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Abstract: In this work, a general mathematical model for functionally graded heterogeneous equi-
librium boundary value problems is considered. A methodology to find the local problems and the
effective properties of functionally graded materials (FGMs) with generalized periodicity is presented,
using the asymptotic homogenization method (AHM). The present models consist of the matrix metal
Mo and the reinforced phase ceramic ZrC, the constituent ratios and the property gradation profiles
of which can be described by the designed volume fraction. Firstly, a new threshold segmentation
method is proposed to construct the gradient structure of the FGMs, which lays the groundwork
for the subsequent research on the properties of materials. Further, a study of FGMs varied along a
certain direction and the influence of the varied constituents and graded structures in the behavior
of heterogeneous structures are investigated by the AHM. Consequently, the closed–form formulas
for the effective thermo–mechanical coupling tensors are obtained, based on the solutions of local
problems of FGMs with the periodic boundary conditions. These formulas provide information
for the understanding of the traditional homogenized structure, and the results also be verified the
correctness by the Mori–Tanaka method and AHM numerical solution. The results show that the
designed structure profiles have great influence on the effective properties of the present inhomo-
geneous heterogeneous models. This research will be of great reference significance for the future
material optimization design.

Keywords: functionally graded materials; asymptotic homogenization method; effective properties;
thermo–mechanical coupling

1. Introduction

The growing demand and optimization of industrial applications reveal the limitations
of traditional materials. The development of functionally graded materials (FGMs) solves
these limitations to a large extent by integrating mutually exclusive properties [1–3]. FGMs
are a kind of advanced composite materials and show a local characteristic dependence
on the spatial distribution of their constituent phases [4,5], which were first designed for
the Japanese space shuttle project in 1983 to reduce the thermal stress caused by the high
temperature of the metal and ceramic interface. This advanced heterogeneous composite
improves the thermal shock resistance of the material along the gradient direction [6,7]. The
superior material properties of FGMs had been widely applied in different areas, such as in
electronic packaging, automobile and aerospace industries [8]. Many studies had been done
on the fabrication, application, and mechanical properties [9–12] of FGMs. How to predict
and determine accurately the properties of such inhomogeneous FGMs is vital research
problem for obtaining the thermo–mechanical ability under the conditions of some extreme
environment [13,14]. However, the properties of FGMs depend not only on the constituent
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materials, but also on their microstructure. The complexity of the microstructure of FGMs,
i.e., the content of components, distribution of inclusions and so on, makes the prediction
of their equivalent thermo–mechanical properties very untoward [15].

In recent years, a great deal of research has focused its attention on the prediction of
the effective properties of composite materials. Theoretical boundary methods include
Hashin–Shtrikman bounds [16–19] and Budiansky bounds [20], but these methods do not
consider the complexity of microstructure. For composites, it is very vital to understand
their accurate properties after the microstructure is determined. Based on Eshelby’s equiva-
lent inclusion theory [21], combined with the average stress, self–consistent method [22],
generalized self–consistent method [23] and Mori–Tanaka method [24–26] are proposed
to predict the effective properties of composites. For example, Tran et al. [25] derived the
solution of Eshelby’s spherical heterogeneous problem by using the Mori–Tanaka method
to predict the effective properties of gradient composites with spherical inclusions. How-
ever, because Eshelby’s equivalent inclusion theory is based on ellipsoid, these methods
are initially only applicable to composites with ellipsoidal inclusions. For composites
with complex shapes, the finite element analysis method (FEM) with periodic boundary
conditions can be used [27,28]. Kundalwal et al. [27] studied the effective properties of
fiber–reinforced composites by using the FEM, and calculated the effective elastic constants
of the materials. Zhang et al. [28] studied the multi field properties of electromagnetic
thermoelastic composites by using the FEM based on micromechanics, and obtained the ef-
fective thermal expansion coefficient and other parameters of intelligent composites under
periodic boundary conditions. However, these methods lack strict mathematical framework
to clarify the relationship between the effective properties and the material layout. Recently,
based on strict mathematical derivation, a novel homogenization method is proposed,
asymptotic homogenization method (AHM), and shows good accuracy compared with
experiments [29–31]. The method of AHM can be incorporated into the coupling between
the micro and macro behaviors of heterogeneous materials [32–36].

It can be seen from the existing literature that AHM has been widely used in the
prediction and analysis of the effective properties of composites, with good calculation
results. In terms of prediction of the effective mechanical properties [37–40], for example,
Santana et al. [38] predicted the effective constitutive coefficient tensor of the composite
by using two–scale AHM considering the effect of debonding between fiber and matrix.
The comparison of homogenization and non–homogenization numerical models shows
that almost all effective coefficients have good convergence. Nasirov et al. [39] further used
the three–scale formulas of AHM to predict Young’s modulus of fiber from micro scale
to mesoscale and from mesoscale to macro scale, which is in good agreement with the
tensile test. The study of multi physical field coupling has further developed the applica-
tion of AHM, especially the prediction of effective thermo–mechanical properties [41–45].
Muhammad et al. [42] established AHM for three–scale composite analysis considering
the thermomechanical effect, and compared the Young’s modulus and Poisson’s ratio
obtained from the analysis with the experimental results. The results show that the two
methods have good consistency in Young’s modulus. Zhao et al. [43] studied the thermo–
mechanical properties of particle–filled polymers using AHM. The results show that the
numerical results of progressive homogenization method are in good agreement with the
experimental results. For periodic composites, the progressive homogenization method is
more reasonable and accurate than the representative volume element method. Dirichlet
formulation overestimates the effective tensor and Neumann formulation underestimates
the effective tensor. AHM can also be used to study multi physical field coupling such
as mechano–chemical coupling [46], thermo–electric coupling [47], and magneto–electric
coupling [48]. However, the research on the effective properties of FGMs by AHM has not
been reported.

