
����������
�������

Citation: Hofmeister, A.M.; Criss,

E.M.; Criss, R.E. Thermodynamic

Relationships for Perfectly Elastic

Solids Undergoing Steady-State Heat

Flow. Materials 2022, 15, 2638.

https://doi.org/10.3390/

ma15072638

Academic Editor: Anton Trník

Received: 26 February 2022

Accepted: 28 March 2022

Published: 3 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Thermodynamic Relationships for Perfectly Elastic Solids
Undergoing Steady-State Heat Flow
Anne M. Hofmeister 1,*, Everett M. Criss 2,† and Robert E. Criss 1

1 Department of Earth and Planetary Science, Washington University, St. Louis, MO 63130, USA;
criss@wustl.edu

2 H10 Capital, 2401 4th Avenue, Suite 480, Seattle, WA 98121, USA; everett@h10capital.com
* Correspondence: hofmeist@wustl.edu; Tel.: +1-314-9357-440; Fax: +1-314-9357-361
† E. M. Criss is an employee of H10 Capital, but prepared this article independent of his employment and

without use of information, resources, or other support from H10 Capital.

Abstract: Available data on insulating, semiconducting, and metallic solids verify our new model
that incorporates steady-state heat flow into a macroscopic, thermodynamic description of solids,
with agreement being best for isotropic examples. Our model is based on: (1) mass and energy
conservation; (2) Fourier’s law; (3) Stefan–Boltzmann’s law; and (4) rigidity, which is a large, yet
heretofore neglected, energy reservoir with no counterpart in gases. To account for rigidity while
neglecting dissipation, we consider the ideal, limiting case of a perfectly frictionless elastic solid
(PFES) which does not generate heat from stress. Its equation-of-state is independent of the energetics,
as in the historic model. We show that pressure-volume work (PdV) in a PFES arises from internal
interatomic forces, which are linked to Young’s modulus (Ξ) and a constant (n) accounting for cation
coordination. Steady-state conditions are adiabatic since heat content (Q) is constant. Because
average temperature is also constant and the thermal gradient is fixed in space, conditions are
simultaneously isothermal: Under these dual restrictions, thermal transport properties do not enter
into our analysis. We find that adiabatic and isothermal bulk moduli (B) are equal. Moreover, Q/V
depends on temperature only. Distinguishing deformation from volume changes elucidates how
solids thermally expand. These findings lead to simple descriptions of the two specific heats in solids:
∂ln(cP)/∂P = −1/B; cP = nΞ times thermal expansivity divided by density; cP = cVnΞ/B. Implications
of our validated formulae are briefly covered.

Keywords: steady state; heat; flux; perfectly frictionless elastic solids; Young’s modulus; energy
reservoirs; interatomic forces; heat capacity; bulk modulus; thermal expansivity

1. Introduction

Classical thermodynamics is an important tool in the physical sciences and engineer-
ing. Nevertheless, the equations and postulates developed in the 1800s should be called
“thermostatics”, since time-dependent behavior is not part of this historic model [1]. Yet,
dynamic, evolutionary behavior is ubiquitous. The flow of heat and its radiation from the
system of interest are integral components of real processes. Idealizations needed to avoid
addressing dynamic behavior in thermostatics are connected with restrictive approxima-
tions. A key example is the concept of reversibility, which is still currently debated [2].
Perceived reversibility rests on restoring changes in a system at the expense of altering the
surroundings, which are neglected in such assessments, e.g., [3].

The macroscopic theory of “thermostatics” predates a rudimentary understanding of
atomic structure and acceptance of light and heat as being the same phenomenon [4]. These
omissions are understandable as they pertain mainly to microscopic behavior. Stefan’s
observation of heat flux linking to temperature and Fourier’s theory of heat transfer, both
from the 1800s, were not considered. The last omission was a significant error [5] because
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Fourier’s depiction of heat, a key entity in thermostatics, is likewise macroscopic. Key
aspects of both laws and their relevance to thermostatics are as follows:

First, Fourier assumed that as heat flows through a sample, some heat is stored in
mass elements along its path, while another fraction moves from element to element during
flow. Regarding the latter fraction, Fourier defined the key, dynamic quantity of flux (=,
heat per area per time) and related it to the temperature (T) gradient:

= = −κ∇T, or in one dimension := = −κ(T, P)
∂T
∂L

= −L̂
∂T
∂L

κ(T, P) (1)

where κ is thermal conductivity, P is pressure, and volume, V, goes as L3 in an isotropic
medium. The unit vector denotes the specific direction of heat flow. Because any matrix
representation can be diagonalized, the one-dimensional Cartesian form on the right-hand
side (RHS) embodies the physics of heat transport.

Equation (1) states that net heat flows down the thermal gradient, which is equivalent
to rudimentary articulations of the 2nd law (e.g., [6]). For gas, a thermal gradient stratifies
density, generating unopposed buoyancy forces that cause convection. Yet, Equation (1)
shows that under time-independent circumstances, the thermal gradient in solids is a
vector quantity that is completely established by the transport property κ and experimental
(boundary) conditions. The rigidity of solids permits heat to flow from the hot to the cold
end without the net momentum transport that is inherent to gases.

Second, flux is universally tied to temperature via Stefan–Boltzmann’s law, thereby
linking a dynamic entity to a key variable which is presumed to be static in the classical
model. Stefan showed experimentally circa 1872 that radiated flux from all frequencies of
light from a graphite-coated metal filament per area per time is:

= = σSBT4, (2)

where the Stefan–Boltzmann constant, σSB = 5.670× 10−8 Wm−2K−4 describes a blackbody
(see Section 2.1). Temperature is thus defined by heat loss to the surroundings. In classical
thermostatics, T is related to heat content Q, but not in a simple way, e.g., [6].

Third, time (t) is an explicit variable in Fourier’s second equation, which is obtained
by taking a spatial derivative of Equation (1) and conserving energy. In 3-dimensions:

ρcP
∂T
∂t

= ∇·(κ∇T), (3)

where ρ is density and cP is specific heat (on a per mass basis). Thermal conductivity
governs the thermal evolution of a system, embodying how much heat is flowing and how
fast. When changes in T are small, Equation (3) simplifies to:

∂T
∂t

= D∇2T, or in one-dimension :
∂T
∂t

= D
∂2T
∂L2 . (4)

Thermal diffusivity (D) is also a dynamic property, describing the rate at which T
evolves, independent of the amount of heat that is flowing. By definition:

κ

D
= ρcP = C. (5)

The static properties of the middle term can be individually measured. Their product
C, called storativity, describes heat capacity on a per volume basis. Its importance in
Equation (3) stems from diffusion depending on length-scale [3,7].

Last, heat transfer under pressure involves the P dependence of specific heat. The
classical equation:

∂cP
∂P

= −TV
(

α2 +
∂α

∂T

)
, historical (6)
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depends on thermal expansivity, α ≡ V−1∂V/∂T. This historical identity thus portrays
the response of a static property to compression (P on the left-hand side, LHS) as arising
from changes caused by heating (T and α on the RHS). Yet, diverse observations show that
solids respond to heating and to compression in different ways, as embodied in the quasi-
harmonic model of solids [8]. In particular, examining accurate experimental measurements
of the P dependence of κ for 20 different solids that also had accurate material properties
suggests that ∂(lncP)/∂P depends simply on the inverse of the isothermal bulk modulus,
BT = −V(∂V/∂P)−1 [7].

1.1. Different Behaviors of Solids and Gases May Affect Thermostatic Equations

Gas behavior is of long-standing importance to basic physics. Because solids behave
much differently than gases (Figure 1), the same equations need not apply to these two
distinct states of matter.
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Figure 1. Summary and comparison of the characteristics of solids and gases most relevant to heat
and its flow. The shear modulus, G, describes a special type of stored energy in solids, which is part
of the elastic energy, the main reservoir. Atoms are shown as balls, with dotted arrows indicating
direction of long-distance motions. Sine waves without arrowheads indicate local, back-and-forth,
microscopic motions.

Constructs for heat storage in gas and solids must each account for differences in
the types of energy stored, plus restrictions on converting energy between the different
reservoirs. Crucially, for solids, heat transfer is independent of mass diffusion, as shown by
Hofmeister and Criss [9]. Heat may be stored in the cyclical and microscopically localized
vibrations of interatomic bonds in solids, but its transport across the solid does not involve
net displacement of the atoms or deformation of their structural arrangement. Moreover,
the vibrations cannot be the main energy reservoir of the solid because these constitute
perturbations of the atoms from their static positions. Geometrical constraints limit average
displacements to circa interatomic distances. These behaviors stem from solid matter’s
strength and hallmark characteristic of rigidity (Figure 1). Solids deforming under shear
stress greatly contrasts with behavior of gases, which flow under any stress and in which
heat moves with the translations of its molecules. Thus, energy in a solid is essentially
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potential (stored) energy, whereas much of the energy in a gas is kinetic (translational)
energy. For monatomic gas, all energy is translational.

1.2. Purpose and Limitations of the Paper

The present paper derives new relationships among thermostatic variables and prop-
erties for solids by considering steady-state heat transfer, which involves variations of T
with position, but not with time. Isotropic solids are the focus for simplicity, availability of
data, and because these embody the physical principles. Perfectly frictionless elastic solids
(PFES) which do not generate heat as a function of time during changes are consistent
with diverse equation-of-state (EOS) formulations. These formulations do not specify the
energy difference between different states, so they effectively neglect how work and/or
heat change V, P, and/or T. Mass, charge, and energy are conserved in our analysis.

Our model is macroscopic. Macroscopic approaches can provide a simple description
of things that can be measured or sensed, and require no special assumptions concerning the
nature of matter, yet yield straightforward, testable predictions that can disclose theoretical
connections between measurable quantities [10]. Validation is a key component of any such
endeavor. In this report, validation is mostly limited to isotropic solids for simplicity and
to focus on physical principles.

Modeling transport properties, which describe time-dependent interactions and more-
over depend on the length-scale [3,7], is beyond the scope of the present paper. Static
physical properties (e.g., specific heat, storativity, thermal expansivity) are investigated
here. Bulk moduli are part of classical theory, but shear moduli (G) are not. We focus on the
heretofore neglected elastic moduli because these are essential to describe the forces inside
a solid and therefore its energetics.

1.3. Organization of the Paper and Key Results

Section 2.1 discusses the crucial connection of broadband thermal emissions with
temperature. Section 2.2 specifies why steady-state conduction in solids constrains both
adiabatic and isothermal responses. Section 2.3 covers the equation-of-state for an isotropic
PFES and explains why describing work requires an additional property, namely Young’s
modulus. Section 2.4 uses elastic properties of isotropic solids to derive formulae for the P
and T dependencies of heat capacity and heat storage. Section 3 evaluates our formulae
and historic formulae against experimental results, focusing on ambient conditions due to
accuracy and availability of data. For the reader’s convenience, Table 1 lists new, useful
formulae for solids and the sections where these were derived and confirmed. Section 4
summarizes key findings and discusses implications of our results for basic and applied
sciences. Section 5 concludes.

Table 1. Physical properties of perfectly frictionless elastic solids under steady-state heat flow.

New Formula Theory Experimental Confirmation

BT = B from elasticity
measurements Sections 2.3.2 and 2.3.6 Section 3.1

(ambient and elevated T)

1
cP

∂cP
∂P

∣∣∣
T
' − 1

BT
≡ 1

V
∂V
∂P

∣∣∣
T

Section 2.4.2 Section 3.2
(ambient T)

α
ρcP

∝ 1
Young′s modulus

Section 2.4.6 Section 3.3
(ambient and elevated T)

2. Theoretical Description of Solids Conducting Heat in Steady State
2.1. Link of Temperature to Heat Flux

Temperature is a macroscopic property arising from the thermal energy of an object,
which differs from, but is related to, its heat content (Q). The direct link between T and heat
flux (2), historically established for solids, pertains to this complicated relationship.
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In detail, total flux includes all emitted light, and is obtained by integrating the
intensity (I) over frequency (ν):

=(T)= 4π
∫ ∞

0
I(ν, T)dν, (7)

where = is measured over a spherical surface enclosing the emitting object.
Difficulties in measuring absolute intensity are well-known (e.g., Figure 2). Hence,

idealized behavior of a perfectly absorbing blackbody (BB) has been the theoretical focus.
Planck’s function for this unachievable idealization (for ν in Hertz) is:

IBB(ν, T) =
2hν3

c2
1

exp(hν/kBT)− 1
, (8)

where h = Planck’s constant, c = lightspeed, and kB is Boltzmann’s constant.
Because all hot matter emits thermal radiation, Equation (7) omits the subscript BB.

The simplest scenario approximating reality is that of a greybody where I = ξIBB and
emissivity (ξ) is independent of both ν and T. Metals and graphite were used in classic
experiments (Figure 2) because these strongly absorb and have optical functions that
vary slowly with ν and T. Transparent material (e.g., silicate glasses) also have emissions,
but these are related to IBB in a complicated manner that depends on the size of the
object, absorption characteristics, surface reflections, and thermal gradients [11]. Gases are
extremely transparent and were historically considered not to emit.
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2.1.1. Wien’s Law 

Figure 2. Emission curves of cavity radiation at 1370 K from Coblentz [12] compared to a near-IR ab-
sorption spectrum of natural fluorite (green curve, with an arbitrary y-scale). Dashed line = raw data,
labeled “prismatic”. Solid curve with small dots = corrected data. Solid line with circles = the ideal
Planck curve. Arrows indicate points Coblentz [12] used to fit the blackbody curve and determine
the maximum. He omitted regions connected with atmospheric absorptions, in which features are
partly due to use of natural fluorite as a prism, and in which material contains impurity bands.

