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Abstract: The mineralogical structure of flux films is a critical factor in controlling heat transfer in
the mold and avoiding the longitudinal cracking of slabs during the continuous casting of peritectic
steel. In this study, the layered structure, crystallization ratio, mineralogical species, and morphology
features of flux films were characterized by optical microscopy, X-ray diffraction, and electron-probe
microanalysis. Microstructural observation revealed that the normal flux films for peritectic steels
present a multilayered structure and high crystallization ratio (60~90 vol%), mainly composed of
well-developed crystalline akermanite and cuspidine. In contrast, the films with outstanding flux
characteristics with abundant longitudinal cracks on the slab surface have a low crystallization ratio
(<50 vol%) or vast crystallite content (>80 vol%). Furthermore, heat transfer analysis showed that
the low crystallization ratio and the vast crystallite content of flux films worsen the heat transfer
rate or uniformity in the mold, whereas the appropriate thickness and cuspidine content of flux
films can improve the heat transfer performance. From the above results, it is concluded that using
strong crystalline flux to obtain the ideal mineral phase structure of flux film is one of the important
measures for reducing longitudinal cracks during continuous casting of peritectic steel slabs.

Keywords: crystallization ratio; microstructure; flux film; heat transfer; longitudinal crack; peritectic
steels

1. Introduction

Peritectic steel is widely used in manufacturing high-strength automobile plates and
ship boards with excellent properties of thermoplasticity and machinability [1,2]. Because
of the peritectic reaction during continuous casting of a peritectic steel slab, volume con-
traction and thermal stress congestion of the solidification shell always occur, more easily
causing nonuniform heat transfer and longitudinal cracks [3–6]. Thus, avoiding longitudi-
nal cracks during the continuous casting of peritectic steel slabs remains a challenge.

In order to improve the slab quality, a large amount of research has been carried out on
steel solidification characteristics, continuous casting process conditions, and continuous
casting flux [7–10]. Whereas it can be difficult to change the steel solidification characteristic
and the casting process condition, the mold flux has become a central factor preventing slab
quality defects [11–15]. In-depth knowledge regarding the heat transfer mechanism of mold
flux films is becoming increasingly essential. Shibata et al. [16–18] suggested the average
thickness of mold flux films for various steel grades can be 0.5–1.75 mm and the interfacial
thermal resistance increases with increasing flux film thickness. Tsutsumi et al. [19–22]
measured the surface roughness of solidified flux films using a stylus surface profiler
and analyzed the surface roughness near the mold to correlate and evaluate the air gap
formation. Choi et al. [23–28] considered the crystallization behavior of mold fluxes to be
vital in controlling the overall heat transfer in the mold by means of the mold simulator,
differential thermal analysis, hot thermocouple technique, and confocal laser scanning
microscope. Furthermore, many researchers found that the crystallization ratio of mold flux
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is a key factor in controlling the heat transfer in the mold [29–32]. However, the effect of
mineralogical structure on the heat transfer property of flux films has not been investigated
through a systematic approach.

In this work, the microstructure characteristics of flux films matched for peritectic
steels were investigated by optical microscopy, X-ray diffraction (XRD), and electron-probe
microanalysis (EPMA). Then, the effect of mineralogical structure on the heat transfer
property of flux films was analyzed. The aim of the present work is to ravel out the
relationship between the mineralogical structure of flux films and the longitudinal cracks of
slabs, and then to select the suitable mold flux for avoiding the longitudinal cracks during
continuous casting of peritectic steel slabs. The results will provide a theoretical basis for
optimizing mold flux and improving slab quality.

2. Experimental Section
2.1. Materials

Continuous casting experiments were carried out at Hebei Iron and Steel Group Co., Ltd.
in Shijiazhuang, China. Samples of flux films (see Figure 1) were taken from the meniscus
region (see Figure 2).
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Combined with the surface quality of the slab, four typical samples of flux films were
selected. Sample No. 1 represents flux films with normal slab quality for peritectic steel A,
and sample No. 2 represents flux films with longitudinal cracks on the surface of the slab
for peritectic steel A. It was the same with sample No. 3 and sample No. 4 for peritectic steel
B. Some parameters of the typical flux films and the corresponding slab quality are listed in
Table 1. Chemical compositions and physical properties of mold fluxes for peritectic steels
A and B are listed in Tables 2 and 3.

Table 1. Parameters of mold flux films for peritectic steels.