Because AHM is based on strict mathematical framework, it finally leads to a complex
implementation, which is mainly related to the complex microstructure of heterogeneous
materials [49]. In general, the relationship between macro and micro structure is real-
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ized through the concept of the representative volume unit (RVE) [50–52]. RVE needs
to characterize accurately the microstructure of composites. Tian et al. [53,54] proposed
the RVE generation method of spatially randomly distributed fibers in combination with
the random sequential absorption (RSA) technique, and then Tian et al. [55] used RSA
technique to generate the RVE of composites containing cylindrical inclusions. At the same
time, Dutra et al. [15] believe that the steps of AHM using numerical simulation are not
simple, such as applying the first boundary condition and periodic boundary condition.
When Ramos et al. [56] studied two–phase parallel fiber reinforced periodic viscoelastic
composites, a simple closed–form formula for the effective properties of square and hexag-
onal element composites was obtained by using AHM. Based on the elastic viscoelastic
correspondence principle and assuming that there are perfect contact conditions at each
split interface, the local problems and global viscoelastic properties are obtained in explicit
form. Compared with the traditional Maxwell and Kelvin models, its effectiveness is veri-
fied. It can be seen that the closed–form formula of effective performance not only has good
accuracy, but also does not need to build a complex microstructure model for numerical
solution, which can greatly reduce the demand for computers and can be better used in
practice. Therefore, when studying the effective thermo–mechanical properties of FGMs,
it is very important to deduce the closed–form formula of effective thermo–mechanical
properties by AHM on the premise of ensuring the accuracy of calculation results.

In this study, a methodology to solve the local problems and the effective properties of
FGMs with generalized periodicity is presented base on the method of AHM. For FGMs
with special distribution, i.e., power–law distribution with two parameters, the regulating
effects of different gradient models on FGMs thermo–mechanical performance are analyzed.
Gaussian random field method and our new threshold segmentation algorithm are used to
establish a two–phase random gradient structure that obeys the power–law distribution of
two parameters, so as to show the distribution characteristics of different gradient model
components. The theoretical closed–form formulas for calculating the performance of FGMs
are derived from the gradual homogenization method and its generalized periodicity. For
the thermo–mechanical coupling field, these properties include elastic tensor’s components,
thermal expansion tensor’s components and thermal conduction tensor’s components.
The Mori–Tanaka method and numerical solution of AHM in literature have been used to
verify the correctness of the present method. The quantitative relationship between the
gradient structure and thermo–mechanical properties of FGMs and the resulting analysis is
an important part of our research.

2. The Establishment of the Gradient Microstructure

In this section, the Gaussian random field method combined with a new threshold
segmentation algorithm is mainly considered to construct the FGM model. For various
random media, various construction methods based on finite morphological and statistical
information extracted from 2D/3D data are proposed, including random–set method [57],
Gaussian random field method [58,59] etc. The random–set method can be used for
composites with spherical or polygonal inclusions, but for inclusions with arbitrary shape,
the calculation is complex and difficult to realize. In the Gaussian random field method, the
field–field correlation function is used to construct the Gaussian field, and the horizontal
cutting is used to obtain the two–phase micro model. According to [59], the 2D original
gray random distribution microstructure model of heterogeneous materials can be obtained.
Generally, in order to obtain the two–phase microstructure model, it is necessary to use an
image segmentation algorithm to separate the target phase and background matrix. The
determination of the cut–off value in the segmentation algorithm depends on whether the
volume fraction of the target phase of the obtained two–phase model is consistent with the
target model.

When a cut–off value is selected in the whole gray model, a uniform two–phase model
with a certain volume fraction will be obtained. Obviously, this cannot establish the FGM
model with gradient distribution of the volume fraction of the component phase. In order
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to construct the gradient model, we propose a new threshold segmentation algorithm, that
is, the whole model is divided into several regions, the number of regions depends on the
number of layers of the gradient model itself, and different cut–off values are selected in
each block according to the required volume fraction.