2.1.1. Wien’s Law

Wien’s historical experiments showed that the peak wavelength (λ) for a greybody is
inversely proportional to T:

λpeak =
b
T

or νpeak =
w3kB

h
T where λpeak 6=

c
νpeak

(9)
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where b = 2897.8 µm K−1 was experimentally determined. The irrational number w3
(~2.821439) on the RHS was derived from IBB (Equation (8)) by numerically solving a
transcendental equation [13,14]. Thus, ascertaining T from Equation (9) implicitly assumes
a broad and skewed spectrum of a greybody (Figure 2), whereby νmax differs from c/λmax.

Thermal emission spectra are unlike spectra of discrete transitions, which have
νpeak = c/λpeak with an intensity that is symmetric, or nearly so, about the characteris-
tic frequency. Energy with a certain narrow frequency range is used to stimulate specific
processes, e.g., laser light causes electronic transitions whereas sound waves cause low-
frequency motions. However, heating a material requires redistributing the energy that is
applied in some specified frequency range, which may be quite narrow, to the wide range
of frequencies that comprise the thermal emissions of the material (Figure 2).

2.1.2. Repercussions of Temperature Depending on Emitted Flux and Spectral Properties

Three facts derived from experiment and theory point to classical thermostatics incom-
pletely describing solids:

1. The hallmark of a hot dense body is that it emits heat over a wide spectral range
(Figure 2). This unavoidable loss signifies that its state is dynamic, not static.

2. Temperature governs the total flux emitted, with the following caveat:
3. Because thermal emissions depend on the spectral properties of the material, Q may

also depend on characteristics beyond the static physical properties considered in the
historical model.

2.2. Connection of Steady-State Behavior with Coincident Adiabatic and Isothermal Conditions

Spherical geometries are conducive to examining total heat flux (Section 2.2.1). In
contrast, Cartesian geometries are amenable for monitoring heat transfer across a solid
(Section 2.2.2).

2.2.1. Spherical Coordinates

Stefan–Boltzmann’s law, Equation (2), specifies a unique temperature for an object.
Constant flux is implied: if the heat lost from a spherical object exceeds the energy input,
the body cools, and conversely, if losses are retarded (e.g., via an insulating wrap), the body
warms. In Stefan’s experiments, and in lightbulbs, electrical energy supplied at the center
(Figure 3a) maintains surface output. For stars, interior nuclear fusion maintains a nearly
constant outward flux. In these examples, flux from the much colder surroundings to the
object can be neglected.

Materials 2022, 15, x FOR PEER REVIEW 6 of 42 
 

 

Wien’s historical experiments showed that the peak wavelength (λ) for a greybody 
is inversely proportional to T: 

3    or      where   B
peak peak peak

peak

b w k c
T

T h
  


  

 
(9)

where b = 2897.8 μm K−1 was experimentally determined. The irrational number w3 
(~2.821439) on the RHS was derived from IBB (Equation 8) by numerically solving a tran-
scendental equation [13,14]. Thus, ascertaining T from Equation (9) implicitly assumes a 
broad and skewed spectrum of a greybody (Figure 2), whereby νmax differs from c/λmax. 

Thermal emission spectra are unlike spectra of discrete transitions, which have νpeak 
= c/λpeak with an intensity that is symmetric, or nearly so, about the characteristic fre-
quency. Energy with a certain narrow frequency range is used to stimulate specific pro-
cesses, e.g., laser light causes electronic transitions whereas sound waves cause 
low-frequency motions. However, heating a material requires redistributing the energy 
that is applied in some specified frequency range, which may be quite narrow, to the 
wide range of frequencies that comprise the thermal emissions of the material (Figure 2). 

2.1.2. Repercussions of Temperature Depending on Emitted Flux and Spectral Properties 
Three facts derived from experiment and theory point to classical thermostatics in-

completely describing solids: 
1. The hallmark of a hot dense body is that it emits heat over a wide spectral range 

(Figure 2). This unavoidable loss signifies that its state is dynamic, not static. 
2. Temperature governs the total flux emitted, with the following caveat: 
3. Because thermal emissions depend on the spectral properties of the material, Q may 

also depend on characteristics beyond the static physical properties considered in 
the historical model. 

2.2. Connection of Steady-State Behavior with Coincident Adiabatic and Isothermal Conditions 
Spherical geometries are conducive to examining total heat flux (Section 2.2.1). In 

contrast, Cartesian geometries are amenable for monitoring heat transfer across a solid 
(Section 2.2.2). 

2.2.1. Spherical Coordinates 
Stefan–Boltzmann’s law, Equation (2), specifies a unique temperature for an object. 

Constant flux is implied: if the heat lost from a spherical object exceeds the energy input, 
the body cools, and conversely, if losses are retarded (e.g., via an insulating wrap), the 
body warms. In Stefan’s experiments, and in lightbulbs, electrical energy supplied at the 
center (Figure 3a) maintains surface output. For stars, interior nuclear fusion maintains a 
nearly constant outward flux. In these examples, flux from the much colder surroundings 
to the object can be neglected. 

 
 
 
 
 
 
 
 
 
 
 

surroundings 

Tsurface 
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 

Figure 3. Schematics of conditions: (a) Spherical symmetry, which also applies to radial flow in a very
long cylinder. Matter (grey circle) emits heat in accord with its temperature (orange squiggle arrow),
but emissions are actually sampled from a surface boundary layer (stippled green shell). Constant
flux is maintained either by a source (star) and/or externally (blue arrow); (b) Longitudinal flow in
Cartesian (or cylindrical) symmetry. At steady state, flux along the special direction is a constant that
is independent of position, so the axial thermal gradient is independent of time, and perpendicular
slices are isothermal.
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When rates of heat input at the center and output at the surface are the same, over
any given time interval the amount of heat delivered and released is also identical: thus,
conditions are adiabatic.

Isothermal conditions are commonly depicted as constant T over some significant
expanse of space. However, because heat flow is ever-present per Equation (2) and different
materials conduct heat at different rates, thermal gradients are unavoidable in a medium
with finite size, per Equation (1). Boundary layers exist below spherical surfaces, since
the object has both T and thermal conductivity that differ from those of the surroundings.
For example, light from the sun originates in the photosphere (~600 km thick), which
constitutes a boundary layer, being miniscule compared to the solar radius. Nearly grey
emissions in the cavity experiments of Wein and Coblentz arise from the graphite coating,
because their glass substrates have peaks in the infrared region, but are transparent at
higher frequencies; see Figure 2.

In the laboratory, an apparatus (hot surroundings) provides finite flux into the material
(=surroundings = =in: Figure 3a). Steady state requires:

=in = =out = constant (10)

At any moment, heat in = heat out, and so conditions are adiabatic. However, condi-
tions are also isothermal because the temperature profile remains static in time and space.
Specifically, at any given point (center, surface, or in between), some constant T is measured.
Hence, thin spherical shells inside the body are isothermal. Likewise, the average T of the
body is constant under steady state. Furthermore, its thermal gradient can be very small if
=in and κ are low, thus approaching large regions of constant T.

Radial heat flow in a cylinder behaves like the sphere. The key difference is that the
source would be a line, not a point.

2.2.2. Longitudinal Flow in Cylindrical Geometry and in Cartesian Systems

To investigate behavior inside a solid, heat transfer experiments use geometries where
both input and output are measured or controlled. Longitudinal flow (Figure 3b) is com-
monly used as this is one-dimensional and is described by Cartesian coordinates, even if
the object is cylindrical. Boundary conditions exist: this paper follows Fourier, who treated
these as distinct from conditions inside the material.

During steady-state conditions, the source and sinks of heat at the ends balance, so
Equation (10) applies, and conditions are adiabatic. Furthermore, the heat flux is constant
through any slice perpendicular to the thermal gradient, and the latter does not change
with time, so the temperature in each perpendicular slice is likewise constant. However,
because the source is at one end, and the loss is at the other, a thermal gradient exists from
Tsource at x = 0 to Tsink at x = L. It is immaterial whether the flux is radiatively applied (as
in laser-flash analysis, LFA) used to measure D) or is supplied by electrical heating, or by
contact with a hot plate. This equivalence has been amply demonstrated by benchmarking
LFA against conventional heat transport measurements of metals, e.g., [15].

High κ and small = produce shallow gradients, and so the limiting case of the whole
body being a single temperature is approachable. However, because heat is emitted at any
finite temperature, Equation (2), the gradient is never identically zero everywhere.

2.3. Equations of State, Elastic Behavior, and Work

The EOS is encapsulated as f(V,P,T) = 0, where f is some function. Behavior of V
along each of the P and T axes provide important constraints. For simplicity, equations for
isotropic solids are presented here. Importantly, f maps out the equilibrium behavior of a
material, but contains no information on the processes of expansion or contraction.
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2.3.1. Classical Definitions and Their Link to Mathematical Constraints

One key physical parameter in the EOS is thermal expansivity:

αP ≡
1
V

∂V
∂T

∣∣∣∣
P

. (11)

The T dependence of α is specific to any given material. For an isotropic substance,
linear expansivity is 1/3rd of the volumetric expansivity, defined in Equation (11).

Another key parameter is compressibility:

βT ≡ −
1
V

∂V
∂P

∣∣∣∣
T
=

1
ρ

∂ρ

∂P

∣∣∣∣
T
=

1
BT

, (12)

where BT is the bulk modulus. Its P dependence is likewise specific to the material of
interest. Their second-order cross-derivatives are interdependent:

∂α

∂P

∣∣∣∣
T
= − ∂β

∂T

∣∣∣∣
P
=

1
B2

T

∂BT
∂T

∣∣∣∣∣
P

. (13)

A convenient dimensionless parameter, known as the 2nd Grüneisen parameter, stems
from Equation (13):

δT ≡ −
BT
αP

∂α

∂P

∣∣∣∣
T
= − 1

αPBT

∂BT
∂T

∣∣∣∣
P

. (14)

The final important EOS relationship is obtained by setting dV = 0 in the mathematical
identity:

dV =
∂V
∂P

∣∣∣∣
T

dP +
∂V
∂T

∣∣∣∣
P

dT, (15)

which gives the so-called thermal pressure:

∂P
∂T

∣∣∣∣
V
= − ∂V

∂T

∣∣∣∣
P

/
∂V
∂P

∣∣∣∣
T
=

αP
βT

= αPBT . (16)

Actually, Equation (16) describes an isochore. Similarly, setting dP = 0 in Equation (15)
makes αP the relevant parameter, whereas setting dT = 0 in Equation (15) makes BT the
defining property. Thus, Equations (11) and (12) describe behavior along an isobar and
isotherm, respectively. The above equations constitute the EOS of a material.

Importantly, Equation (16) is identical to:(
∂P
∂V

∣∣∣∣
T

)(
∂V
∂T

∣∣∣∣
P

)(
∂T
∂P

∣∣∣∣
V

)
= −1. (17)

Any set of three variables can be manipulated in this manner, which stems from
formulae analogous to Equation (15). Sets of four variables cannot be constrained solely
through this approach: additional considerations are required. Those relevant to solids are
covered next and in Section 2.4 on heat.

2.3.2. Rigidity and Its Relationship to EOS Formulations for Solids

The special energy reservoir of solids, rigidity, provides their shape and strength
(Figure 1). Rigidity permits a solid to remain motionless, except for the small, cyclical
excursions of its vibrating atoms, while sustaining temperatures up to melting. In contrast,
fluids flow under any stress, whereas some minimum stress (the elastic limit) must be
exceeded for a solid to permanently deform below its melting temperature, e.g., [9].

Equations (11) to (17), currently considered to fully constitute the EOS, are valid for
not only solids, but also liquids and gases. Completely describing a solid further requires
establishing the dependence of G on P and T.
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Shear and bulk moduli determined from elasticity studies, which commonly use
acoustic (subscript aco) methods and ultrasonic pulses [16], are defined as:

G =
shear stress
stear strain

; Baco =
volumetric stress
volumetric strain

(18)

Rigidity and shear waves are only present in solids whereby shear deformation does
not change volume. Hence, G, unlike BT or Baco, is not tied to heat. For this reason, the
shear velocities are unrelated to the thermal Grüneisen parameter [17] which connects BT
with Baco in the historical model (Section 2.3.6).

Elasticity is also represented by Poisson’s ratio (µ) and Young’s modulus (Ξ), where
we do not use the conventional symbol E because it represents internal energy in classical
thermodynamics. This pair is defined as:

Ξ =
longitudinal stress
longitudinal strain

; µ =
lateral(transverse) strain

longitudinal strain
. (19)

The directional dependence of Equation (19) is obvious, and underlies our focus on
isotropic solids. Note that B, G, and Ξ all have units of pressure, whereas µ is dimensionless.