Peritectic Steel
Number

Flux
Number

Film
Number

Thickness of Liquid Flux
(mm)

Consumption of Mold Flux
(kg·t−1)

Slab
Quality

A F-A
No. 1 10.25 0.596 Normal
No. 2 10.41 0.568 Longitudinal crack

B F-B
No. 3 10.33 0.582 Normal
No. 4 10.32 0.560 Longitudinal crack

Table 2. Chemical compositions of mold fluxes (wt%).

Peritectic Steel
Number

Flux
Number SiO2 Al2O3 MgO CaO Fe2O3 K2O + Na2O MnO F− C H2O

A F-A 28.99 2.74 4.17 35.83 0.57 7.65 1.73 7.46 4.88 0.33
B F-B 31.77 4.18 3.72 36.29 1.03 7.82 1.80 6.87 6.31 0.34

Table 3. Physical properties of mold fluxes.

Peritectic Steel
Number Flux Number Alkalinity Melting Point (◦C) Melting Speed (s) Viscosity (Pa·s) Molten Heavy

(g/cm3)

A F-A 1.24 1050 21 0.108 0.80
B F-B 1.14 1104 21 0.153 0.70

2.2. Methods

In this work, some samples of flux films from the same group were glued together
by epoxy adhesive, and their section along the thickness direction was glued to the slide,
ground to a thickness of 0.03 mm, and eventually made into a polished thin section. In
addition, other samples of flux films and mold fluxes were completely ground to 0.074 mm
before being used.

The thickness, mineralogical composition, crystallization ratio, and microstructure
of flux films were analyzed using the polished thin section with a polarizing microscope
(Axioskop A1 pol, Carl Zeiss Co., Ltd., Bangkok, Thailand). Then, using the polished thin
section with an electron-probe microanalyzer (JXA-8230, JEOL Co., Ltd., Tokyo, Japan), the
chemical compositions of different mineral crystals in flux films were confirmed.

The crystal phase composition of powder-like flux films was detected with an X-ray
diffractometer (BDX-3200, Bruker Co., Ltd., Seongnam-si, Korea) using Cu-Ka radiation
within the scanning range of 10◦ to 80◦. The melting temperature and melting speed of
powder-like mold fluxes were measured using a melting point and melting speed tester
(RDS-04, Northeastern University in China).

The heat flow density (1673 K) and viscosity (1573 K) of mold fluxes were measured
using a mold heat flux simulation and viscosity tester (HF-201, Chongqing University in
China). The experimental procedure was as follows: First, 350 g prepared powder-like flux
was put in a graphite crucible and heated to 1673 K with the MoSi2 furnace of the tester.
Then, the water-cooled sensor was immersed into the liquid slag and measured 10 data
points of heat flow density within 45 s. Then, the sensor was taken out from the liquid slag,
and the flux film adhered to the sensor was obtained (probe diagram of mold heat flow
simulator can be seen in Figure 3). After a period of time, when the temperature dropped
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to 1573 K, a standard rotating spindle was immersed into liquid slag and measured 10 data
points of viscosity.
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To reduce the error, three or more samples were prepared for each mold flux, and the
physical properties of each flux were determined from the average value of the measured
data of samples; the difference among the measured data was no greater than 3%.

3. Results and Discussion
3.1. Mineralogical Composition and Crystallization Ratio of Flux Films

As the formation of flux films in a mold is affected by complex factors, the composition,
content, morphology, and size of the crystalline minerals are obviously different, showing
the variant heat transfer capacity. When the heat transfer capacity of flux films is poor,
it will often lead to longitudinal cracks during casting crack-sensitive steel. In this work,
mineralogical compositions, proportions, and crystallization ratio of flux films for the
peritectic steels were quantitatively analyzed by using a polarizing microscope.

The polarizing microscope analysis results (Table 4 and Figure 4) show that the main
crystalline minerals of flux films for steel A are akermanite, cuspidine, and wollastonite.
The crystallization ratio of flux films for steel A varies widely. The crystallization ratio
of flux films with good slab quality reaches 85~90%, and the content of akermanite is as
high as 75~80%. The glass phase of flux films with longitudinal cracks on the slab surface
increases obviously, and their crystallization ratio is only 45~50%.

Table 4. Mineralogical compositions, proportions, and crystallization ratio of flux films (vol%).