It is assumed that the thickness of FGM models studied is h, which is composed of
metal phase and ceramic phase. The properties of the studied model are assumed to be
isotropic and homogeneous in the cross section while following a power law distribu-
tion with two parameters in the thickness direction i.e., Vp(z) is the volume fraction of
the component at the distance z from the bottom according to Ref. [60], which can be
expressed as,

Vp(z) =

{ c0
2
(
1 + 2z

h
)m

,− h
2 ≤ z ≤ 0

c0

[
1− 1

2
(
1− 2z

h
)m
]
, 0 ≤ z ≤ h

2
(1)

and the volume fraction of the component of the top surface satisfies,

Vb(z) = 1−Vp(z) (2)

where c0 denotes the component ratio coefficient to adjust the constituent ratio of FGMs,
0 ≤ c0 ≤ 1.0; m is the gradient index of material property to describe the property gradation
profiles of FGMs, i.e., m = 0 corresponds to the homogeneous traditional composition. The
volume fraction Vp(z) varies with the structure of FGMs (c0, m), as shown Figure 1. Once
the composition of the material composition ratio is determined, the current structure can
only be adjusted by the structural design method through the gradient index (Figure 1b).
Given the existence of two parameters, component ratio coefficient and gradient coefficient,
this gradient structure is more scientific, which is beneficial to explore the influence of
different volume component phase distribution on the thermo–mechanical properties of
FGM structure.
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Figure 1. Variation of volume fraction Vp vs. FGMs structure: (a) the variational material component 
ratio coefficients c0 (m = 1.0); (b) the variational gradient indexes m (c0 = 1.0). 
Figure 1. Variation of volume fraction Vp vs. FGMs structure: (a) the variational material component
ratio coefficients c0 (m = 1.0); (b) the variational gradient indexes m (c0 = 1.0).

According to the new threshold segmentation algorithm, the FGMs model with the
volume fraction of component phase following Equations (1) and (2) in the thickness direc-
tion is constructed. The gradient model shows different gradient distributions according to
the component ratio coefficient c0 and gradient index m, as shown in Figures 2 and 3. It is
observed that the dark phase and the light phase of the model show the opposite change
trend in the longitudinal direction, i.e., they represent two different component phases,
respectively. The volume proportion of the light phase from bottom to top is increasing,
showing a gradient change.
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Figure 3. Establishment of the gradient model with (a) c0 = 0; (b) c0 = 0.2; (c) c0 = 0.5; (d) c0 = 0.8;
(e) c0 = 1.0 (m = 1.0).

In Figure 2, the component ratio coefficient c0 = 1.0 of the gradient models have
different gradient indices m. For different m, the models have little difference near z/h = 0,
but the farther away from this position, the greater the difference. With the increase of m, the
closer the position where the light phase begins to appear to the top surface, the narrower
the position area where the two–phase components form the interactive structure. When
the gradient index m = 1.0, the gradient model with different component ratio coefficient
c0 is constructed as shown in Figure 3. There is only the dark phase when c0 = 0. The
volume fraction of the light phase increased gradually from bottom to top in the thickness
direction, (c0 6= 0), but there was no drastic change trend. At the same time, the two–phase
components almost form an interactive structure in the whole thickness direction. With the
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increase of c0, the proportion of the overall volume of the light phase increases continuously.
When c0 = 1.0, only the light phase is on the top surface.

It should be noted that what are constructed here are not the actual microstructure,
but the microstructure model similar to the actual FGMs. Strictly speaking, the gradient
change of the gradient model is not continuous, but actually presents a stepped gradient
change according to the region. In fact, the real FGMs is not a material with continuous
gradient change in the ideal sense.

3. Asymptotic Homogenization Method

In this section, the local problems and effective properties of FGMs with generalized
periodicity are derived and solved by AHM, and the theoretical closed calculation formulas
for calculating the thermo–mechanical properties of FGMs are obtained, including effective
elastic tensor’s components, effective thermal expansion tensor’s components and effective
thermal conduction tensor’s components.

Let Ω⊂ R3 be a three–dimensional open connected bounded domain with an infinitely
smooth boundary ∂Ω. The equilibrium problem on a thermal mechanical coupling structure
Ω is given by the kinetic equation and heat conduction equation,

∂σij

∂xj
= − fi on Ω, with u = 0 on ∂Ω (3)

∂qi
∂xi

= 0 on Ω, with u = 0 on ∂Ω (4)

where, σ denotes the stress acting on the domain Ω; f is the body force; x is macroscopic
(global) coordinate system; q is the thermal circulation vector.

Stress–strain relationship in linear thermomechanical problem can be expressed
as follows,

δij = Cijkl(εkl − εt
kl) (5)

where, C is the four–order elasticity tensor of the material; ε is the total strain, and εt

denotes thermal strain.
The mechanical strain–displacement relationship and thermal strain be stated as,

respectively,

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(6)

εt
ij = αij∆T (7)

where, u denotes the actual displacement; α is the second–order thermal expansion tensor;
T is the temperature field, and ∆T = T − T0, T0 is the initial temperature.

By substituting Equation (7) into Equation (5), and considering the symmetry of elastic
tensor, the stress can be expressed as follows,

σij = Cijklεkl − βij∆T (8)

where βij = Cijkl·αkl.
For the thermal circulation vector q,

qi = −κij
∂T
∂xj

(9)

where κ is the second–order thermal conductivity tensor.
These coefficients hold the following symmetry relationships, Cijkl = Cjikl = Cklij, βij = βji.

To complete our problem formulation, we compliment the boundary conditions with the
following interphase conditions, ||σij nj|| = 0, ||qini|| = 0, where ||A|| denotes a
discontinuity in the value of A.
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3.1. Asymptotic Analysis and Model Development

It is apparent that the problem at hand is characterized by two scales: the macroscopic
scale of order x which accounts for the variation of the dependent variables from one
unit–cell to the next, and the microscopic scale of order y which accounts for periodicity.
Appropriately, the first step in the asymptotic homogenization technique is the definition
of a new microscopic variable yi as follows,

yi =
xi
ε

(10)

with a constant 0 < ε << 1. Equation (10) represents the ratio of the length unit vector in
the microscopic coordinates to the length unit vector in the macroscopic coordinates.