The elasticity matrix, a 2nd order tensor [18] (p. 96), simplifies to three elements for
isotropic solids: c11, c44, and the off-diagonal element c12. Because only three parameters
are needed for isotropic solids, the elastic moduli are related:

Ξ =
9BG

3B + G
= 2G(1 + µ) = 3B(1− 2µ) where µ =

3B− 2G
6B + 2G

. (20)

Although bulk properties can be represented by Equation (20), microscopic behavior
being directional in anisotropic solids requires some approximations to provide B and G
from measurements of such grainy material.

2.3.3. Irrelevance of Friction to a Static Model and Implications for Work-Heat Relations

A plastically deforming solid evolves non-negligible frictional heat at some rate which
then leaves the material at another rate. Inelastic processes depend on time: during
such dissipative behavior, the material changes irreversibly, and restoration is impossible
without additional energy. Detailed time-dependent models specific to the given situation
are needed. Elastic materials evolve small amounts of heat [19], which constitutes a
perturbation. It is not possible for such materials to indefinitely propagate compression
waves as these will slowly be turned to heat. Similarly, compression and expansion
are not truly reversible. As such, elastic materials, as defined by the material science
and engineering communities, actually experience small amounts of inelasticity, and will
require additional energy to offset losses to heat. The proportion requires assumptions
beyond our static model, so it is not discussed further. Here, our use of “inelastic” and
“elastic” differs subtly from materials science; in materials science, elastic materials are
defined as ones which return to their original shape after deformation; instead, we use the
original definition from physics whereby “elastic” indicates that all energy is recovered.

Two hundred years ago, Count Rumford’s cannon-boring experiments showed that
work produces heat. His dissipative experiments involved time and friction. Mass was lost
as well. As time is involved in Rumford’s experiment, changes in the cannon and the bore
cannot be directly evaluated without rate laws.

Thus, the equivalence of work and heat explored historically is not assumed in our
steady-state model of solids. Rather, elastic energy pertains to work (Section 2.3.7).

2.3.4. Connection of the EOS with Perfectly Frictionless Elastic Behavior

An EOS describes the relationship between P, V, and T of a specified mass of a
substance. A unique amount of heat energy and internal elastic energy is associated with
any particular set of P,V,T coordinates, i.e., with any particular state. Nevertheless, the EOS
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does not by itself define what the latter quantities are: to determine those, knowledge of
material properties is required. For a solid, a key component of the necessary information
is the rigidity, yet rigidity is immaterial for gas.

Containment of the mass in some V for a given phase at any P or T is completely
described by a reference state (V0 or ρ0), plus knowledge of α(T), B(P), and either cross-
derivative (Section 2.3.1). Features of perfectly frictionless elastic solids (PFES) are summa-
rized as follows:

1. The perfectly frictionless elastic approximation is static: time is not involved and
systems are fully restorable. That is, the ideal system is reversible (Figure 4b), although
in a real system changes are made via manipulating and changing the surroundings.

2. Because reversibility of the system and an instantaneous response to changing con-
ditions are central to the PFES approximation, adding heat to the system has no
effect other than raising temperature, after which P and/or V respond, in accord with
imposed experimental constraints and the EOS. The time-dependent nature of heat
uptake (Section 2.3.5) explains why this is the driver of change.

3. Independence of mass and heat (Figure 4) and conservative behavior require sepa-
rate treatment of variables related to mass occupying space (i.e., the EOS and shear
modulus, G, which governs shape) and to heat occupying space (i.e., the heat content
Q, storativity C, or a specific heat). Yet, the latter three parameters may depend on
the size of the box (V), and thus on P (or T) conditions, as well as on B (or α) which
describe volumetric changes.
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Figure 4. Schematics of an ideal, perfectly elastic solid: (a) any given volume can contain a quantity
of mass, and can independently contain some quantity of heat-energy; this independence underlies
our model; (b) Essence of elastic behavior. Squeezing (increasing pressure) changes V, and thus
does P-V work, but does not generate heat so T is unchanged. Upon release of pressure, a perfectly
elastic frictionless solid returns to its initial volume. See text for discussion of shear and shape
changes; (c) Receipt of small amounts of heat by a PFES. Within a short, but finite, distance, the pulse
encounters vibrating ions. When energy of the applied light matches some transition energy, the
affected vibrations become excited, attaining a higher energy state (e.g., an overtone). Subsequent
interchanges give an overall higher vibrational energy of the collection, which imparts a higher
temperature. Both steps take time.

2.3.5. Uptake of Heat during Frictionless Elastic Behavior

Matter can be energized in various ways. We discuss application of a light pulse
because light is pure energy, plus many types of experiments use light pulses.

Solids contain vibrating atoms. Their collisions must be nearly elastic to avoid large
losses of heat. Ideal, harmonic oscillations meet this criterion, and are consistent with the
PFES idealization.

These motions store energy in the solid over temperatures commonly accessed in labo-
ratories, as described by the famous models of Debye and Einstein. Irradiating the material
stimulates transitions among optical modes, where the dipole moment of a vibrating pair of
ions changes (Figure 4c), discussed further in Section 4. Moreover, the pulse must penetrate
the material. This distance is known as the skin depth, and can be inferred from optical
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properties: Wooten [20] provides a general discussion; Criss and Hofmeister [21] cover
femtosecond spectroscopyof metals.

Since light propagates at a certain speed, uptake takes some finite time. Reaching
equilibrium after the perturbation takes additional time, as the energy needs to be dis-
tributed among various vibrational modes that are connected with a higher temperature
(Section 2.1). Thus, elevating T precedes adjustment of V or P to the new state.

From the above, addition of heat involves three processes:
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The present section concerns containment of mass (the heavy arrow), whereas Section 2.1
covers emissions (the dashed arrow). Section 2.4 focusses on heat (the LHS).

2.3.6. Why Rigid Solids under Steady State Have One Bulk Modulus

Steady-state heat transport across a rigid solid is both adiabatic and isothermal
(Section 2.2.2), a condition not addressed by classical theory. For an elastic solid in steady
state, each incremental slice along the thermal gradient must have both constant Q and
constant T. Therefore:

∂V
∂P

∣∣∣∣
Q
=

∂V
∂P

∣∣∣∣
T

. (22)

Hence, the isothermal bulk modulus (Equation (12)) of an elastic solid equals its
adiabatic bulk modulus, denoted BS in the historic model, where S is entropy. This equality
is not true for gases, due to their lack of rigidity combined with heat being carried by the
molecules during their translational motions.

Elasticity experiments perturb a solid, which responds by propagating these per-
turbations internally as the form of waves. The response of the solid is then measured.
Elastic waves have a well-defined frequency, whereas heat has a wide range of frequencies
(Section 2.1). For a wave or pulse to heat a solid, the energy in the acoustic modes must be
redistributed over a very wide frequency range, i.e., among the optic modes, overtones,
combinations, and the continuum (Figure 4c). The process of redistribution and warming
requires some finite time, and is not part of the measured, initial response of the solid, nor
with the EOS. Moreover, not all exchanges are allowed. The special two shear (transverse)
waves and one compression (longitudinal) wave are equivalent to the three acoustic modes
of a crystalline solid. Acoustic modes are purely translational, where the atoms move in
the same direction, whereas optical modes involve atoms in opposing directions [22]. For a
vibrational mode of a crystal to directly absorb light, which includes heat applied to the
solid, its dipole moment must change during the vibration [23]. This behavior is connected
with symmetry and finite frequencies of optical modes at the Brillouin zone center, where
acoustic modes have no energy: see [22] or [24] for examples and further discussion of the
fundamental differences between acoustic and optical modes of crystal lattices. Regarding
heat conduction inside the solid, data on the temperature and length-scale dependence of
thermal diffusivity show that the process is largely diffusion of infrared light [3,7,25].

Because acoustic waves are not heat, elasticity experiments are nearly isothermal and
also approximately adiabatic. Ultrasonic pulse methods [16] are popular, which supply less
energy than a continuous wave. The key requirement is lack of frictional heating, which is
reasonably accurate for stiff material. Classically, results of elasticity studies are denoted as
BS. Since S is defined as Q/T in reversible experiments, Bs is referred to as the adiabatic
bulk modulus. Because heat is irrelevant to elasticity experiments, we instead use the
notation Baco, for acoustic bulk modulus, when referring to such data in Section 3.

Our model indicates Baco = BT, contrary to much literature, which posits that:

Baco = BT(1 + αγthT), historic. (23)
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where the thermal Grüneisen parameter is historically defined as:

γth =
αPBTV

cV
=

αPBacoV
cP

, historic. (24)

The historic difference in Equation (23) thus strongly depends on α. Like historic
Equation (6), responses to P are cast in terms of responses to T, which is questionable.

2.3.7. Young’s Modulus and Work in a PFES

How V responds to changes in T or P is described by thermal expansivity or the bulk
modulus (Section 2.3.1). These physical properties are independent of path and of the
process bringing about the change. Compressing a solid by external application of pressure,
ideally hydrostatic, yields V(P) and the bulk modulus. In this case, work is performed by
an apparatus, and heating is avoided to the fullest extent possible, so:

dQ = dT = 0; to ascertain V as a function of P alone. (25)

Conversely, determining V(T) and thermal expansivity requires changing T, while
holding P constant. However, unlike P, which can be directly altered or controlled, changing
T requires an intermediary step, i.e., applying heat and waiting for it to diffuse. Figure 4c
illustrates the microscopic process of converting heat input to temperature. To expand the
solid requires work. In the PFES idealization, an incremental addition of heat goes entirely
into work:

dQ = dW = PdV; to ascertain V as a function of T alone. (26)

If the addition is truly incremental, conditions remain approximately in steady state.
The work performed expands the interatomic bonds. Resistance to this change is only
partially governed by the bulk modulus, since solids also possess shear strength: see
Meyers and Chawla ([18] Section 4.2) for discussion of Frenkel’s theory for shear strength.
We use Young’s modulus (Section 2.3.2) to describe the resistance of the solid to incremental
expansion as this is a measure of both B and G, and was used by Orowan to represent tensile
strength ([18] Section 7.2). Section 2.4 explores the effect of the elastic energy reservoir of
solids on their heat uptake.

2.4. Behavior of Heat in Perfectly Frictionless Elastic Solids during Steady-State Conduction

Density (ρ = M/V) describes how many atoms and molecules fill any given space.
Analogously, heat density (ε = Q/V) describes how much heat occupies the same space
(Figure 4a). Based on Stefan–Boltzmann’s law, which shows that the emissions (heat
departing) from a volume V only depend on T, we deduce that for a PFES:

Q(T, P) = ε(T)V(T, P). (27)

The function ε concerns only heat-energy since T is related to thermal emissions.
Because light cannot compress, heat cannot compress.

2.4.1. Specific Heat Definitions

Experiments do not measure Q directly, but rather record the response of matter to
incremental energy augmentation. Measurements of heat capacity consist of perturbing
steady state. Conserving mass makes specific heat germane, which is defined in terms of
the heat externally supplied in order to raise a unit mass of some material by one degree:

cP ≡
1
M

∆Qext

∆T

∣∣∣∣
P
=

1
ρV

∂Qext

∂T

∣∣∣∣
P

. (28)

Constant P is used in laboratory studies of solids. Heat capacity is similar to the above
but is computed on a per mole basis. Multiplying Equation (28) by ρ gives storativity.
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If volume is held constant:

cV ≡
1
M

∆Qext

∆T

∣∣∣∣
V
=

1
ρV

∂Qext

∂T

∣∣∣∣
V

. (29)

Because cV data for solids are lacking, we focus on cP.

2.4.2. Incremental Responses for a PFES

Equation (28) implicitly assumes that all applied heat goes into raising the temper-
ature infinitesimally. Otherwise, the problem is insoluble. Moreover, this assumption is
compatible with EOS formations and perfect elasticity (negligible dissipation). Hence:

∆Qext = ∆Qint = ∆Qelastic = ∆Q or ∂Q = ∂Qext. (30)

The subscript ext on Q is hereafter discarded.

2.4.3. Pressure Derivatives of Specific Heat during Steady State

For a reference point, the effect of compression on mass is null from mass conservation:

1
M

∂M
∂P

∣∣∣∣
T
=

∂(ρV)

∂P

∣∣∣∣
T
=

1
ρ

∂ρ

∂P

∣∣∣∣
T
+

1
V

∂V
∂P

∣∣∣∣
T
=

1
ρ

∂ρ

∂P

∣∣∣∣
T
− 1

BT
= 0 (31)

As discussed above, ε does not depend on P. Hence:

1
Q

∂Q
∂P

∣∣∣∣
T
=

∂(εV)

∂P

∣∣∣∣
T
=

1
ε

∂ε

∂P

∣∣∣∣
T
+

1
V

∂V
∂P

∣∣∣∣
T
=

1
ε

∂ε

∂P

∣∣∣∣
T
− 1

BT
= − 1

BT
, for ε 6= ε(P). (32)

Taking the P derivative of Equation (28) gives:

1
cP

∂cP
∂P

∣∣∣∣
T
=

1
McP

∂

∂P

(
∂Q
∂T

∣∣∣∣
P

)∣∣∣∣
T
=

1
McP

∂

∂T

(
∂Q
∂P

∣∣∣∣
T

)∣∣∣∣
P
= − 1

McP

∂

∂T

(
Q
BT

)∣∣∣∣
P

. (33)

Using Equation (32) leads to:

1
cP

∂cP
∂P

∣∣∣∣
T
=
−1
BT

{
1− Q

McP

1
BT

∂BT
∂T

}
= − 1

BT
+

Q
McP

∂α

∂P
≈ − 1

BT
. (34)

The far RHS utilizes dB/dT ~0.001BT and the high T case where cP is nearly constant,
which reduces Equation (28) to:

cP MT ≈ Q (35)

The term with Q in Equation (34) is small from ~250 to ~1000 K, which covers experi-
mental conditions commonly explored.