Peritectic Steel
Number

Film
Number

Slab
Quality Cuspidine Akermanite Wollastonite Glass Phase Crystallization

Ratio

A
No. 1 Normal 10~15 75~80 1~5 5~10 85~90
No. 2 Longitudinal crack 25~30 20~25 1~5 45~50 45~50

B
No. 3 Normal 40~45 20~25 <1 30~35 60~65
No. 4 Longitudinal crack 12~17 80~85 <1 1~5 >95

In contrast, the main crystalline minerals of flux films for steel B are akermanite,
cuspidine, and a small account of wollastonite. The crystallization ratio of flux films with
good slab quality is as low as 60~65%, but the content of cuspidine is as high as 40~45%.
Though the crystallization ratio of flux films with longitudinal cracks on the slab surface is
as high as 95%, the content of well-shaped cuspidine is only 12~17%, and the remaining
content is akermanite crystallites.
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According to the backscattered electron (BSE) micrographs and energy-dispersive
spectrometer (EDS) images from the electron-probe microanalyzer (Figures 5 and 6), it can
be found that a large number of granular crystals and interlaced crystals are melilite, and a
small number of spearhead-shaped crystals are cuspidine. Melilite has many isomorphisms
such as akermanite (2CaO•MgO•2SiO2) and gehlenite (2CaO•Al2O3•SiO2). Their optical
properties are similar, so it is difficult to distinguish them by microscope. However, it can
be seen from the XRD analysis results (Figure 7) that the melilite in the flux film mainly is
akermanite (2CaO•MgO•2SiO2).

The crystallization ability of flux films directly affects the heat transfer in the mold. The
flux film with low crystallization has low roughness, which makes thermal conductivity
become high, and low precipitation of minerals with higher melting points decreases
the interfacial thermal resistance, which may lead to surface longitudinal cracks in the
peritectic steel. The mineralogical structure of the flux film determines the quality and
production efficiency of the slab. The crystallization ratio of the flux film No. 2 for steel A
with longitudinal cracks on the slab surface is obviously lower, worsening the heat transfer
uniformity in mold, which is one of the causes of longitudinal cracks of slabs. However,
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the cuspidine content of the flux film No. 4 for steel B with longitudinal cracks on the slab
surface is only 12~17%, which may bring about an excessive heat transfer rate causing
longitudinal cracks to occur on the surface of the slab. Moreover, the vast akermanite
crystallite content in the flux film No. 4 can cause heat transfer nonuniformity in the mold.
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3.2. Microstructure of Flux Films

The layered structures, mineralogical species, and morphology features of flux films
were analyzed and determined using polarizing microscopy. The layered structure of
normal flux film for steel A is obvious, and the crystallizing layer accounts for a large area
of the flux film (Figure 8a). The normal flux film of steel B exhibits a typical two-layered
structure, and part of the flux film has a multilayered structure (Figure 8c). Compared
with the glass layer near the mold side of the two normal flux films, the flux film of steel
A has a higher degree of discontinuity than the flux film of steel B. The layered structure
of flux film for steel A with longitudinal cracks is a typical three-layered structure with
glass–crystalline–glass layers (Figure 8b). The crystallizing layer of flux film for steel B with
longitudinal cracks accounts for all the flux film (Figure 8d).
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The research results show that the flux films have differences in microstructure, es-
pecially in the mineral morphology and particle size. The akermanite and wollastonite in
the crystal layer of the flux films are distributed alternately on the shell side, which has an
obvious boundary with the cuspidine. The akermanite of the flux films for steel A is more
prone to be intertexture-shaped near the shell side and to have a radial and chrysanthemum
shape on the mold side. However, the akermanite of flux films for steel B is particle-shaped
crystallites with small grain size, and the coarse granular and spearhead-shaped cuspidine
of the flux films is concentrated on the mold side.

3.3. Heat Transfer Property of Flux Films

The heat flux density can be defined as the amount of heat that passes through the
flux film per unit cross-sectional area and per unit time. In this study, the heat flow density
of mold fluxes was measured by using the mold heat flux simulator when the temperature
was maintained at 1673 K, and the measurements represent maximum and minimum heat
transfer and heat transfer uniformity. The heat flow density of mold fluxes for peritectic
steels was measured at different times by the simulator, as shown in Figure 9. The maximum
heat flow density represents the heat transfer capacity of flux films at the meniscus, and the
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average heat flow density reflects the heat transfer capacity of flux films in the middle and
upper part of the mold. The heat transfer test revealed that the heat flow density decreases
gradually as the cooling water pass time is increased. The maximum and average heat flow
densities of flux films for steel A are higher than those of flux films for steel B, and the same
law applies to the heat transfer property for these films.
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3.4. Discussion