And the partial derivative becomes,

∇iy =
∂

∂xi
+

1
ε

∂

∂yi
(11)

Then introduction of y necessitates the transformation, through the application of the
chain rule, Equation (3) becomes the following Equation (12) and Equation (4) becomes the
following Equation (13),

∂σij(x, y)
∂xj

+
1
ε

∂σij(x, y)
∂yj

= − fi on Ω, with u(x, y) = 0 on ∂Ω (12)

∂qi(x, y)
∂xi

+
1
ε

∂qi(x, y)
∂yi

= 0 on Ω, with u(x, y) = 0 on ∂Ω (13)

And Equation (8) becomes the following Equation (14), Equation (9) becomes the
following Equation (15),

σij(x, y) =
1
2

Cijkl(y)
{

∂uk(x, y)
∂xl

+
1
ε

∂uk(x, y)
∂yl

}
− βij(y)∆T(x, y) (14)

qi(x, y) = −κij(y)
∂T(x, y)

∂xj
(15)

The next step in the model development is to asymptotically expand the stress and
displacement fields as well as the thermal circulation into infinite series in terms of integral
powers of the small parameter ε. However, According to [61], the first and second order
expansion terms of the AHM are necessary to obtain more micro information regarding
composite structures for the thermo–mechanical problem. This means that the second
order expansion term must be considered to ensure the accuracy of AHM for the thermo–
mechanical problem. Moreover, according to [61], the first two order expansions are
sufficiently accurate for most composite problems in general. Thus, those parameters are
expanded depend on ε,

(1) Basic Expansions

ui(x, y) = u(0)
i (x, y) + εu(1)

i (x, y) + ε2u(2)
i (x, y) + O(ε3) (16)

T(x, y) = T(0)(x, y) + εT(1)(x, y) + ε2T(2)(x, y) + O(ε3) (17)

(2) Derived Expansions

σij(x, y) = σ
(0)
ij (x, y) + εσ

(1)
ij (x, y) + ε2σ

(2)
ij (x, y) + O(ε3) (18)

qi(x, y) = q(0)i (x, y) + εq(1)i (x, y) + ε2q(2)i (x, y) + O(ε3) (19)
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The first items u(0)
i (x, y), T(0)(x, y), σ

(0)
ij (x, y), q(0)i (x, y) in Equations (16)–(19) repre-

sent the physical quantities in macroscale; The second items u(1)
i (x, y), T(1)(x, y), σ

(1)
ij (x, y),

q(1)i (x, y) are the microscale physical quantities; The items u(n)
i (x, y), T(n)(x, y), σ

(n)
ij (x, y),

σ
(n)
ij (x, y) (n = 2, 3, · · · ) are the physical quantities in eventual smaller scales.

To obtain the asymptotic expansion for the mechanical stress and heat flux, substituting
the asymptotic expansion Equations (16)–(19) into the constitutive equations Equations (14)
and (15) and get,

σ
(n)
ij = Cijkl

(
∂u(n)

k
∂xl

+
∂u(n+1)

k
∂yl

)
− βij∆T(n), (n = 0, 1, 2 · · · ) (20)

q(n)i = −κij

(
∂T(n)

∂xj
+

∂T(n+1)

∂yj

)
, (n = 0, 1, 2 · · · ) (21)

where, ∆T(n) (n = 0, 1, 2 · · · ) represents the change of temperature compared with the
initial temperature at the different scales, similar to T(n) (n = 0, 1, 2 · · · ).

Taking the above relations Equations (18) and (19) into the governing Equations (12)
and (13), one can get,

∂σ
(0)
ij

∂xj
+ ε

∂σ
(1)
ij

∂yj
+

1
ε

∂σ
(0)
ij

∂xj
+

∂σ
(1)
ij

∂yj
+ ε2

∂σ
(2)
ij

∂xj
+ ε

∂σ
(2)
ij

∂yj
= − fi (22)

∂q(0)i
∂xj

+ ε
∂q(1)i
∂yj

+
1
ε

∂q(0)i
∂xj

+
∂q(1)i
∂yj

+ ε2 ∂q(2)i
∂xj

+ ε
∂q(2)i
∂yj

= 0 (23)

Subsequently, equating like powers of ε, we obtain a series of differential equations.
For the terms of the stress field expansion,

O(ε−1) :
∂σ

(0)
ij

∂yj
= 0 (24)

O(ε0) :
∂σ

(0)
ij

∂xj
+

∂σ
(1)
ij

∂yj
= − fi (25)

O(εn) :
∂σ

(n)
ij

∂xj
+

∂σ
(n+1)
ij

∂yj
= 0, (n = 1, 2, 3 · · · ) (26)

For the terms of the thermal balance field expansion,

O(ε−1) :
∂q(0)k
∂yk

= 0 (27)

O(εn) :
∂q(n)k
∂xk

+
∂q(n+1)

k
∂yk

= 0, (n = 0, 1, 2 · · · ) (28)