2.4.4. Pressure Derivatives of Storativity during Steady State

Heat transfer experiments explore changes in storativity upon compression:

1
C

∂C
∂P

∣∣∣∣
T,=

=
1

ρcP

∂(ρcP)

∂P

∣∣∣∣
T,=

=
1

BT
− 1

BT
+

V
McP

{
α

∂ε

∂P
+

∂2ε

∂T∂P
+

ε

B2
T

∂BT
∂T

}
=

1
C

{
α

∂ε

∂P
+

∂2ε

∂T∂P
+ ε

∂α

∂P

}
. (36)

Because C already accounts for the box size, ∂(lnC)/∂P depends primarily on heat
density. However, since heat density does not depend on P, then:

1
C

∂C
∂P

∣∣∣∣
T,=

=
1

ρcP

∂(ρcP)

∂P

∣∣∣∣
T,=

=
ε

C
∂α

∂P
=

Q
CV

∂α

∂P
≤ 0, for ε 6= ε(P). (37)

The resulting negative sign for storativity requires that heat be shed during compres-
sion. From Equations (34) and (35), the magnitude is small.

The historic Equation (6) for cP leads to a strong dependence of C on BT:
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1
C

∂C
∂P

∣∣∣∣
T,=

=
1

BT
+

1
cP

∂cP
∂P

=
1

BT
− TV

cP

(
α2 +

∂α

∂T

)
=

1
BT

[
1− Tγth

(1− αγT)

(
α +

1
α

∂α

∂T

)]
' 1

BT
, historic model. (38)

2.4.5. Temperature Derivative of Specific Heat during Steady State from Stefan’s Law

Taking the temperature derivative of Equation (28) and following steps similar to the
above yields:

1
cP

∂cP
∂T

∣∣∣∣
P
= α +

[
ε

∂α

∂T
+ α

∂ε

∂T
+

∂2ε

∂T2

]/[
αε +

∂ε

∂T

]
. (39)

Importantly, greybodies are described by a unique temperature which is simply
proportional to a characteristic frequency (Section 2.1). From Equation (9), the energy
associated with the thermal emissions (light departing) from a solid is:

hνpeak = w3kBT ⇒ heat energy ∝ kBT. (40)

Peak values, averages, and total energy involve different constants, but are all propor-
tional to Boltzmann’s constant times T [26]. Because emission measurements providing
Equation (40) were made at temperatures similar to the highest T reached in calorimetric
and volumetric studies, neglecting the second T derivative of ε in Equation (39) is reasonable.

The denominator in Equation (39) can be recast as:

ε

[
α +

1
ε

∂ε

∂T

]
= η

[
1
V

∂V
∂T

+
1
ε

∂ε

∂T

]
. (41)

As discussed earlier, adding heat makes the solid warmer and expands the solid. Expan-
sion and increased temperature have opposite effects on ε. In lieu of complexities, such as
bond bending in certain materials, V will not experience antagonistic effects. Thus, volumetric
changes dominate the denominator, and the series expansion of Equation (39) becomes:

1
cP

∂cP
∂T

∣∣∣∣
P

∼= α +
1
α

∂α

∂T
+

1
ε

∂ε

∂T
=

1
α

∂α

∂T
+ α +

1
ε

∂ε

∂T
, (42)

where the far RHS lists the terms in order of size. Since α is about 0.01 times its logarithmic
derivative at moderate to high T, whereas at low T the logarithmic derivative blows up,
the α term in Equation (42) can be neglected. From the above, the heat density term is
inconsequential at laboratory temperatures commonly used to measure cP and V. Hence, to
a high degree of accuracy, the solution to Equation (42) and thus to Equation (39) provides
a new equation:

α(T) ∼= c1(T)cp(T). (43)

Previous work compared averaged experimental values of α and cP and found equality
at low T but a linear dependence at high T [27–30]. Bodryakov and colleagues [27–30]
explained the discontinuous behavior on the basis of vibrations being the main energy
reservoir in a solid, and did not consider elastic energy. Our derivation of Equation (43)
suggests continuous behavior, but we have not yet incorporated the rigidity of solids.

2.4.6. Heat Uptake Provides Non-Dissipative Work

Equation (43) is written to emphasize that the volume of a solid changes in response
to heat uptake (Figure 4c). Thus, the parameter c1(T) describes the process of thermal
expansion. When T is low, the solid is stiff because the bond lengths are small and bonding
is strong. As T rises, the bonds lengthen and weaken. At high T, with weaker bonding,
the same increment of Q added as at low T should cause greater expansion. Clearly, the
structure of the solid should affect the function c1.
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Basically, the applied heat does work. Using Equation (28) gives:

cP M∆T = ∆Q = work = PdV = F∆L, (44)

where F is the force needed to expand the bond with length L. Young’s modulus (Ξ)
represents the strength of the solid. The bulk modulus is not appropriate because it
represents the change in V (or L) due to hydrostatic compression, thereby neglecting that
solids may shear.

We begin with F = Ξ × area, and consider a spherical volume about an atom:

cP M ≈ Ξ4πL2 ∆L
∆T

= Ξ4πL3 ∆L
L∆T

= ΞVα;
α

cP
≈ ρ

Ξ
. (45)

However, Equation (45) does not account for solids having a variety of structures with
different bonding arrangements.

The properties α, cP, and ρ describe the bulk solid, so the structure is immaterial to
these measurable quantities. The desired quantity, F, is related to Ξ, the number of atoms,
and the number of bonds around each atom (i.e., atomic coordination of the structure).
For example, diatomics have 2 atoms which share 1 bond, so F is proportional to Ξ/2.
The same holds for the monatomic diamond structure, for which each atom is bonded to
4 others, mutually. Monatomics with the bcc structure have 2 atoms in the unit cell, which
are bonded to 8 others, which double counts the bonds: thus F is proportional to 2Ξ/4.
The 4 metal atoms in an fcc unit cell have 12 nearest neighbors, again double counting,
so F is proportional to 4Ξ/6. Corundum has Al cations which are 6-coordinated, so Ξ/3
describes the force per cation. For the polyatomics with multiple sites, and given the above
assumption of spherical atoms, F is estimated as being proportional to Ξ times the number
of cations (N) divided by the number of atoms in the formula unit (Z):

α

cP
=

ρ

ΞN/Z
, for polyatomics. (46)

From the examples listed above, Equation (46) also describes diatomic and monatomic
solids. However, for monatomics, N is the number of cations in the unit cell, and Z is half
the number of nearest neighbors in that unit cell.

2.4.7. Ratio of Specific Heats

When volume is constant, heating the solid changes P in the interior:

∆Q = cV M∆T = work = VdP. (47)

Manipulating Equation (47) and using the definition of an isochore gives:

cV M = VαB. (48)

The ratio is thus:
cP
cV

=
Ξ
B

N
Z

. (49)

Structure pertains to the ratio because the interior forces composing Ξ differ from
exterior application of pressure. This result cannot be tested as cV is not measured for solids.

3. Evaluation of New and Old Formulations via Comparison with Experimental Data

We evaluate whether available data support our model (Table 1) or the historical
equations. We utilize compilations of data to decipher random errors. Studies of many
materials by a single research group are another focus to reduce the effects of systematic
uncertainties in comparisons.
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3.1. Comparison of Bulk Moduli from Acoustic and Volumetric Studies
3.1.1. Techniques

We use “volumetric” to include several experimental approaches that are conven-
tionally considered to provide isothermal bulk moduli. X-ray diffractometry (XRD) and
related techniques measure spacing of atomic planes, yielding unit cell volumes, whereas
length-change measurements (e.g., [31]) measure macroscopic sample dimensions. Experi-
ments are conducted at set points, presuming attainment of quasi-equilibrium at each step.
The apparatus must supply a constant heat input to maintain constant T, while avoiding
generation of extra heat from friction between moving parts.

Compression data are mostly collected at ambient temperature (NTP) rather than at
0 ◦C (STP). Ascertaining the effect of P on hard solids such as oxides is challenging because
very high pressure is needed to induce substantial changes in V. Use of simple fits to
describe V(P) data has become uncommon, perhaps because of erroneous statements that
polynomial fits set ∂BT/∂P to 0 at P = 0 [32]. Rather, values for instantaneous derivatives
depend on the accuracy with which V and P are measured, the spacing in P between data
acquisition points, and the absence of deformation.

Commonly, volumetric data are fit to an assumed EOS. Popular forms assume that
two constant values, namely the initial (BT,0) and 1st order derivative (B′ = ∂BT/∂P), suffice
to delineate V(P). Large ranges in pressure are needed to establish the latter parameter,
because it is the 2nd order pressure derivative of V. Additionally, uncertainties increase
with P. Hence, B′ = 4 is commonly assumed. Although applying a certain form for the EOS
is useful for comparisons, this approach introduces uncertainties by restricting parameter
space. Convolution of BT,0 with B′ in EOS fits is a mathematical consequence of using only
these two coefficients.

A different class of experiments determines elastic constants by recording the short-
term response of materials to propagating waves or pulses [33]. The basis is equations
relating stress to strain. Bulk and shear moduli are then calculated in accord with the
symmetry of the structure and whether longitudinal or transverse waves are applied. Un-
certainties stem from losses due to imperfect bonding of sample to transducer, imperfect
orientation of single crystals, and use of approximate formulae for polycrystals. Spectro-
scopic methods e.g., Brillouin scattering are also well-established [34], but have similar
limitations. However, since B is determined directly at ambient conditions, there is no need
to assume an EOS. The term “acoustic” is used below to cover elasticity studies.

3.1.2. Bulk Moduli for Solids at NTP

Compiled data on metals (Figure 5a) should be accurate because metals are fairly
compressible and duplicate measurements exist. For example, Ledbetter [35] summarized
measurements of zinc elastic constants presented in 11 studies, demonstrated consistency,
and provided a tightly constrained average for zinc’s bulk modulus. Individual studies
were sought when a metal was only present in either the elasticity database of Guinan and
Steinberg [36] or in the XRD database [32], but not in both. We omitted any shockwave and
XRD results that were included in the elasticity compilation.

Figure 5a shows that historical Equation (23) predicts that bulk moduli obtained from
volumetric studies should be 1.6% lower, on average, than Baco. The calculated difference
depends strongly on α-values near NTP, which are well-constrained for metals [37] and
fairly large. Although the historical correction term of 1.6% is close to the experimental
uncertainty in bulk moduli for individual metals, it is larger than the uncertainty of 0.5%
of the fit for these 36 metals (see insets in Figure 5a). On average, the historical correction
is unnecessary.

Bulk moduli values for electrical insulators and semiconducting Si scatter about the fit
(Figure 5b). Within experimental uncertainty, Baco = BT. Applying historic Equation (23) to
Baco predicts that bulk moduli should be only 0.6% lower than the trend in the data: this
correction term is small because silicates and oxides have low α. Incompressible diamond
(elemental C) and stishovite (SiO2 with the rutile structure) greatly influence the fit. Because
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α is low for insulators, little difference exists between data and the historic prediction,
Equation (23).
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Figure 5. Comparison of data on bulk modulus from compilations of data from different experimental
techniques. The x-axes depict XRD results from [32]: (a) metallic elements. Elasticity data (color
points and line) mostly from [36]; supplemented by data on Pb and In [38] and Zn [35]. Calculations
use γth from [36]; recommended values of α from [37]; and cP from [39]; (b) electrical insulators and
the non-metallic elements Si and C. Elasticity data on Si from [40]: otherwise from [41]. Additional
XRD data, e.g., on BaF2, from [42–44]. Calculations use γth and α from [45].

Statistical analysis provides further insights. Figure 6 shows histograms of the data in
Figure 5. Many insulators have Baco < BT from volumetric studies (Figure 6a), which is the
opposite of the historic predictions, Equation (23). For metals, Baco tends to be slightly larger,
whereas combining all data from Figure 5 provides an average difference very close to zero.
Symmetry of the profile about a negligible difference (Figure 6a) points to a statistical origin
for differences in bulk moduli measured on the same material with different techniques.

