
RT

) = AF(σ) (2)

where F(σ) =

 σn′ ασ < 0.8
exp(βσ) ασ > 1.2
[sinh(ασ)]n for allσ

.
.
ε and T present the strain rate and tempera-

ture, respectively. Q notes the material parameter. A, β, n′, n and α = β/n′ indicate the
material constants, respectively.

Substituting the tested true stress-true strain results into Equation (2), the value of
α can be defined as 0.003954 by the regression analysis of the relation of ∂ ln σ/∂ ln

.
ε −

∂σ/∂ ln
.
ε. Then, taking the value of α into Equation (2), the value of Q can be defined

as 467,710.9 J/mol by the relation of ∂ ln sinh(ασ) − 1/T. Moreover, substituting Q into
Equation (2), the value of Z at different forming conditions can be identified. Furthermore,
taking the values of εp and Z into Equation (1), the values of AP and kp can be assessed by
the relation of ln εp − ln Z. Then, the value of AP and kp can be determined as 0.002481
and 0.11173, respectively. Additionally, the correlation coefficient (R) of forecasted εp and
tested ones is 0.995 (Figure 4), suggesting that Equation (1) can exactly predict the change
of εp.
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3.2. Classical DRX Kinetics Model

Generally, the classical DRX kinetics model of metals and alloys provides the following [26]:

Xdrx = 1 − exp[−0.693(
ε − εc

ε0.5 − εc
)

n
](ε ≥ εc) (3)

where Xdrx illustrates the DRX volume fraction, εc indicates the critical strain for the
appearance of DRX, ε0.5 is the true strain of 50% DRX volume fraction and n shows
material constant.

3.2.1. Identification of Xdrx

Commonly, for the classical method to determine Xdrx − ε curves, there is an assump-
tion that the flow softening of the alloys during the DRX stage is only induced by DRX.
Therefore, the values of Xdrx can be expressed as follows [26,32]:

Xdrx =
σrec − σ

σsat − σss
(4)
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where Xdrx illustrates the volume fraction of DRX; σss, σsat and σrec represent the steady stress,
the saturation stress and the true stress;the chief softening mechanism is DRV, respectively.

As illustrated in Equation (4), the values of σrec, σss and σsat should be firstly deter-
mined to evaluate the values of Xdrx. The detailed procedure to identify the values of
σrec, σss and σsat of alloys can be observed in previous references [26]. For σrec, it can be
identified as follows:

σrec = [σ2
sat − (σ2

0 − σ2
sat)e

−Ωε]0.5 (5)

where Ω indicates the dynamic recovery coefficient. σ0 illustrates the yield’s stress. The de-
tailed procedures for identifying the values of Ω and σ0 can be seen in previous works [26].

3.2.2. Identification of εc and ε0.5

Commonly, the values of εc are closely related to εp and can be identified as [26]:

εc = Bεp (6)

where B is the proportional constant.
The correlation of εc and εp is revealed in Figure 5. Based on linear fitting, the mean

value of B can be obtained as 0.631.
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Substituting the values of σrec, σss and σsat into Equation (4), the value of ε0.5 under
various tested conditions can be estimated from the Xdrex − ε curves. Normally, the change
of ε0.5 with Z can be given as follows:

ε0.5 = A0.5Zk0.5 (7)

where A0.5 and k0.5 are the material constants.
According to the tested data (Figure 6), the mean value of A0.5 and k0.5 can be identified

as 0.00476 and 0.1334, respectively.
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3.2.3. Identification of n

Furthermore, substituting the values of Xdrx, εc and ε0.5 into Equation (3), the average value
of n can be determined as 1.094 from ln( − ln(1 − Xdrx)) versus ln((ε − εc)/(ε0.5 − εc))
curves, as indicated in Figure 7.
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From the above analysis, the DRX kinetics equation can be summarized as follows.
Xdrx = 1 − exp[−0.693( ε − εc

ε0.5 − εc
)

1.094
](ε ≥ εc)

εc = 0.001566Z0.11173

ε0.5 = 0.00476Z0.1334

Z =
.
ε exp( 467710

RT )

(8)

3.2.4. Verification of Classical DRX Kinetic Model

Figure 8 indicates the comparisons between the DRX fractions (Xdrx) forecasted by the
classical DRX kinetic model (Equation (8)) and tested values. Clearly, all curves reveal a
similar trend in which the value of Xdrx steadily increased as the strain was amplified. More-
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over, the prominent enlargement of Xdrx can be seen at high T or low
.
ε. This demonstrates

that DRX kinetic behaviors are strengthened with increased T or a reduction in
.
ε.
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be reasonably accepted. As
.
ε is less than 0.1 s−1, the discrepancy between the forecasted