3.2. Asymptotic Homogenization and Governing Equations

(1) For the displacement field problem
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The determination of displacement field problem is Equations (24) and (25). We obtain
σ
(0)
ij , σ

(1)
ij from Equation (20),

σ
(0)
ij = Cijkl

(
∂u(0)

k
∂xl

+
∂u(1)

k
∂yl

)
− βij∆T(0) (29)

σ
(1)
ij = Cijkl

(
∂u(1)

k
∂xl

+
∂u(2)

k
∂yl

)
− βij∆T(1) (30)

Then substituting Equation (29) into Equation (24), we can get,

∂

∂yj

{
Cijkl

∂u(1)
k

∂yl

}
=

∂βij

∂yj
∆T(0) −

∂Cijkl

∂yj

∂u(0)
k

∂xl
(31)

The separation of variables on the right–hand side of the above equation prompts us
to write down the solution of u(1)

n as,

u(1)
n (x, y) = Vn(x) + Nkl

n (y)
∂u(0)

k (x)
∂xl

+ Ln(y)∆T(0)(x) (32)

where, Nkl(y) and L(y) are the local functions of equilibrium problem to be solved, V(x) is
the homogeneous part of the solution.

Substituting Equation (32) into (31), the functions satisfy,

∂

∂yj

{
Cijkl

∂Vn(x)
∂yl

}
= 0 (33)

∂

∂yj

{
Cijkl(y)

∂Nkl
n (y)
∂yl

}
= −

∂Cijkl(y)
∂yj

(34)

∂

∂yj

{
Cijkl(y)

∂Ln(y)
∂yl

}
=

∂βij(y)
∂yj

(35)

Substituting Equation (32) into (29), then,

σ
(0)
ij =

(
Cijkl(y) + Cijmn(y)

∂Nkl
m (y)

∂yn

)
∂u(0)

k (x)
∂xl

−
(

βij(y)− Cijmn(y)
∂Lm(y)

∂yn

)
∆T(0)(x)

(36)
Substituting Equation (36) into (25), and subsequently average over the volume of the

unit–cell. Thus,

1
|Y|
∫

Y
∂σ

(1)
ij (x,y)

∂yj
dv + 1

|Y|
∫

Y

(
Cijkl(y) + Cijmn(y)

∂Nkl
m (y)

∂yn

)
dv ∂2u(0)

k (x)
∂xj∂xl

− 1
|Y|
∫

Y

(
βij(y)− Cijmn(y)

∂Lm(y)
∂yn

)
dv ∂(∆T(0)(x))

∂xj
= − fi

(37)

where, Y is the dimension vector of the unit–cell, and |Y| is the volume of the unit–cell.
Keeping the periodicity of the associated functions in mind and remembering to treat

xi as a parameter as far as integration with respect to y is concerned results in an expression
of the form,

Cijkl
∂2u(0)

k (x)
∂xj∂xl

− βij
∂(∆T(0)(x))

∂xj
= − fi (38)
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With

Cijkl =
1
|Y|

∫
Y

(
Cijkl(y) + Cijmn(y)

∂Nkl
m (y)

∂yn

)
dv (39)

βij =
1
|Y|

∫
Y

(
βij(y)− Cijmn(y)

∂Lm(y)
∂yn

)
dv (40)

The first integral vanishes as a consequence of the periodicity of σ
(1)
ij and following

the application of the divergence theorem.
(2) For the heat conduction problem
According to Equation (28), we can obtain,

∂q(0)k
∂xk

+
∂q(1)k
∂yk

= 0 (41)

Thus, the heat conduction problem can be determined by Equations (27) and (41).
According to Equation (21), substituting and equating like powers of ε, we obtain, for

q(0)k , q(1)k ,

q(0)k (x, y) = −κik(y)

(
∂T(0)(x)

∂xi
+

∂T(1)(x, y)
∂yi

)
(42)

q(1)k (x, y) = −κik(y)

(
∂T(1)(x, y)

∂xi
+

∂T(2)(x, y)
∂yi

)
(43)

Substituting Equation (42) into (27), and then,

∂

∂yk

{
κik(y)

∂T(1)(x, y)
∂yi

}
= −∂κik(y)

∂yk

∂T(0)(x)
∂xi

(44)

The separation of variables on the right–hand side of the above equation prompts us
to write down the solution of T(1) as,

T(1)(x, y) = L′(x) + Mk(y)
∂T(0)(x)

∂xk
(45)

where, M(y) is the local function of equilibrium problem to be solved likes Nkl(y) and L(y),
L′(x) is the homogeneous part of the solution.

Substituting Equation (45) into (44), the functions satisfy,

∂

∂yk

{
κlk(y)

∂L′(x)
∂yl

}
= 0 (46)

∂

∂yk

{
κlk(y)

∂Mi(y)
∂yl

}
= −∂κik(y)

∂yk
(47)

Substituting Equation (45) into (42), then,

q(0)k (x, y) = −
(

κik(y) + κlk(y)
∂Mi(y)

∂yl

)
∂T(0)(x)

∂xi
(48)

Substitute Equation (48) into (41), and subsequently average over the volume of the
unit–cell. Thus,

1
|Y|

∫
Y

∂q(1)k (x, y)
∂yk

dv− 1
|Y|

∫
Y

(
κik(y) + κlk(y)

∂Mi(y)
∂yl

)
dv

∂T(0)(x)
∂xi∂xk

= 0 (49)
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Keeping the periodicity of the associated functions in mind and remembering to treat
xi as a parameter as far as integration with respect to y is concerned results in an expression
of the form,

− κik
∂T(0)(x)
∂xi∂xk

= 0 (50)

With

κik =
1
|Y|

∫
Y

(
κik(y) + κlk(y)

∂Mi(y)
∂yl

)
dv (51)

The first integral vanishes as a consequence of the periodicity of q(1)k and following
the application of the divergence theorem.