The historic predicted difference in bulk moduli, Equation (23), for metals is ~2× larger
than that of insulators (Figure 6b), suggesting that acoustic and volumetric determinations
should differ more for metals than for insulators. In contrast, Figures 5 and 6a show that
the differences between measured values of BT and Baco at NTP are smaller for metals than
for insulators. These findings underscore that differences in bulk moduli at NTP for the
~100 samples in the compilations, many of which were measured multiple times, are caused
by experimental uncertainties. Figures 5 and 6 support our model.
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Figure 6. Statistical presentation of the data from compilations. See Figure 5 for literature sources.
Light grey = metals; dark grey = insulators and Si. Arrows point to various mean values: (a) his-
togram of the difference between elasticity and volumetric measurements of bulk moduli, in percent;
(b) histogram of the product αγT at 298 K. Expansivity data were found for 39 of the insulators that
had both types of bulk moduli measurements.

3.1.3. Uncertainty in Bulk Moduli Arising from Fitting Volume vs. Pressure

Bulk moduli are extracted by fitting V(P) to various polynomials or EOS formulae.
To investigate the effects of fitting choices and measurement intervals (spacing of data
points with P) we explore: (1) results for the metal Pb, which has pure samples due to
its low melting point, and has been studied multiple times by many researchers; and
(2) length-change measurements on many elements made using the same apparatus with
similar procedures.

Figure 7 shows all metals and semi-metals for which both length-change and acoustic
data exist. Vaidya et al. [46] made multiple runs of many samples. Their tabulated volumes,
which may have been smoothed, were fit by us to 2nd order polynomials. Our results are
similar to the polynomial fits of [31]. EOS parameters were averaged if multiple values
were reported.

Results from both polynomial and EOS fits linearly correlate with Baco with a slope of
unity (Figure 7a). Substantial differences exist in ∂B/∂P for the two types of fits [31] (their
Table 5). As shown below for lead, a 3rd order polynomial is needed, but P = 4.5 GPa is
insufficient to constrain curvature for most metals. This is underscored by measurements of
tungsten [47] for which V depends linearly on P. Thus, using an EOS for W is an inaccurate
representation. Discrepancies in Figure 7a for B > 130 GPa are attributed to both curvature
in V(P) being too small for accurate fitting at high B, and also the trend of being highly
influenced by uncertain B of incompressible W.



Materials 2022, 15, 2638 19 of 39Materials 2022, 15, x FOR PEER REVIEW 21 of 42 
 

 

 
Figure 7. Comparison of different measures of metal bulk moduli. Length-change measurements 
from [31,46–47] were fit to EOS by the authors and to 2nd order polynomials here. Most acoustic 
determinations are from compilations listed in Figure 5. Vaidya and Kennedy [47] provide addi-
tional acoustic data: (a) direct comparison. Both linear and polynomial fits are fit for tungsten, be-
cause curvature in V(P) was not resolved. Gold was not measured, but the other noble metals have 
relatively large BT; (b) inverse comparison. The four softest metals were excluded because these not 
only needed 1–3 more terms for accurate fitting, but more importantly, the sigmoidal dependence 
of their V on P indicated deformation. We did not fit the initial slope because the lowest P data may 
be affected by slight deformation. 

Figure 7b compares compressibilities, where the fitting is influenced most by the 
softest samples, rather than by the hardest. A 1:1 correlation exists, if the four softest 
samples are omitted. Fitting V(P) for Rb and K (not shown) required 5th order polyno-
mials to account for inflection points, a behavior that is inconsistent with available EOS 
formulae. Apparently, Rb and K deformed in the tests. Accurate fits to Na and Se vol-
umes required 3rd order polynomials. However, volumes for hard metals measured up 
to 4.5 GPa lack sufficient curvature to constrain a 3rd order polynomial fit. Thus, the four 
softest metals cannot be compared to the others in a consistent manner. 

Thus, bulk moduli obtained from volumetric measurements equal the acoustic de-
terminations, if V is measured and analyzed consistently. Notably, acoustic measure-
ments also have experimental uncertainties and most metals studied are polycrystalline, 
for which elasticity formula (i.e., the Voigt–Ruess–Hill formulation) is approximate (Sec-
tion 3.1). Such effects cause the scatter in Figure 7. 

Volumetric data on Pb from four studies are fit with a 3rd order polynomial (Figure 
8a), providing BT,0 = 45.5 ± 0.5 GPa. Results from Schulte and Holzapfel [48] are not in-
cluded because a table of volumes was not presented and resolution of the points on their 
figures was insufficient for accurate digitization. They applied a two-parameter EOS to 
their own and previous data, yielding B = 42 ± 5 GPa with individual studies ranging 
from 39 to 51 GPa. All fits cluster about 40 to 42 GPa. Figure 8b omits this average be-
cause shockwave data were included by [48]. We excluded fits to both fcc and bcc phases. 

Various approaches to fitting volumes obtained at 298 K give a wide range of values 
for BT,0. A key factor is the maximum pressure obtained. When the full stability field for 
lead is used, EOS fits with two parameters, give lower values for B0 than fits to a 3rd order 
polynomial, which uses three parameters. The constraint of V/V0 = 1 is not included in the 
free-parameter count, as this is fixed in all approaches. 

Figure 7. Comparison of different measures of metal bulk moduli. Length-change measurements
from [31,46,47] were fit to EOS by the authors and to 2nd order polynomials here. Most acoustic
determinations are from compilations listed in Figure 5. Vaidya and Kennedy [47] provide additional
acoustic data: (a) direct comparison. Both linear and polynomial fits are fit for tungsten, because
curvature in V(P) was not resolved. Gold was not measured, but the other noble metals have
relatively large BT; (b) inverse comparison. The four softest metals were excluded because these not
only needed 1–3 more terms for accurate fitting, but more importantly, the sigmoidal dependence of
their V on P indicated deformation. We did not fit the initial slope because the lowest P data may be
affected by slight deformation.

Figure 7b compares compressibilities, where the fitting is influenced most by the
softest samples, rather than by the hardest. A 1:1 correlation exists, if the four softest
samples are omitted. Fitting V(P) for Rb and K (not shown) required 5th order polynomials
to account for inflection points, a behavior that is inconsistent with available EOS formulae.
Apparently, Rb and K deformed in the tests. Accurate fits to Na and Se volumes required
3rd order polynomials. However, volumes for hard metals measured up to 4.5 GPa lack
sufficient curvature to constrain a 3rd order polynomial fit. Thus, the four softest metals
cannot be compared to the others in a consistent manner.

Thus, bulk moduli obtained from volumetric measurements equal the acoustic deter-
minations, if V is measured and analyzed consistently. Notably, acoustic measurements
also have experimental uncertainties and most metals studied are polycrystalline, for which
elasticity formula (i.e., the Voigt–Ruess–Hill formulation) is approximate (Section 3.1). Such
effects cause the scatter in Figure 7.

Volumetric data on Pb from four studies are fit with a 3rd order polynomial (Figure 8a),
providing BT,0 = 45.5 ± 0.5 GPa. Results from Schulte and Holzapfel [48] are not included
because a table of volumes was not presented and resolution of the points on their figures
was insufficient for accurate digitization. They applied a two-parameter EOS to their own
and previous data, yielding B = 42 ± 5 GPa with individual studies ranging from 39 to
51 GPa. All fits cluster about 40 to 42 GPa. Figure 8b omits this average because shockwave
data were included by [48]. We excluded fits to both fcc and bcc phases.

Various approaches to fitting volumes obtained at 298 K give a wide range of values
for BT,0. A key factor is the maximum pressure obtained. When the full stability field for
lead is used, EOS fits with two parameters, give lower values for B0 than fits to a 3rd order
polynomial, which uses three parameters. The constraint of V/V0 = 1 is not included in the
free-parameter count, as this is fixed in all approaches.
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Bulk moduli at NTP obtained from volumetric data even for Pb, which is a fairly soft 
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Figure 8. Lead volumes and bulk moduli, mostly from DAC studies: (a) polynomial fit combines
results from [31,49–51]. Double arrows denote pressure ranges. XRD experiments probed the whole
stability field (to 16 GPa) but with few data points. Dotted curve = the 2nd order fit to V, where
+ = the corresponding B(P). Inset lists the 3rd order fit to V vs. P (solid curve), with filled squares for
the resulting B(P), which is fit to the listed 3rd order polynomial. This fit gives slightly higher initial B
than calculation; (b) temperature dependence of bulk moduli. Diamonds = Baco (grey from [52]; black
from [53]). Square in circle = result from panel a. Open squares and various triangles = several fits to
neutron diffraction data [51], as labelled. Other open symbols = reported EOS values of [31,49–51].

Compressing Pb to 8.6 GPa is not sufficient to accurately establish curvature (Figure 8a).
The very high P studies have widely spaced points, which limit the accuracy of fitting.
Regarding two-parameter polynomial fits, these can give higher or lower B than either
the 3rd order polynomial or the EOS, depending on several factors. From the fitting in
Figure 8a, the comparison in Figure 8b, and considering variations among the data sets, we
infer that accurately determining BT,0 requires meeting several conditions: dense spacing
of points, volumetric data over a wide range of pressures, accurate (or at least consistent)
determination of pressures, and using a fit with three parameters or more (in addition
to V0).

Notably, use of a 3rd order polynomial is consistent with anharmonic oscillations.
Further exploration of polynomial fitting to extensive data sets is needed, but is beyond the
scope of the present report.

Bulk moduli at NTP obtained from volumetric data even for Pb, which is a fairly
soft metal, include substantial uncertainties. For hard substances, uncertainties are larger,
which explains differences in scatter in Figure 5a,b. Figures 5–8 indicate that elasticity
measurements record isothermal bulk moduli.

3.1.4. Comparison of Acoustic to XRD Determinations of ∂B/∂T for Solids

Comparison of elasticity and XRD data on bulk modulus at high temperature is limited
because few substances have been measured at high T with both approaches. Challenges
arise from large thermal gradients in the material and/or apparatus. We focus on accurate
measurements of soft solids, as these have large α which permits definitive evaluation.
Alkali halides, alkali metals, and lead data meet these criteria. Due to experimental
uncertainties, Baco does not always exactly equal BT at NTP (Sections 3.1.1–3.1.3). Therefore,
we compare values of ∂B/∂T, which has a negative sign.



Materials 2022, 15, 2638 21 of 39

Our model (Section 2.3) requires that values of ∂B/∂T are the same for acoustic and
volumetric determinations. In contrast, the historic Equation (23) leads to:

∂BT
∂T

∣∣∣∣
P
=

1
(1 + αγT)

∂Baco

∂T
+

−Baco

(1 + αγT)2

[
αγ + α

∂γ

∂T
T +

∂α

∂T
T
]

, historical. (50)

Below ~2000 K, the derivatives on the RHS are smaller than the product αγ, as shown
in the tables in Anderson and Isaak [54], which include hard oxides and soft alkali halides.
The two derivative terms furthest to the right are similar in magnitude but opposite in sign.
For T accessed in experiments, Equation (50) is reasonably represented by:

∂BT
∂T

∣∣∣∣
P
∼ ∂Baco

∂T
− αγBaco, historical. (51)

The terms on the RHS are similar in magnitude [54]. Since ∂BT/∂T is negative, volu-
metric measurements should give a stronger response to T than elasticity measurements.

Yagi [55] determined volumes of four alkali halides to 9 GPa and 1073 K in a piston-
cylinder apparatus using XRD. NaCl was included with each sample to provide an internal
pressure scale, where Decker’s [56] calibration was used. Bulk moduli (Figure 9) were
extracted using the Murnaghan two-parameter EOS, and were found to agree with those
from length-change measurements [57]. Mismatch occurs with acoustic determinations
at any given T, but B vs. T curves from volumetric and acoustic studies are parallel. The
only exceptions (Figure 9) are from studies that disagree with subsequent measurements.
In addition, acoustic determinations by various authors on each sample differ by varying
amounts at 298 K. Within experimental uncertainty, equivalence of the derivatives from
acoustic and volumetric techniques is confirmed.
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Figure 9. Bulk modulus of alkali halide as a function of temperature. Blue curves = EOS fits of
Yagi [55] to his XRD data on LiF, NaF, the low-P B1 phase of KF, and CsCl with the B2 structure.
Numbers in parentheses denote previous work cited by [55]. Red squares and “VK” = length
change data [57], where too few data collections were made on KF to provide a reliable BT. Broken
curves = acoustic data compiled by Yagi [55], where his references 19 and 20 are incompatible with
other studies. For example, Hart [58] confirmed Baco(T) from curve 22 for NaCl, i.e., the work of
Jones [59]. Modified after Yagi [55] (his Figure 8) with permission.



Materials 2022, 15, 2638 22 of 39

Historic Equation (51) gives 8.3%K−1 for CsCl which is larger than, but similar to,
∂Baco/∂T = 5%K−1 (Figure 9). For LiF and NaF, Equation (51) gives 4.8 and 4.2%K−1, re-
spectively, which are smaller than ∂Baco/∂T = −10.6 and −6.9%K−1, respectively (Figure 9).
Yagi’s [55] measurements of volumes provided similar ∂BT/∂T, rather than values about
half the size of ∂Baco/∂T. The historic model is not supported.