The relationship between the heat flow density and the mineralogical structure of flux
films is presented in Figure 10. It can be seen that the greater the thickness of the slag film
is, the lower the hindrance to the heat flux is. The greater the crystalline phase of flux film,
the less the obstruction to the heat flow. Furthermore, the high crystallization of the flux
film promotes an increase in its solidification thickness. However, early studies [33,34] on
heat transfer ignored the influence of the mineralogical composition and proportion of
flux films in the casting of peritectic steels. Instead, these studies considered that more
resistance to heat transfer arises from the higher crystallization ratio or thickness of flux
films. Thus, they were unable to explain the phenomenon of heat flow density dropping
and becoming smaller than expected at the lower crystallization ratio and film thickness.
As shown in Figure 10, the thickness and the heat flow density of flux films for steel A
are higher than those of flux films for steel B. According to the thermal conductivity of
minerals, cuspidine has the lowest thermal conductivity among all the mineral phases of
flux films. With respect to the mineralogical structure of flux films for steel B, the content of
cuspidine is as high as 40~45%, which can increase the thermal resistance of the flux film
and maintain the suitable heat transfer rate and uniformity in mold all the time. In addition,
there is an exception in Figure 10: the heat flow density drops and becomes smaller at the
90% crystallization ratio of the flux film; it seems perfectly natural to ascribe this to the
bigger thickness and higher crystallization ratio of the flux film with the lower impact of
cuspidine content. Therefore, considering the effect of the mineralogical structure of flux
films on heat transfer in the mold and slab quality, this study carried out a comprehensive
work and found that the mineralogical compositions and proportions can also be a key
factor in controlling heat transfer suitable for the slab quality, so it is different from previous
investigators’ observations which incorrectly ascribed this effect to the crystallization ratio
or thickness of flux films.
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Flux films of peritectic steel with longitudinal cracks generally have lower crystalliza-
tion ratios and crystal growth levels than the normal flux films. The direct cause of vast
longitudinal cracks on the peritectic steels is the abnormal microstructure of flux films,
which may be caused by the inappropriate chemical components of flux and the cooling
condition of the mold. The crystallization ratio of the unqualified films for steel A with
longitudinal cracks may be only 45~50%. Compared with the reasonable flux films for steel
B, the unqualified films have a mass of akermanite crystallite and the crystallization can
abnormally reach 80% or more. All of these results suggest that the primary reasons for
longitudinal cracking on the slab surface of the peritectic steels are the low crystallization
ratio and the vast crystallite content, which can decrease the thermal resistance of flux films
and worsen the heat transfer rate and uniformity.

In view of the strong crack sensitivity of peritectic steel, the longitudinal crack ratio
of the slabs can be reduced by improving the mineralogical structure of the flux films.
However, if the heat transfer is controlled only by enhancing the crystallization capacity, the
balance between the heat transfer and lubrication properties of the flux films may be lost.
So, during continuous casting of peritectic steels, the contradiction between heat transfer
and lubrication should be considered comprehensively, and the optimum mineralogical
structure of flux films should be obtained through reasonable composition regulation of the
mold flux. In this work, it is recommended that the content of (CaO/SiO2) or (Na2O + K2O)
of the mold flux for steel A should be properly increased. While maintaining high alkalinity
(CaO/SiO2), the CaF2 content of the mold flux for steel B should be increased appropriately.

4. Conclusions

The influence of the mineralogical structure of mold flux films on heat transfer in the
mold during the continuous casting of peritectic steels for avoiding the longitudinal cracks
of slabs has been investigated. The following conclusions can be drawn:

(1) The mineralogical structure of normal flux films during the continuous casting of peritec-
tic steels presents a multilayered structure with a high crystallization ratio (60~90 vol%),
mainly composed of well-developed crystalline akermanite and cuspidine.

(2) Flux films for peritectic steels with longitudinal cracks have a lower crystallization ra-
tio and crystal growth level than the normal flux films have, showing the characteristic
of low crystallization ratio (<50 vol%) or vast crystallite content (>80 vol%).

(3) The results from heat transfer analysis confirmed that the mineralogical composition
and proportion of flux films is a key factor in controlling heat transfer during the
casting of peritectic steels. The more glass phase and crystallite flux films have, the
worse the heat transfer rate and uniformity in the mold are.
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(4) Using strong crystalline flux to obtain an ideal mineral phase structure of flux films
is one of the important measures for reducing the longitudinal cracking of peritectic
steels, and the ideal mineral phase is characterized by a high crystallization ratio
(>60 vol%), without the vast crystallite content, and as much cuspidine content
as possible.
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