Prior to calculating the effective coefficients by Equations (39), (40) and (51), one must
first determine the local functions Nkl

m ; Lm; Mi by Equations (34), (35) and (47) from the
appropriate unit–cell problems.

3.3. Determination of Effective Coefficients

In this section, the equivalent performance of a graded composite considering the
thermo–mechanical coupling effect is studied. Assuming that the graded composite, where
the gradient layers are orthogonal to the axis Ox3 and the constituents of the structure have
an arbitrary isotropic. The graded composite material satisfies the generalized periodicity.
The local function of the composite material with generalized periodicity satisfies a set of
partial differential equations, which is called the local problem on the periodic element.

The coefficients of the equilibrium problem on a thermal mechanical coupling structure
are rapidly oscillating functions. Then, Equations (34), (35) and (47) become,

∂

∂y3

{
Ci3k3(y)

∂Nkl
n (y)

∂y3

}
= −∂Ci3kl(y)

∂y3
(52)

∂

∂y3

{
Ci3k3(y)

∂Ln(y)
∂y3

}
=

∂βi3(y)
∂y3

(53)

∂

∂y3

{
κl3(y)

∂Mi(y)
∂y3

}
= −∂κi3(y)

∂y3
(54)

Integrating once with respect to y3 yields,

∂Nkl
m

∂y3
= −C−1

m3i3Ci3kl + C−1
m3i3 Aikl (55)

∂Lk
∂y3

= C−1
k3i3βi3 + C−1

k3i3Bi (56)

∂Mi

∂y3
= −κ−1

33 κ3i + κ−1
33 Ci (57)

where Aikl, Bi, Ci are constants of integration.
Based on the above relations, and integrating one more time with respect to y3, re-

membering at the same time that the functions Nkl
m (y 3

)
, Lk(y 3) and Mi(y3) are 1–periodic

in y3, results in the following expression for the constants of integration,

Aikl =
〈

C−1
m3i3

〉−1〈
C−1

m3i3Ci3kl

〉
(58)

Bi = −
〈

C−1
k3i3

〉−1〈
C−1

k3i3βi3

〉
(59)

Ci =
〈

κ−1
33

〉−1〈
κ−1

33 κ3i

〉
(60)
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Substituting Equations (58)–(60) into Equations (55)–(57), then,

∂Nkl
m

∂y3
= −C−1

m3i3Ci3kl + C−1
m3i3

〈
C−1

m3i3

〉−1〈
C−1

m3i3Ci3kl

〉
(61)

∂Lk
∂y3

= C−1
k3i3βi3 − C−1

k3i3

〈
C−1

k3i3

〉−1〈
C−1

k3i3βi3

〉
(62)

∂Mi

∂y3
= −κ−1

33 κ3i + κ−1
33

〈
κ−1

33

〉−1〈
κ−1

33 κ3i

〉
(63)

Substituting Equations (61)–(63) into Equations (34), (35) and (47), we can get the
effective elasticity/stiffness coefficients,

CH
ijkl =

〈
Cijkl

〉
−
〈

Cijm3C−1
m3p3Cp3kl

〉
+
〈

Cijm3C−1
m3p3

〉〈
C−1

p3s3

〉−1〈
C−1

s3q3Cq3kl

〉
(64)

βH
ij =

〈
βij
〉
−
〈

Cijm3C−1
m3p3βp3

〉
+
〈

Cijm3C−1
m3p3

〉〈
C−1

p3s3

〉−1〈
C−1

s3q3βq3

〉
(65)

κH
ik = 〈κik〉 −

〈
κ3kκ−1

33 κ3i

〉
+
〈

κ3kκ−1
33

〉〈
κ−1

33

〉−1〈
κ−1

33 κ3i

〉
(66)

where, CH, βH, κH are the effective elasticity tensor, the tensor related to effective thermal
expansion tensor αH and the effective thermal conductivity tensor, respectively. It is noted
that αH can be calculated by βij = Cijkl·αkl.