Regarding lead (Figure 8b), volumetric data of Strässle et al. [51], analyzed using
Skelton et al.’s [60] adaptation of Decker’s [56] scale, gave B(T) parallel to the trend of
the cryogenic acoustic data. This finding is irrespective of using an EOS or a polynomial
fit to V(P). Strässle et al. [51] were puzzled by their EOS determination for BT at 298 K,
with the EOS being as predicted by historic Equation (23), but not their 80 K value, and so
reevaluated their data with an untested cryogenic calibration, attributed to in a personal
communication, which yielded the desired historic result. As shown in Figure 8a, the
EOS analysis of lead volumes at low P underestimates the bulk modulus, so their fitting
approach only appears to agree with this historic adjustment. Rather, fitting lead volumes
over the stability range of its bcc phase to a high-order polynomial agreement with Baco,
and do not require amending via Equation (23). As demonstrated for the alkali halides,
bulk moduli trends with T for lead from volumetric and acoustic techniques are parallel,
and so the historic correction is refuted.

Soft alkali metals have also been studied by both XRD and acoustic techniques
(Figure 10). The trends are nearly parallel. At 298 K, length-change measurements better
agree with Baco than with the cryogenic volumetric studies, except for Na. The historic
correction at 298 K exceeds or matches the difference between the various measurements,
and thus agreement of absolute values involves random experimental uncertainties as is
evident from compiled data (Figures 5–7).
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yields 𝜕ln(cP)/𝜕P by difference whereby uncertainties of the terms sum. 
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Figure 10. Temperature dependence of bulk moduli for alkali metals. Filled symbols = acoustic data
of [61–63]; grey represents previous work cited therein. Open symbols = volumetric (XRD) studies
analyzed using simple forms for the EOS [64]. Open cross = length-change data [46], which are closer
to acoustic results than to B from XRD. Otherwise, squares show various data on Na; circles for K;
and diamonds for Rb. Arrow at 298 K shows the historic Equation (23) applied to XRD data.
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3.2. Response of Heat Capacity at NTP to Compression

Compressing a solid affects specific heat and storativity in different ways, permitting
two independent evaluations using Equations (34) and (37). The historic Equations (6) and (38)
differ considerably from our model, providing two additional tests.

Two types of measurements exist for specific heat of solids as a function of pressure
near ambient temperature. Calorimetric measurements have been performed on 3 metals
(Section 3.2.1), whereas transport measurements involve 20 insulators, plus 3 metals by
difference (Section 3.2.2). Only for Cu and MgO do multiple cP(P) measurements exist.

3.2.1. Static Compression Techniques

Metal wires were studied at pressure using electrical heating, where a correction term
was applied to account for thermal losses. This term involves resistivity of the wire and
is larger (for Cu) or similar (Ni, Al) in magnitude to uncorrected ∂ln(cP)/∂P [65] (their
Figure 7) and [66] (their Figure 3). Uncertainty for the reported value is substantial and
cannot be less than ~10% uncertainty for the change in resistivity with P, e.g., [67].

3.2.2. Dynamic Compression Techniques

Measurements of transport properties as a function of pressure provide ∂ln(cP)/∂P in
two different ways. First, from Equation (5):

∂ ln(κ)
∂P

=
∂ ln(ρ)

∂P
+

∂ ln(cP)

∂P
+

∂ ln(D)

∂P
=

1
BT

+
∂ ln(cP)

∂P
+

∂ ln(D)

∂P
, (52)

Different methods yield κ or D, and occasionally both properties. Combining results
yields ∂ln(cP)/∂P by difference whereby uncertainties of the terms sum.

Only experiments on large (~ mm thickness) samples are considered, to permit com-
parison of the results, since transport properties linearly depend on length-scale at small
L [7]. Dynamic measurements provide D and κ vs. P for three metals, MgO, and olivine
(Figure 11). Uncertainties are roughly ±10% for each transport measurement, which makes
∂ln(cP)/∂P obtained by difference uncertain by ±20%. Figure 11 omits measurements
of three samples: Gd melts very close to NTP; Zn has a hexagonal structure and the
orientations differed in the D and κ experiments; whereas results on garnet gave posi-
tive ∂ln(cP)/∂P, which is unexpected, and is probably due to large uncertainties in small
derivatives for this hard insulator.

Second, certain dynamic experiments on insulators simultaneously provide κ and C
as a function of P (e.g., [68,69]). Alkali halides, Si, and MgO were explored (as detailed in
Figure 11). If a graph for C was presented, we used the slope and BT to calculate ∂ln(cP)/∂P
from the LHS of Equation (36) instead of the EOS approach as used by authors.

Most studies note high uncertainties. Nominal uncertainties at NTP of 5% for transport
measurements are gauged by metal standards. Insulators have larger, systematic errors
from contact loss and radiative transfer. However, their effect is reduced by comparing
logarithmic derivatives.



Materials 2022, 15, 2638 24 of 39

Materials 2022, 15, x FOR PEER REVIEW 26 of 42 
 

 

small L [7]. Dynamic measurements provide D and κ vs. P for three metals, MgO, and 
olivine (Figure 11). Uncertainties are roughly ±10% for each transport measurement, 
which makes 𝜕ln(cP)/𝜕P obtained by difference uncertain by ±20%. Figure 11 omits 
measurements of three samples: Gd melts very close to NTP; Zn has a hexagonal struc-
ture and the orientations differed in the D and κ experiments; whereas results on garnet 
gave positive 𝜕ln(cP)/𝜕P, which is unexpected, and is probably due to large uncertainties 
in small derivatives for this hard insulator. 

Second, certain dynamic experiments on insulators simultaneously provide κ and C 
as a function of P (e.g., [68,69]). Alkali halides, Si, and MgO were explored (as detailed in 
Figure 11). If a graph for C was presented, we used the slope and BT to calculate 
𝜕ln(cP)/𝜕P from the LHS of Equation (36) instead of the EOS approach as used by authors. 

Most studies note high uncertainties. Nominal uncertainties at NTP of 5% for 
transport measurements are gauged by metal standards. Insulators have larger, system-
atic errors from contact loss and radiative transfer. However, their effect is reduced by 
comparing logarithmic derivatives. 

 
Figure 11. Graphs showing the response of storativity and cP to pressure: (a) dependence on the 
inverse of B; (b) Direct dependence on B. Grey diamonds and grey dashed line = directly deter-
mined storativity: sources = [70–73] where the error bar is from Gerlich and Andersson [70]. Black 
squares and solid line = specific heat from C, where circles = data where C did not discernably de-
pend on pressure. Open cross and red dotted line = metal cP directly measured by calorimetry 
[65,66]. Aqua triangles = heat capacity obtained by difference (sources: [69,74–78]). Green short 
dashed line = ideal correspondence. 
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Moduli 

Available data show that measured values of 𝜕ln(C)/𝜕P for insulators weakly de-
pend on compressibility or the bulk modulus, as predicted by Equations (36) and (37). 
The results are scattered (Figure 11), rather than inversely depending on B, which disa-
grees with the historic Equation (38). Considering the large experimental uncertainty, 
storativity is independent of pressure. This explanation is supported by soft solids, which 
are prone to deformation, having C dependent on P, whereas the hard solids show little 
change. It is also consistent with the seemingly random variation in the sign of 𝜕C/𝜕P. 

Figure 11. Graphs showing the response of storativity and cP to pressure: (a) dependence on the
inverse of B; (b) Direct dependence on B. Grey diamonds and grey dashed line = directly determined
storativity: sources = [70–73] where the error bar is from Gerlich and Andersson [70]. Black squares
and solid line = specific heat from C, where circles = data where C did not discernably depend
on pressure. Open cross and red dotted line = metal cP directly measured by calorimetry [65,66].
Aqua triangles = heat capacity obtained by difference (sources: [69,74–78]). Green short dashed
line = ideal correspondence.

3.2.3. Relationship of the Pressure Response of Specific Heat and Storativity to
Bulk Moduli

Available data show that measured values of ∂ln(C)/∂P for insulators weakly depend
on compressibility or the bulk modulus, as predicted by Equations (36) and (37). The
results are scattered (Figure 11), rather than inversely depending on B, which disagrees
with the historic Equation (38). Considering the large experimental uncertainty, storativity
is independent of pressure. This explanation is supported by soft solids, which are prone
to deformation, having C dependent on P, whereas the hard solids show little change. It is
also consistent with the seemingly random variation in the sign of ∂C/∂P.

In contrast, ∂ln(cP)/∂P decreases roughly linearly with B−1 (Figure 11). Values for the
slope vary with the technique (calorimetric or dynamic). The slope is uncertain, due to 10
to 20% uncertainties for the various approaches and the fact that an EOS is used to process
storativity, which adds uncertainty—basically, this is also a difference approach. All data
from all approaches combined (not shown) give a slope of about −1 or −100%. This slope
is consistent with Equation (34), which shows that compression of the lattice controls the
response. Within experimental uncertainty, the energy density is independent of pressure.

3.2.4. Evaluation of the Historic Relationship of the Pressure Response of Specific Heat to
Thermal Expansivity

Figure 12 evaluates historic Equation (6) using sources listed in [79] and Figures 5 and 11.
The temperature derivative of α is uncertain, and contributes to scatter. Measured ∂ln(cP)/∂P,
on average, responds strongly to compression whereas the correlation with historic Equation (6)
is poor. The existence of a rough link is attributable to compressible solids also having large
α; see, e.g., Anderson and Isaak [54].
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Figure 12. Comparison of the measured P response of specific heat to the thermostatic formula (6),
which is peculiarly based on thermal expansivity describing compression. The difference method
(blue triangles) provides a cluster of points, and so was not fit. Red = direct calorimetry measurements.
Green dashed line = 1:1 correspondence, for reference. Circles = materials for which storativity was
not discernably affected by compression. Open cross = metals, by calorimetry. Black line = fit to the
scattered dynamic measurements. Data sources listed in Figure 11.

3.3. Connection of Thermal Expansion to Heat Uptake and Internal Strength

Uncertainties in the properties considered here increase with T. Uncertainty in den-
sity is negligible, compared to that of the others, which generally increases in the order
cP < Ξ < α. Because thermal expansion is small and measured as a response to T, values
are impacted by the measurement range and fitting procedures, parallel to the limitations
in determining BT (Section 3.1.1).

3.3.1. Ambient Temperature

Figure 13 compares the ratio α/cP to the ratio ρ/Ξ without considering effects of
structure after Equation (45). Agreement is reasonable for the monatomic elements, but
with considerable scatter. This could be due to ~25 elements having N/Z = 1, but being
anisotropic, as discussed below. The correlation for insulators is linear, with a slope
differing from unity predicted by Equation (45). Its value of nearly 1

2 is as expected from
our structural analysis of the interatomic forces (Section 2.4.6).

Figure 14 evaluates the effect of structure on interatomic forces (Equation (46)). Semi-
conducting Si and Ge are omitted because these have negative thermal expansivity at
low temperature (see Appendix A). Diamond is included with the insulators because its
structure differs from the remaining solid elements, which are metals plus the semimetal
Te. Figure 14 analyses the three different structures that describe most metallic elements.
Data on the insulators and face-centered cubic (fcc) metals confirm Equation (46), whereas
data on the body-centered cubic (bcc) and hexagonal close packed (hcp) metals require an
additional factor. Discrepancies for the non-cubic solids, i.e., olivines, among the insulators
and hcp metals point to anisotropy, which affects measurements of both α and Ξ, but was
not accounted for in our analysis (Section 2.4.6). Corundum is hexagonal, but its physical
properties such as thermal conductivity are nearly isotropic and so this behaves like the
cubic insulators. For the remaining non-cubic structures, additional information is needed
to describe their forces, so we do not pursue details of their behavior below.



Materials 2022, 15, 2638 26 of 39

Materials 2022, 15, x FOR PEER REVIEW 28 of 42 
 

 

with considerable scatter. This could be due to ~25 elements having N/Z = 1, but being 
anisotropic, as discussed below. The correlation for insulators is linear, with a slope dif-
fering from unity predicted by Equation (45). Its value of nearly ½ is as expected from our 
structural analysis of the interatomic forces (Section 2.4.6). 

Figure 14 evaluates the effect of structure on interatomic forces Equation (46). Sem-
iconducting Si and Ge are omitted because these have negative thermal expansivity at 
low temperature (see Appendix A). Diamond is included with the insulators because its 
structure differs from the remaining solid elements, which are metals plus the semimetal 
Te. Figure 14 analyses the three different structures that describe most metallic elements. 
Data on the insulators and face-centered cubic (fcc) metals confirm Equation (46), 
whereas data on the body-centered cubic (bcc) and hexagonal close packed (hcp) metals 
require an additional factor. Discrepancies for the non-cubic solids, i.e., olivines, among 
the insulators and hcp metals point to anisotropy, which affects measurements of both α 
and Ξ, but was not accounted for in our analysis (Section 2.4.6). Corundum is hexagonal, 
but its physical properties such as thermal conductivity are nearly isotropic and so this 
behaves like the cubic insulators. For the remaining non-cubic structures, additional in-
formation is needed to describe their forces, so we do not pursue details of their behavior 
below. 

 
Figure 13. Evaluation of Equation (43). Data on α, ρ, and cP from [37,39,80,81]. Young’s modulus 
data from [41,82]. The five insulators are examined below: see Section 3.3.2 for details and sources. 

