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Abstract: In this paper, low-pressure 95%Ar–5%H2, pure Ar, and 95%Ar–5%O2 plasmas were used
for post-treatment of ruthenium (Ru) deposited on nickel foam (NF) (Ru/NF). Ru/NF was then tested
as a catalyst for a hydrogen evolution reaction. Significant improvement in electrocatalytic activity
with the lowest overpotential and Tafel slope was observed in an alkaline electrolyte (1 M KOH) with
95%Ar–5%O2 plasma processing on Ru/NF. Linear scanning electrical impedance spectroscopy (EIS)
and cyclic voltammetry (CV) also indicate the lowest interfacial impedance and largest electrical
double layer capacitance. Experimental results with 0.1 M phosphate buffered saline (PBS) and 0.5 M
H2SO4 electrolytes were also demonstrated and compared.

Keywords: hydrogen evolution reaction; plasma; catalyst; ruthenium (Ru); electrolysis

1. Introduction

The global energy demand is continuously increasing owing to rapid industrial de-
velopment. The global average annual power generation is approximately 2520 GW and
annual growth rate of power generation is 2.5% [1]. The extensive use of fossil fuels, such as
coal, oil, and natural gas, has dramatically increased carbon dioxide emissions and, in turn,
made global warming an increasingly serious concern [2]. To mitigate global warming,
alternative energy sources such as renewable energy are being actively explored owing to
their smaller carbon footprint. Hydrogen energy is considered one of the most promising
alternative energy sources. It involves the storage of energy in the form of chemical bonds
and the use of fuel cells (or other equipment) to generate electricity for end-users when
needed [3].

Water electrolysis with renewable energy is a green and economical method for pro-
ducing hydrogen. Platinum (Pt) is the most commonly used catalyst for the hydrogen
evolution reaction (HER) of water electrolysis. One main drawback of Pt is its high cost.
Over the last 10 years, ruthenium (Ru) has, on average, been 13 times cheaper than Pt [4,5].
Further, Ru and Pt have chemical bonds of similar strength and Ru has a similar ability to
dissociate water [6,7]. Therefore, in this study, we investigate Ru as a highly efficient and
low-cost catalyst for HER. Previous studies have noted that oxygen (O2) plasma treatment
can produce defects on the catalyst surface and create an oxygen-incorporated structure
on the catalysts [8–10]. These improve the electrocatalytic activity of the catalysts. Some
studies have shown that argon (Ar) or hydrogen (H2) plasma treatment has a similar
effect [10,11]. In this study, we investigated an Ru catalyst on a nickel foam (NF) electrode
(hereafter called the Ru/NF electrocatalyst) with different types of plasma treatments.
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An ideal electrocatalyst for HER should work efficiently under a wide range of elec-
trolyte pH values, just like traditional Pt-based catalysts [12–14]. Although neutral aqueous
electrolytes are ecofriendly [15] and cause less damage to electrocatalysts, they have hardly
been investigated [16]. Electrocatalysts in acidic aqueous electrolytes exhibit high efficiency
for generating H2 and have therefore been widely investigated in recent years [17–26].
However, electrocatalysts in alkaline aqueous electrolytes are used most widely in the
industry because the lower vapor pressure of the electrolyte solution makes them more
economical [25,27]. Additionally, owing to the low-corrosion environment, the electrocata-
lysts have a longer lifetime [28]. In this study, low-pressure 95%Ar–5%H2, pure Ar, and
95%Ar–5%O2 plasmas were used for post-treatment of Ru/NF electrocatalysts that were
then used for water electrolysis. Different electrolyte solutions with various pH values
were tested.

2. Experimental Section
2.1. Materials and Regents

For this study, 1.7 mm-thick NF was purchased from HOMYTECH, Taiwan. Sulfuric
acid (H2SO4, purity: 95−97%) and acetone (ACE, purity: 99%) were purchased from
AUECC, Taipei City, Taiwan. Ethanol (purity: 95%) was purchased from Echo Chemical,
Miaoli County, Taiwan. Ethylene glycol (EG, purity: 99%) was purchased from SHOWA,
Tokyo, Japan. Ruthenium (III) chloride hydrate (RuCl3 H2O), potassium hydroxide (KOH,
purity: 85%), and phosphate-buffered saline (PBS) powders were purchased from Sigma-
Aldrich, St. Louis, MO, USA. Unless otherwise stated, all chemicals were used as received
without any further purification.