For the isotropic materials, its elastic constant matrix C6×6, thermal expansion coeffi-
cient matrix α3×3, thermal conductivity coefficient matrix κ3×3 are given by,

C6×6 =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C66 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66

,

α3×3 =

 α11 0 0
0 α11 0
0 0 α11

, κ3×3 =

 κ11 0 0
0 κ11 0
0 0 κ11


(67)

where, C11 = E(1 − v)/[(1 + v)(1 − 2v)], C12 = Ev/[(1 + v)(1 − 2v)], C66 = (C11 − C12)/2.
Thus, the analytical formulas of the effective properties for FGMs are assumed to be

made by a mixture of two isotropic elastic constituents that are derived and we can obtain
the following closed–form formulas,

(1) For the effective elastic tensor’s components,

CH
11 = 〈C11〉 −

〈
C2

12C−1
11

〉
+
〈

C12C−1
11

〉 2〈
C−1

11

〉−1
,

CH
12 = 〈C12〉 −

〈
C2

12C−1
11

〉
+
〈

C12C−1
11

〉 2〈
C−1

11

〉−1
,

CH
13 = CH

23 =
〈

C12C−1
11

〉〈
C−1

11

〉−1
,

CH
33 =

〈
C−1

11

〉−1
,

CH
44 = CH

55 = 1
2

〈
(C11 − C12)

−1
〉−1

,

CH
66 = 1

2
〈

CH
11 − CH

12
〉

(68)

where, <·> is the average. It can be discovered that the FGMs are transversely isotropic and
have 5 independent constants (CH

66 is not an independent constant), the matrix is symmetric.
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(2) For the effective thermal expansion tensor’s components, due to

βH
11 = βH

22 = 〈β11〉 −
〈

C12C−1
11 β11

〉
+
〈

C12C−1
11

〉〈
C−1

11

〉−1〈
C−1

11 β11

〉
,

βH
33 =

〈
C−1

11

〉−1〈
C−1

11 β11

〉 (69)

thus, we can calculate the effective thermal expansion tensor’s components αkl in terms of
the βij = Cijkl·αkl.

(3) For the effective thermal conductivity tensor’s components,

κH
11 = κH

22 = κH
33 = 〈κ11〉 (70)

4. Numerical Results and Discussion
4.1. Validation of the Present Method

This section mainly verifies the validity of the analytical method based on the asymp-
totic homogenization method proposed in this paper. We compare the calculation results
of this method with the theoretical and numerical results respectively, and the correctness
is verified.

Firstly, the composites we studied are FGMs composed of Mo and ZrC. Due to the
lack of relevant experimental data, the results of the present method are compared with
the classical method of Mori–Tanaka for predicting the effective coefficients of composites.
The relevant material parameters at room temperature are given in Table 1. The material
properties calculated by the methods of present and Mori–Tanaka are plotted as a function
of the volume fraction of ZrC in Figure 4. It is observed that for this special material
combination, the homogenized material properties are almost the same as those obtained
by Mori–Tanaka method. Compared with Mori–Tanaka method, CH

11 and CH
66 calculated by

the analytical method are larger, while CH
12 is smaller. On the whole, however, the analytical

results of the AHM are in good agreement with those of the Mori–Tanaka method.

Table 1. The elastic modulus E, Poisson’s ratio v, thermal expansion coefficient α and thermal
conductivity coefficient κ of materials at room temperature (25 ◦C).

Materials E [Gpa] v α [10−6/K] κ [W/(m·K)]

ZrC 400 [10] 0.20 [62] 6.7 [62] 20.52 [63]
Mo 327 [64] 0.293 [65] 4.8 [64] 128.0 [64]
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On the other hand, the equivalent coefficient of Al/SiC fiber reinforced metal matrix
composites was calculated. The elastic modulus of Al and SiC are 70.0 and 450.0 Gpa, and
Poisson’s ratio are 0.30, 0.17, respectively. The homogenized results obtained using the
present method are compared to the results obtained using the AHM on Abaqus [15], as
shown in Figure 5. Three different fiber volume fractions were investigated: 20%, 35% and
55%. The results obtained by [10] are also shown in Figure 5. It is possible to observe that
the homogenized coefficients obtained using the present method are practically the same
as those obtained in [15]. For all the results the differences are less than 1.5%.

In summary, the effectiveness of our present method has been proved. Therefore, the
thermo–mechanical properties of FGMs with different gradient changes will be discussed
according to this method.
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4.2. Effective Elastic Tensor’s Components

In Figure 6, the effective elastic tensor’s components perturbation along the gradient
direction are plotted by selecting distinct component ratio coefficient c0 while fixing the
gradient index as m = 1.0. Assume that the component ratio coefficient varies from c0 = 0 to
c0 = 1.0. For FGMs (c0 6= 0), the variation of effective elastic tensor’s components depends
on the gradient distribution of the component volume fraction, and presents a nonlinear
change trend. With the increase of component ratio coefficient c0, the performance of the
bottom material remains unchanged because there is only the material Mo when z = 0;
However, the material properties in other places except the bottom are changing more
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and more sharply, and the difference of material properties between the top and bottom is
also increasing. This indicates that the larger the component ratio coefficient c0, the more
obvious the difference of local material properties of FGMs; the volume fraction of the
material phase ZrC increases with the increase of c0, which affects the properties of the
material to a great extent.
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66 along the gradient direction
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In Figure 7, when the component ratio coefficient c0 = 1.0 [VZrC:VMo = 0.5:0.5], the
influences of gradient index m on the perturbation of the effective elastic tensor’s compo-
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nent along the gradient direction is shown. It is assumed that the gradient index of volume
fraction varies from m = 0 to m = 10.0. For FGMs (m 6= 0), the variation of the effective
elastic tensor’s components depends on the gradient distribution of volume fraction while
exhibiting similar or anti–similar trends with that shown in Figure 1b. With the increase
of gradient index m, the difference of material properties on the top and bottom surfaces
remains constant, because the materials of these location do not vary with the change of
gradient index m, and they are only related to the volume ratio c0; However, with the
increase of gradient index m, the variation of material properties near the top and bot-
tom surfaces is slower and slower, but the variation of material properties is more severe
when approaching the middle surface, which indicates that the inhomogeneity of material
phase gradient changes leads to the inhomogeneity of material property changes, mainly
determined by the different volume fraction at the current position z/h caused by gradient
index m. The distribution of the material properties of FGMs along the gradient direction
is asymmetric and with a turning point when z/h = 0 which means VZrC:VMo = 0.5:0.5 in
this section.
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4.3. Effective Thermal Expansion Tensor’s Components