Xdrx and tested ones becomes greater. This demonstrates that the developed classical
DRX kinetic model cannot characterize the DRX kinetic feature of the researched alloy
over the wide strain rate scopes. This result can be ascribed to the fact that the variation
rate of DRX is substantially affected by

.
ε. In particular, dislocation easily nucleates and

interacts to promote the formation of dislocation networks and subgrains at larger strain
rates (Figure 3c,d). Then, the nucleation of DRX grains can be accelerated, while DRX
grains have difficulty in becoming coarsened due to the limited hot forming incubation
time. However, DRX grains can coarsen easily as the strain rate diminishes to 0.01 s−1

(Figure 3b), indicating that the DRX variation rate varies relative to larger strain rates. As
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observed in Equation (3), the variation rate of DRX kinetic is mainly correlated to the values
of εc and ε0.5. Therefore, the variations of εc and ε0.5 with respect to the Zener–Hollomon
parameter should consider the influence of

.
ε ranges, and a detailed analysis is illustrated

in Section 3.3.

3.3. An Improved DRX Kinetics Model

As displayed in Equation (3), the evolution of Xdrx is mostly affected by εc and ε0.5.
Meanwhile, it is clearly stated in Section 3.2.4 that the variation of DRX is sensitive to strain
rates. Therefore, the implication of εc and ε0.5 at different strain rates scopes should be
firstly identified to precisely characterize the DRX behavior of the researched alloy.

3.3.1. Determination of εc and ε0.5

With respect to the tested results, the variations of εc with Z at the strain rate ranges
of 0.1–10 s−1 and 0.001–0.1 s−1 are exhibited in Figure 9. According to the linear fitting
method, the εc at different strain rate ranges can be estimated as follows.{

εc = 0.0012239Z0.11739 (
.
ε = 0.1 s−1–10 s−1)

εc = 0.001543Z0.11366 (
.
ε = 0.001 s−1–0.1 s−1)

(9)
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Correspondingly, the change of ε0.5 with Z at the strain rate ranges of 0.1–10 s–1 and
0.001–0.1 s−1 is displayed in Figure 10. The ε0.5 at different strain rate ranges can be
evaluated as follows.{

ε0.5 = 0.000815Z0.17507 (
.
ε = 0.1 s−1–10 s−1)

ε0.5 = 0.000582Z0.19245 (
.
ε = 0.001 s−1–0.1 s−1)

(10)
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3.3.2. Determination of n

Substituting the tested Xdrx, εc and ε0.5 into Equation (3), the relations of ln(− ln(1 − Xdrx))
versus ln((ε − εc)/(ε0.5 − εc)) at different strain rate ranges are indicated in Figure 11. Uti-
lizing the linear fitting method, the mean value of n at the strain rate ranges of 0.1–10 s −1

and 0.001–0.1 s −1 can be determined as 1.512 and 1.61, respectively.
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3.3.3. Verification of the Improved DRX Kinetic Model

Based on Sections 3.2.1 and 3.2.2, the kinetics equations of DRX for the researched
alloy can be reformulated as follows.

Xdrx = 1 − exp[−0.693( ε − εc
ε0.5 − εc

)
n
] (ε ≥ εc){

εc = 0.0012239Z0.11739 (
.
ε = 0.1 s−1–10 s−1)

εc = 0.001543Z0.11366 (
.
ε = 0.001 s−1–0.1 s−1){

ε0.5 = 0.000815Z0.17507 (
.
ε = 0.1 s−1–10 s−1)

ε0.5 = 0.000582Z0.19245 (
.
ε = 0.001 s−1–0.1 s−1)

n =

{
1.512 (

.
ε = 0.1 s−1–10 s−1)

1.610 (
.
ε = 0.001 s−1–0.1 s−1)

Z =
.
ε exp( 467710.9

RT )

(11)

To verify the improved DRX kinetic model (Equation (11)), the comparisons between
the assessed values and tested values of Xdrx are illustrated in Figure 12. Apparently,
the assessed Xdrx well matched the tested values. Moreover, the correlation coefficient
and AARE between the assessed Xdrx and tested ones can be estimated as 0.99 and 6.2%,
respectively. Here, R denotes the correlation coefficient. AARE expresses the average
absolute relative error. The specific procedures for determining the values of R and AARE
are introduced in previous works [1]. From the above analysis, it can be reasonably
concluded that the established kinetics equations of Equation (11) can well predict the DRX
features of the investigated alloy.
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.
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experimental conditions.