Divergence of anisotropic samples from Equation (46) in Figure 14 suggests that 
shear (deformation) underlies mismatch since both affect the amount of longitudinal vs. 
lateral strain. DeJong et al. [83] modelled failure modes of four bcc metals. Their catego-
rizations of ductile (shear) vs. brittle (tension) failure agree with available experimental 
data. Equation (46) overpredicts α/cP for ductile Nb and Ta but agrees with α/cP for brittle 
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Figure 14. Dependence of α/cP on ρ/(ΞN/Z). Literature sources of data on elements are in Figure 13.
For the insulators, tables of [54] were used, where Co2SiO4 was omitted because α was estimated.
Fits are least squares and are labeled with the number of solids in each category: (a) insulators and
cubic fcc metals. Lead strongly influences the slope due to its softness, as shown by the two fits.
Iridium has little influence as it is near a cluster of points. Orthorhombic Fe2SiO4 has a shearing
transition whereas α for orthorhombic Mn2SiO4 is unconfirmed; (b) cubic bcc and hexagonal hcp
metals. Outliers Li and Be have very small cations and few valance electrons.
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Divergence of anisotropic samples from Equation (46) in Figure 14 suggests that shear
(deformation) underlies mismatch since both affect the amount of longitudinal vs. lateral
strain. DeJong et al. [83] modelled failure modes of four bcc metals. Their categoriza-
tions of ductile (shear) vs. brittle (tension) failure agree with available experimental data.
Equation (46) overpredicts α/cP for ductile Nb and Ta but agrees with α/cP for brittle Mo
and W. Shear being important means that some of the heat energy goes into deforming
rather than solely expanding the lattice: consequently, α/cP is overestimated.

To quantify the effect of ductile behavior, the data in Figure 14 are recast as a difference
and a ratio in Figure 15a,b, where each is compared to Poisson’s ratio (Section 2.3.2). The
rigid insulators agree well with Equation (46), excluding the orthorhombic olivines. The
scatter is otherwise attributed to experimental uncertainty, mostly in α, due to its small size
(discussed further below).
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Figure 15. Measures of discrepancy of the data from (46) as a function of Poisson’s ratio. Data on
µ from [41,82]; see Figure 14. Fine line = ideal match. Dotted line and circles = bcc. Thick line and
squares = fcc. Diamonds = hcp: (a) difference = {ρ/(ΞN/Z) − α/cP}/(α/cP) in percent; (b) ratio of
α/cP divided by ρ/(ΞN/Z).

As deformation becomes an increasingly important component of elasticity in each
of the fcc and bcc metals, α/cP is increasingly overestimated by Equation (46). Positive
discrepancies (overestimation of the energy supplied towards expansion) are associated
with transverse strain being large compared to longitudinal strain. Thus, deformation
accounts for departures of individual metals from the trends established for each of the fcc
and bcc structures, but it does not account for their different trends.

One explanation of the different trends is that our use of structure to link interatomic
forces to Young’s modulus is an oversimplification. Ionic-covalent bonds for the insulators
are strong and electrons are localized, so assuming that forces are controlled by nearest-
neighbor couplings is strongly supported. Bonding in metals involves delocalized electrons,
so 2nd nearest neighbors participate somewhat in the force field around a cation. The fcc
cations have 12 nearest neighbors at 0.707 L and six 2nd nearest neighbors at L. Because 2nd
nearest neighbors are few and are at 1.4× longer distances, using 12 bonds is reasonable but
low. Increasing bond number to 13.8 would provide a slope of unity in Figure 14a. If a bond
count of 13.8 has been used in Figure 15, this would place most metals within uncertainty
of exact agreement with Equation (46). These samples have typical µ = 0.2 to 0.33, which
overlaps with the range of the insulators. For another estimate, an extended unit cell with



Materials 2022, 15, 2638 28 of 39

5 atoms would have 18 bonds (double counted), giving Z/N = 1.8 instead of 1.5. Agreement
with Equation (46) for all fcc metals occurs midway between these estimates.

The bcc structure has eight nearest neighbors at 0.866 L and six 2nd nearest neighbors
at L. Secondary bonding is more substantial than a perturbation. Considering an extended
unit cell suggests Z/N = 7/3 = 2.33 instead of 2 for the primary bonds. This modified value
does not explain the overall underestimation of expansion at ambient T caused by heat
uptake by bcc metals. Further evaluation would require a close look at the original sources
of data, particularly α. Experimental uncertainties may be a problem for the highly reactive
alkali metals. This potential limitation is supported by the well-studied, non-reactive bcc
metals (Fe, Mo, W) lying on the 1:1 line of Figure 14b, whereas Ta is slightly off, due to its
high ductility, discussed above.

3.3.2. Temperature from a Few Kelvins to Nearly Melting

Previous comparisons of α(T) to cP(T) averaged many data sets [27–30], which removes
random errors. Because systematic errors also exist, we compare individual data sets in
Figure 16a which should accurately represent each of α(T) and cP(T). Evaluating the
temperature dependence of Equations (43), (45), or (46) further requires accurate data on
Ξ(T). Fortunately, comparing rather few samples suffices because specific heat depends
similarly on T for diverse materials, both simple (e.g., [24]) and complex [84]. Likewise,
solids expand similarly as temperature climbs: for details, see Appendix A. Similar behavior
of Ξ with T for different substances has also been observed (Figure 16b), leading to common
use of the formula:

Ξ(T) = ΞT=0 − aT exp
(
− b

T

)
, (53)

where Ξ at the limit of 0 K as well as constants a and b are fitting parameters [85–91].
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Figure 16. Evaluation of Equations (43) and (46) at high T for well-studied solids: (a) dependence of
α/cP on temperature. See Appendix A and Figures 13 and 14 for data sources. Jumps in Ta curve
result from data-combining studies. The graph begins at 200 K as cryogenic data were previously
shown to closely correspond [27–30]; (b) dependence of ρ/Ξ with the structural factor on T. Constant
ambient ρ was used due to uncertainties in Young’s modulus. Measured data on Ξ from [85–91]. For
Au, Fe, MgO, NaCl, and KCl, we used T derivatives near and above 298 K for B and G from [41] to
compute dΞ/dT.
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We focus on diverse cubic substances with multiple and accurate measurements over
wide T-ranges. Pure substances, where disordering of cations among sites is negligible, are
considered. Appendix A provides graphs comparing α to cP as a function of T for Al, Fe,
Mo, Ta, Au, diamond, Si, MgO, Al2O3, Y2Al3O12, NaCl, and KCl.

The five metals examined in detail have a sufficient range of densities, Young’s mod-
ulus, and structures to permit the evaluation of our new equations. Rows 3 to 6 and
columns VB, VIB, VIII, IB, and IIIA of the periodic table are represented. Figure 16 shows
the ratio α/cP above 200 K, where data on Ξ exist. As T further increases, α increases more
strongly with T than does cP, such that the proportionality factor c1 in Equation (43) grows
non-linearly with T at very high T.

Semiconducting Si has negative α at low T, but behaves similarly to isostructural
diamond at high T (Appendix A). Because α(T) being disconnected from cP(T) was also
observed over the Curie point of Fe (Appendix A), we propose that heat energy goes into
expanding the lattice when no other process exists that can uptake the increment applied.
In Fe, the additional process is electromagnetic. Section 3.3.1 argued that deformation
likewise diverted heat-energy from thermal expansion. From both observations, we suggest
that the process in Si involves electronic state changes. This hypothesis could be tested
against impurity content for Si and Ge.

Figure 16a shows that the ratio α/cP depends on T. Its derivative with T (the slope)
depends on Ξ near 298 K, in accord with Equation (45). Trends are flat and similar for
materials with very high Ξ. The slope steepens as Ξ decreases. Density and Young’s
modulus together affect the low T intercept of α/cP. The behavior exhibited in Figure 16a
supports the findings of Section 3.3.1.

The slopes of α/cP correlate reasonable well with ∂Ξ/∂T for diverse materials (cf.
Figure 16a,b). Insulators include extremely tough diamond, three incompressible oxides
with varying structural complexities, and two soft alkali halides. Bonding ranges from ionic
to covalent. Bass’s [41] summary table shows that the T derivatives of elastic properties
vary considerably among studies of the same material. Non-linearity of the response
contributes. Hence, uncertainties in ∂Ξ/∂T are substantial. On this basis of large experi-
mental uncertainties, and because density changes with T are even smaller, ambient ρ was
considered in Figures 16b and 17.
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Figure 17 shows that thermal expansion of solids is more easily accomplished at high T
because the solid gradually weakens with T. Shear is a substantial competing mechanism for
Au and Ta, causing our model to overestimate expansion at room temperature (Figure 15)
and above (Figure 17). Within experimental uncertainties, data at elevated temperature
support our model for the response of strong solids to heat.

4. Discussion and Implications

We present a new model for static physical properties of solids for the case of steady-
state heat flow. The classical “thermodynamic” model does not account for ubiquitous heat
flow or for the dissimilar physical behaviors of gas and solids, encapsulated in Figure 1.
In particular, the fact that heat-energy and mass move independently in a solid, unlike
gas, and the quantitative description of heat flow by Fourier are neglected in classical
theory. An equally significant omission was neglecting the constant emission of heat from a
solid, as experimentally established by Stefan, and theoretically supported by Boltzmann’s
derivation of the T4 dependence of flux.

Independent behavior of heat and mass in solids stems from their rigidity and strength:
hence, elasticity is the dominant energy reservoir of solids (Table 2). Moreover, coherent
transverse motions that embody two of the three acoustic modes in solids have no counter-
part in gas. As elasticity is connected with interatomic forces within a solid, this reservoir
involves potential energy (P.E.) and is distinct from heat storage, which is known to be ki-
netic energy (K.E.) from study of gases. The nature of heat storage is covered in Section 4.1.

Table 2. Dependence of energy reservoirs on the state of matter and the complexity of its atomic
constituents.

Type Motion
Solids Gases

Manifestation Energy Storage Manifestation Storage

monatomic Displacements parallel
to path Longitudinal acoustic mode Longitudinal

stress/strain 1 Translational K.E. Heat

Displacements
perpendicular to path Transverse acoustic modes Transverse stress/strain 1 n/a n/a

Electron-cation dipoles Optical continuum Heat Collisions n/a 3

polyatomic Longitudinal Longitudinal acoustic mode Longitudinal
stress/strain 1 Translational KE Heat

Transverse Transverse acoustic modes Transverse stress/strain 1 n/a n/a
Electron-cation dipoles Optical continuum Heat Collisions n/a 3

Cyclical, tiny 2 Optical modes Additional heat Internal modes Heat
1 For solids, these together compose elastic storage of energy in tension-compression and shear, respectively.
2 These internal motions and energies are in addition to those described for monatomics above, but are also found
in certain monatomic structures such as Raman modes (diamond and hcp metals). Although Raman modes
do not directly absorb light, their overtone/combinations do. 3 Presumed to be brief and conservative in the
historical model.

Addressing these omissions led to relationships among the physical properties of
solids that differ from the historical formulae. Table 1 lists key new formulae which we
have evaluated with available data. Some additional results cannot be verified because
no data exist for solids, for example, on cV. Testing many different solids required use
of compilations, which introduced uncertainties. Nonetheless, available data show that
for solids:

1. Only one bulk modulus exists, so the historically alleged difference between acoustic
and volumetric moduli is unsupported. Likewise, the isothermal and adiabatic values
for the 2nd Grüneisen parameter (Equation (14)) must be identical.

2. Changes in heat content with pressure are controlled by the compressibility, which
dominates changes in specific heat at moderate laboratory temperatures.
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3. Changes in heat content with temperature are described by specific heat by definition.
Specific heat and thermal expansivity are linked, as the process of increasing V
involves overcoming the elastic, tensile forces within the solid. Deformation solely
occurs as shape changes arising from shear stresses uptake energy without expansion,
confirmed by comparison of results from Equation (46) to Poisson’s ratio for cubic
solids. If heat stimulates other processes, expansion is reduced as in Fe, or even
reversed, as in Si.

4.1. Heat Storage Reservoirs and Permissible Exchanges of Energy

All solids store heat. Those with multiple types of atoms have short-range vibrational
motions that interact directly with light, as occurs in polyatomic gases. Applied light-energy
is absorbed by these cyclical, small-scale motions, then communicated during equilibration
(Figure 4c), and stored as heat.

For gases, the molecular vibration reservoir is in addition to that of the longer scale,
translational motions, as is well-known. At equilibrium, these different energy reservoirs
must have the same temperature. Partial temperatures do not exist. Yet, the heat-energy
content associated with each reservoir need not be the same, and in fact is not. One example
is diatomic gas, for which the translational K.E. reservoir is larger than the vibrational
reservoir. Equal temperatures of reservoirs are in accord with the zeroth law and with
Stefan’s observations: at equilibrium their heat losses (fluxes) must match.

Solids must behave similarly. Thus, monatomic solids which lack optical modes
(e.g., bcc and fcc structures) must have some heat storage reservoir. These metals emit
approximately as blackbodies and consequently absorb light at all frequencies. This op-
tical continuum is thus the manifestation of the main heat storage reservoir in metals
(Table 2). Continuous absorption is consistent with the wide range of distances, and thus
dipole moments, between the moving, loosely bound electrons and the approximately
stationary cations.