The graphs present changes in the effective thermal expansion coefficient tensor’s
components depending on the component ratio coefficient c0 when fixing the gradient
index as m = 1.0 (Figure 8) and the gradient index m when fixing the component ratio
coefficient as c0 = 1.0 (Figure 9).

As can be seen from Figure 8, for FGMs (c0 6= 0), the change of the effective thermal
expansion tensor’s components depends on the gradient distribution of the volume fraction
of the component, and presents a nonlinear change trend. The effective thermal expansion
tensor’s components increase with the increase of ZrC volume fraction, which seems to
indicate that FGMs are easier to deform after thermal shock than Mo, and the thermal
shock resistance of FGMs is not optimized compared with Mo. At the same time, with
the increase of the component ratio coefficient c0, the effective performance of the bottom
surface remains unchanged, but the top surface is larger and larger, i.e., the difference
between the effective thermal expansion tensor’s components of the top surface and
the bottom surface is larger and larger, and the overall difference of FGMs is obvious.
When the structural FGMs change linearly, the nonlinear changes of the effective tensor’s
components of elasticity and thermal expansion are observed, which indicates that the
gradient change not only affects the volume ratio of the component phases, but also leads
to the influence of other aspects on the overall material performance after the two materials
are compounded. Thus, considering the microstructures of FGMs is vital when studying
their effective properties.

In Figure 9, the change of the effective thermal expansion tensor’s components with
the gradient position exhibits a trend similar to FGMs (m 6= 0) shown in Figure 1b. With
the increase of the gradient index m, the effective thermal expansion tensor’s components
are the same as the effective elastic tensor’s components, and the performance difference
between the top surface and the bottom surface remains unchanged, because the materials
at these positions do not change with the change of the gradient index m, but only relate to
the volume ratio c0; However, with the increase of gradient index m, the material properties
near the top and bottom surface change more slowly, but the material properties change
more and more sharply near the middle surface. The effective thermal expansion tensor’s
components of FGMs is asymmetrically distributed along the gradient direction, and there
is a turning point when z/h = 0, i.e., VZrC:VMo = 0.5:0.5.
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4.4. Effective Thermal Conductivity Tensor’s Components

The graphs present the changes in the thermal conductivity tensor’s components de-
pending on the component ratio coefficient c0 when the gradient index m = 1.0 (Figure 10a)
and the gradient index c0 when the component ratio coefficient c0 = 1.0 (Figure 10b).

From Figure 10, the variation of thermal conductivity tensor’s components depends
on the gradient distribution of the component volume fraction, and presents a linear change
trend. The thermal conductivity tensor’s components of the gradient material decrease
with the increase of ZrC volume fraction, which indicates that the internal heat transfer
efficiency of the material is decreasing. When the component ratio coefficient c0 increases,
this decrease is more obvious in Figure 10a; with the increase of the gradient index m, the
range of the overall thermal conductivity does not change, but there are local differences,
and the smaller m, the smaller the local differences in Figure 10b.

Considering the effective tensor’s components of thermal expansion and thermal
conductivity, the change of the effective performance tensor’s components is closely re-
lated to the volume fraction of the component phase. With the increase of ZrC volume
fraction, the thermal expansion tensor’s components of FGMs increases, i.e., FGMs are
more likely to deform when subjected to thermal shock. However, the thermal conductivity
tensor’s components are decreasing, that is to say, it is more difficult to conduct heat in
FGMs. However, in general, the deformation effect of FGMs caused by the increase of
thermal expansion tensor’s components is less than that caused by the decrease of thermal
conductivity tensor’s components, which means that under the same heating conditions,
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FGMs have smaller thermal expansion degree and better thermal shock resistance than
single metal material Mo.
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and unique design of new FGMs structures. 
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5. Conclusions

In summary, a methodology to find the local problems and the effective thermo–
mechanical coefficients equations for structures with generalized periodicity is presented
based on the method of AHM. Following the proposal, the homogenized problem for
FGMs is derived, the relationship between the structure and properties of Mo/ZrC FGMs
is studied. The constituent ratio and the property gradation profiles of Mo/ZrC FGMs
are described by design volume fraction. From the calculation results, it can be observed
that the component ratio coefficient and gradient index have important influences on the
thermo–mechanical properties of FGMs. The component ratio coefficient affects the overall
performance difference of FGMs, while the gradient index affects the local performance
difference. This work opens up the possibility to predict the changing trend of FGMs per-
formance with different gradient structures, and provides guidance for further innovation
and unique design of new FGMs structures.
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