4. Modeling the DRX Grain Size

Normally, microstructural variations not only respond to the material’s hot form-
ing features but also severely affects the properties of the components [28,34]. For the
researched alloys during the DRX process, the principal microstructural change charac-
teristics consisted of substructures and grain structure. The representative changes of
substructures of the researched alloy in hot working are analyzed in Section 3.1. Here, the
typical change features of grains at different forming conditions are displayed in Figure 13.
As noted in Figure 13a, the elongation of the formed original grains along the direction
perpendicular to hot compression can be found. Moreover, numerous refined DRX grains
formed and are spread around the original grains. By conducting statistical analyses
(Figure 13f), the mean DRX grain size (drex) at the T of 1000 ◦C and

.
ε of 0.01 s−1 is estimated

at 8.5 µm. When T increases toward 1050 ◦C, the distinct bulging of DRX grain boundaries
appear, suggesting that DDRX characteristics become intense (Figure 13b). Moreover, the
value of drex increased to 10.1µm. As T reaches 1150 ◦C, the obvious coarsening of DRX
grains comes up, and the value of drex ascends to 13.7 µm, as observed in Figure 13c.
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This is ascribed to that the fact that the diffusion of vacancies/atoms intensified at high T,
which induces the enhancement of grain boundary migration. Furthermore, the changes
of DRX grain are notably influenced by

.
ε, as noted in Figure 13c–e. When

.
ε increased

from 0.01 s−1 to 1 s−1, the lowering DRX degree can be seen, and the growth of DRX
grains is limited (Figure 13c,d). Concurrently, the values of drex reduced from 13.7 µm
to 8.5 µm, as

.
ε increased from 0.01 s−1 to 1 s−1. With the

.
ε further increasing to 10 s−1,

the nucleation/coarsening of DRX grains is apparently restrained, and the value of drex
dropped to 6.7 µm. Commonly, according to the nucleation kinetics of DRX grains, the
nucleation rate of DRX grains abruptly increases with an increase in

.
ε [7]. However, the

incubation time for the expansion of DRX grain’s boundary decreases at high
.
ε. Therefore,

the mean size of DRX grains was prominently reduced with an increase in
.
ε.
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.
ε = 0.01 s−1; (b) T = 1050 ◦C,

.
ε = 0.01 s−1; (c) T = 1150 ◦C,

.
ε = 0.01 s−1; (d) T = 1150 ◦C,

.
ε = 1 s−1; (e) T = 1150 ◦C,

.
ε = 10 s−1;

(f) grain size distribution (Case I: T = 1000 ◦C,
.
ε = 0.01 s−1; Case II: T = 1050 ◦C,

.
ε = 0.01 s−1; Case III:

T = 1150 ◦C,
.
ε = 0.01 s−1; Case IV: T = 1150 ◦C,

.
ε = 1 s−1; Case V: T = 1150 ◦C,

.
ε = 10 s−1).

Normally, quantitatively characterizing the changes of DRX grains with deforma-
tion conditions is significant for the forming parameters’ optimum value relative to the
alloys [28]. The relations of drex and Z can be usually formulated as follows [49]:

drex = Ad
.
ε

kd exp(
Qd
RT

) (12)
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where Ad and kd are the material constants.
We take a logarithm of Equation (12) and readjust it as follows.

ln drex = ln Ad + kd
.
ε +

Qd
RT

(13)

By substituting the experimental values of drex at various tested conditions into
Equation (13), the values of Ad, kd and Qd can be computed as 431.54, −0.10222 and
−46,293.77 J/mol, respectively.

Therefore, drex can be expressed as follows.

drex = 431.54
.
ε
−0.10222 exp(

−46293.77
RT

) (14)

To validate the DRX grain size predicted model (Equation (14)), the comparisons
between the forecasted drex and tested ones are shown in Figure 14. Clearly, the forecasted
drex well consented with the tested values, indicating that the established model (Equation
(14)) can exactly catch the change features of DRX grains in hot forming processes.
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5. Conclusions

The microstructural changes and DRX behaviors of a Ni-Cr-Mo alloy in hot compres-
sion are researched. An improved DRX kinetic model was established to calculate the DRX
features of the Ni-Cr-Mo alloy. Several significant results are summarized as follows.

(1) The variations of substructures are closely correlated to forming parameters. The
nucleation and interaction of dislocations can be intensified, while the refinement of
subgrains/DRX grains is easily limited at high temperatures or low strain rates.

(2) An improved DRX kinetic model that considers the variation characteristics of DRX
behavior in the segmented ranges of strain rate is proposed. Good consistency be-
tween the forecasted and tested results demonstrates that the established model can
strictly elaborate the DRX kinetic features of the researched alloy.

(3) The variation of DRX grains is abruptly affected by forming parameters. At a large
strain rate or low temperature, the DRX grain is distinctly refined. The mean size of
DRX grains in hot forming is well described as the equation of the forming tempera-
ture and strain rate.
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