Energy cannot be freely exchanged among all reservoirs. Rules exist for energy
exchange and in many cases prohibit it. Rules are evident from experiments. Acoustic
modes in solids are not stimulated by light, even when its frequency matches that at
the zone edge, because the dipole moment does not change during these coordinated
motions of the cations [23]. Thus, neither the sole longitudinal acoustic mode nor the two
transverse acoustic modes participate in emitting light. Without a flux, the acoustic modes
have no temperature and so the elastic reservoir not being in equilibrium with the heat
reservoir does not violate the zeroth law. Our discussion is in accord with the nearly free
electron model [24]. Heat transfer is a disequilibrium phenomenon that is not relevant
to the equilibrium state: for measurements and theoretical assessment of electronic and
vibrational transport in metals, see Criss and Hofmeister [21].

From another perspective, the elastic reservoir maintains and even increases its energy
as the 0 K limit is approached (Figures 8–10). The acoustic modes have more energy as T
decreases because the bonds become shorter. Solids become more rigid with decreasing
T. Even polyatomic alkali halides behave in this way (Figure 9). If the elastic reservoir
exchanged energy with the heat reservoir achieving low temperatures might be impossible.
Moreover, acoustic waves propagate extremely long distances, for example, 1000s of km
inside the Earth. Weak attenuation, unlike that during heat transfer which attenuates over ~
mm lengths, is only possible with negligible energy exchange. Exchange of energy between
reservoirs is observed to occur only when the length scales associated with different
energy inventories are similar. This restriction is a consequence of the Virial theorem of
Clausius [92]. The entire solid sample responds elastically to stress, whereas the interactions
of solids with heat and light are microscopic.

4.2. Key Variables

The essential thermodynamic variables that govern solids under steady state are mass,
volume, temperature, and stress. Although mass is held constant in our model, M remains
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important because atomic constituents dictate structure and bonding, and therefore affect
the interactions of the particular solid with stress and with applied heat. Because heat
is never stationary, the supply of flux is crucial, but is assumed to equal the flow out, so
the total energy content is independent of time in our model. That is, the constraints of
steady-state dictate the relevant variables and how measurements are made. In more detail:

Heat storage and the solid’s response to applied heat are probed by perturbing the
system, i.e., by monitoring the response of the solid to incremental heat additions (pulses)
and recording this as a heat capacity. Temperature is actually a consequence of an influx of
heat energy to the solid, which is maintained externally.

Stress has direction and can be separated into an isotropic component (hydrostatic
pressure, P) which alters volume but not shape, and a deviatoric component, which alters
shape but not volume. Elastic properties describe the changes (strain) in response to stress.
For solids, bulk modulus (inverse of compressibility) has been the focus as this is the
response to hydrostatic compression, and also occurs in gas. For a solid, its response to
shear stress is equally important, but gases offer no resistance to shear. Moreover, steady
state involves a direction of heat flow, and thus Young’s modulus and Poisson’s ratio better
represent mechanistic responses during steady state. Because the elasticity reservoir is
independent of the heat reservoir, thermal expansion is related to heat uptake through the
rigidity of the solid and its directionality, including in anisotropic solids.

4.3. Reservoirs vs. Historic State Functions

The neglect of the huge reservoir of elastic energy in solids in the historical model
requires revision of essential variables (Section 4.2) as well as of the associated energies,
historically referred to as state functions. For solids, elastic energy replaces the state
function denoted internal energy. Unlike internal energy, elastic energy is independent of
temperature, flux, and heat.

From the definition of specific heat (Equation (28)), integration provides Q, the heat
content. A constant of integration is unnecessary because at the limit of T = 0, flux also
approaches the null limit. Otherwise, a substance could cool below absolute zero. The
absence of flux at 0 K means that no heat is stored at this limit. Otherwise, a small amount
would be emitted. Heat content replaces the historic enthalpy function for solids.

Entropy for a solid is related to its configurational disorder. Defining entropy in terms
of Q and T is problematic because heat flow is ubiquitous. In the historic approach, S is a
variable, yet enthalpy, i.e., Q, is a state function. Our model lacks this inconsistency.

The classically defined free energies of Gibbs and Helmholtz are not needed to describe
solids. Rather, our analysis shows that only two very different types of energy exist in our
ideal, time-independent solid. One reservoir consists of storage of elastic energy of the
solid, which is potential energy since motions do not exist until the system is perturbed, i.e.,
activated by adding heat. The second type is heat content, which is kinetic energy, since
atomic motions are always present at finite T, while taking on different forms (Table 2).

5. Conclusions

We constructed a new thermodynamic theory for the perfectly elastic frictionless
solid that accounts for the vastly different physical character of solids and gas, while
addressing the ubiquitous flow of heat. Our model shares two inherent limitations with
the historic model, as it is also macroscopic and independent of time. Our model differs by:
(1) considering steady-state conditions for heat flow, which are common and achievable;
and (2) accounting for the rigidity of solids. The latter shows that the energy associated
with their elasticity, which was ignored in classical models, is large and independent of
their heat reservoir. Our focus on perfectly frictionless elastic solid is analogous to the
classical model of the ideal gas: in both theories, exploring the limiting case of elastic,
conservative behavior sets the stage for more complex, realistic behavior.

Our new equations, which differ substantially from historic ones, were confirmed
using available data on isotropic solids. Although validation is limited to simple structures,
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all bonding types (metallic, covalent, and ionic) are represented and agree with our model,
supporting its generality. We also demonstrated that counterpart equations in the historic
model, which are based on behavior of gases and neglect rigidity, are not supported by the
same data.

Incorporating elasticity into a thermostatic model reveals the mechanism for thermal
expansion: namely, the added heat performs incremental work, which is required to
transition between equilibrium states, but is opposed by the interatomic bonds that define
the structure and rigidity of the solid. This link explains why the temperature dependence
of α is complex. Other key equations (Table 1) provide simple relationships for the pressure
responses of specific heat and heat content. The relationship between the two specific
heats is simple: when cast as BcP = ΞcV, it is apparent that their difference lies in whether
pressure is externally controlled, or whether the resistance to heating is internal to the
solid. Furthermore, we show that isothermal and isentropic (adiabatic) compressibilities
are identical, which is consistent with thermal expansivity taking on one value (isobaric)
and isentropic conditions not being germane.

Many different disciplines apply various historic thermostatic relations to solids.
Materials science and engineering fields should find our interrelationships among thermal
expansivity, specific heat, and Young’s modulus useful in designing materials, because both
strength and thermal response are germane to many applications. Geophysical research
would greatly benefit from our new theory because the slowly varying, high-pressure and
high-temperature conditions in Earth’s deep interior cannot be reached in the laboratory,
and so the historical equations have been relied on. Substantial revisions are expected for
the thermal structure of planetary interiors, since these bodies are very compressed and
thus very strong solids.
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Appendix A

Accuracy in thermal expansivity is particularly low at high T, where mostly diffraction
techniques are used. Errors of 20 to 30% are common, e.g., [93]. Specific heat from direct
scanning calorimetry is uncertain by 1 to 3%. Drop calorimetry measurements vary in
accuracy, depending on the fitting procedure. Adiabatic and pulse-heating techniques are
the most reliable: consistency in cP data exists at cryogenic temperatures. At high T, various
studies report ~1–2% accuracy, yet comparisons of data sets (e.g., [27–30]) show a wider
spread of 5%.

Fits rather than the actual cP(T) data are commonly reported. Either a Debye model or
one of various multiple term expressions is used. Many studies fit thermal expansivity to a
formulation after Grüneisen, which also uses the Debye temperature. We sought studies
with tabulated data.

Similar behavior for α and cP with T is clear from Figure A1: both equal 0 in the limit
of 0 K, thereafter increasing as ~T3, the increase of which then weakens with T, resulting in
a “knee” at modest temperature and a ~linear increase at high T, which commonly steepens
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at very high T. Accuracy is required to resolve the gradual change in slope at very high T.
In many substances, a “sway” exists due to the steepening at high T. The “knee” is always
prominent, but when many data sets are shown together, the sway can be obscured. Plots of
α above 298 K for 17 different metals [94,95], which were considered Touloukian et al.’s [37]
and Gray’s [96] preferred values, show the sway, usually in both representations. Nb and
Os do not show a sway, whereas for 7 additional metals, either the sway was obscured
by a phase transition or temperatures accessed were too low for its detection. To fit α,
Zhang et al. [95] used two Debye temperatures. The fits are reasonable, but do not match
both the knee and the sway.

Regarding cP, much data are collected near ambient T, so the knee is well-established.
Very high T data are less commonly explored. Yet, the sway is observed in many studies.
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ommended α [37]. Grey solid curve = cP compiled and evaluated by Desai [98]. Dashed = laser-flash 
calorimetry [99]. (b) Iron. Thick vertical bars mark structural phase transitions. X = capacitance 
measurements of α [100]. Squares = dilatometry [101]. Diamonds = recommended cP [39]. Grey 
curve = cP compiled and evaluated by [102]. (c) Molybdenum. + = recommended fit to α [37]. Circles 
= XRD results compiled and evaluated by Wang and Reeber [103]. Squares = transient interferom-
etry [104]. Diamond = dilatometry data [105]. Grey curve = cP compiled and evaluated [106]. (d) 
Tantalum. Diamonds = capacitance measurements of α [107]. + = fit to recommended values [37,96] 
by [94]. Squares = transient interferometry [108]. Light grey line = cryogenic calorimetry data [109]. 
Grey long dashes = laser flash calorimetry [110]. Grey short dashes = pulse calorimetry [111]. Dark 
grey line = pulse calorimetry [112]. (e) Gold. Black dots = tabulated α [113]. Triangles, α obtained by 
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row) at 1000K instead of a sway. The kink may be exaggerated, due to low and high T segments 
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black curves and points = volumetric thermal expansivity. Right axis: grey curves and points = specific
heat. Scales were chosen to best match α and cP at cryogenic T. Properties are at ambient conditions,
taken from various compilations. (a) Aluminum. Squares = α [97]. Diamonds = recommended α [37].
Grey solid curve = cP compiled and evaluated by Desai [98]. Dashed = laser-flash calorimetry [99].
(b) Iron. Thick vertical bars mark structural phase transitions. X = capacitance measurements of
α [100]. Squares = dilatometry [101]. Diamonds = recommended cP [39]. Grey curve = cP com-
piled and evaluated by [102]. (c) Molybdenum. + = recommended fit to α [37]. Circles = XRD
results compiled and evaluated by Wang and Reeber [103]. Squares = transient interferometry [104].
Diamond = dilatometry data [105]. Grey curve = cP compiled and evaluated [106]. (d) Tantalum.
Diamonds = capacitance measurements of α [107]. + = fit to recommended values [37,96] by [94].
Squares = transient interferometry [108]. Light grey line = cryogenic calorimetry data [109]. Grey
long dashes = laser flash calorimetry [110]. Grey short dashes = pulse calorimetry [111]. Dark grey
line = pulse calorimetry [112]. (e) Gold. Black dots = tabulated α [113]. Triangles, α obtained by
differentiating tabulated volumes of Pamato et al. [114]. Thin line = α from 2nd order polynomial fit
to V [114]. Open diamonds = recommended fit to α [94]. Squares = dilatometry and XRD data from
Suh et al. [105]. Thick grey line = raw cP data [115]. Dotted line = mid-range of adiabatic calorimetry
data [116]. Grey squares = pulse calorimetry [117]. (f) Diamond. Black diamonds = α from Slack and
Bartram [117], who combined 10 XRD studies of large natural crystals. Thin curve = recommended
α [37]. Solid grey curve = cP [118]. X = DSC [119]. Dots = drop calorimetry of Victor [120], who stated
air leakage occurred for the highest T points. Square with cross = Weber [121], who heated his samples
in air. Dashed line = modulated DSC data [122], which are not absolute. (g) Si. Black curve = rec-
ommended α [123]. Squares = single-crystal α [124]. Grey curve = cP compiled and evaluated [102].
(h) Alkali halides. Solid lines = NaCl data: black = α [80]; grey = cP [81]. Dashed lines = compiled KCl
data [54]. (i) MgO. Solid curve, α as tabulated in [125] which has an inflection point (arrow) at 1000 K
instead of a sway. The kink may be exaggerated, due to low and high T segments probing crystals and
ceramics, respectively. Open squares = cryogenic data [126,127]. Short dashes = 2nd order polynomial
fit to tabulated XRD data [93], acquired using an Ir wire heater. Grey dots = cP from [128]; triangles
from [129], obtained by differentiating heat content; solid = Chase’s [130] review, where the high
T trend is an extrapolation. (j) Al2O3. Circle = α from powder XRD compiled and evaluated [131].
+ = α compiled and evaluated [132]. Thin line = linear description of high T powder XRD [93].
Squares = single-crystal interferometry and twin telemicroscope measurements [133]. Grey curve = cP

compiled and evaluated by [134]. (k) Yttrium aluminum garnet. Diamonds = interferometry of a
single-crystal [135]; squares = transparent polycrystal [136]. Black curve = from XRD [137]. Grey
curves = DSC data: solid = [138]; dashed = [139].
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