2.2. Synthesis of Ru Electrocatalysts

The untreated NF is named pristine NF. NF (4.0 cm × 3.0 cm × 0.17 cm) was first
immersed in a 0.1 M H2SO4 solution with ultrasonication for 20 min to remove native
oxides on the surface. Then, the NF was sequentially immersed in de-ionized (DI) water,
alcohol, and ACE with ultrasonication for 20 min [29]. The resulting NF is denoted as NF*.
Then, 0.08 g of RuCl3 was dissolved in a solution consisting of 20 mL of EG and 20 mL of
DI water. Subsequently, NF* was immersed in the solution inside a Teflon-lined autoclave
that was sealed and heated at 90 ◦C for 2 h. The Ru on NF* was then rinsed with DI water
and calcined in a furnace at 60 ◦C for 10 min [5]. The resulting electrode is denoted as
Ru/NF*. Finally, low-pressure plasmas of different gases—pure Ar, 95% Ar + 5% H2, and
95% Ar + 5% O2—were used to post-treat Ru/NF*. The resulting products were named
Ru/NF*—A, Ru/NF*—AH, and Ru/NF*—AO, respectively.

2.3. Characterization

X-ray diffraction (Bruker D2 PHASER XRD) was performed in the 2θ range of 10◦–90◦

with Cu Kα radiation (λ = 0.154060 nm). The water contact angles were measured us-
ing a goniometer (Sindatek, Taipei City, Taiwan, Model 100SB). The morphology and
chemical composition were characterized by scanning electron microscopy (SEM, JSM-
IT100, JEOL) with energy-dispersive X-ray spectrometry (EDS) and X-ray photoelectron
spectroscopy (XPS, Thermo Scientific, Waltham, MA, USA, Theta Probe). A low-pressure
plasma machine (Harrick, Plasma Cleaner PDC-32G, New York, NY, USA) was used with
a pressure of 0.6 torr, flow rate of 8 sccm, and power of 7 W. An electrochemical work-
station (Autolab PGSTAT204, Metrohm, Utrecht, The Netherlands) was used to perform
cyclic voltammetry (CV; −0.25–−0.05 V, potential scan speed: 20−300 mV/s), linear sweep
voltammetry (LSV; scanning rate: 5 mV/s), and electrochemical impedance spectroscopy
(EIS; 0.1–100,000 Hz) measurements in a three-electrode configuration to characterize the
electrocatalyst. Ag/AgCl was used as the reference electrode and platinum (Pt) as the
counter electrode. The potential E was then converted to the reverse hydrogen electrode
(RHE) by E (vs. RHE) = E (vs. Ag/AgCl) + 0.059 × pH + 0.197 [30,31]. The HER perfor-
mance of the electrocatalyst was evaluated in three different pH electrolytes. Then, 1 M
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KOH aqueous solution (pH ≈ 14), 0.5 M H2SO4 aqueous solution (pH ≈ 0), and 0.1 M
phosphate buffer solution (PBS, pH ≈ 7) were used as the alkaline, acidic, and neutral
electrolyte, respectively.

3. Results and Discussion
3.1. Water Contact Angle

Figure 1(a-1) shows the water contact angle of the pristine NF right after the droplet
was dispensed. The water contact angle of pristine NF was 72.1◦; after 42 s, the droplet
completely penetrated the NF substrate, as shown in Figure 1(a-2). Figure 1b–f show
the water contact angles of NF*, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-
AO; the droplets immediately penetrated the H2SO4-treated NF and all plasma-treated
Ru/NF*. This is attributed to the removal of the native oxide by H2SO4 treatment. This
could reduce the electron transfer impedance. Further, better hydrophilicity could promote
interfacial contacts between the electrolyte and the electrocatalysts [32], thus increasing the
electrolyte–electrocatalyst interfacial reactive area and leading to improved performance.
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electrocatalysts with plasma treatment show a few more physical defects, especially more 
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Figure 1. Water contact angles of (a-1) pristine NF right after the droplet was dispensed, (a-2) pristine NF
after the droplet was dispensed for 42 s, (b-1) NF* right after the droplet was dispensed, (b-2) NF* after the
droplet was dispensed for 0.1 s, (c-1) Ru/NF* right after the droplet was dispensed, (c-2) Ru/NF* after
the droplet was dispensed for 0.1 s, (d-1) Ru/NF*-A right after the droplet was dispensed, (d-2) NF*-A
after the droplet was dispensed for 0.1 s, (e-1) Ru/NF*-AH right after the droplet was dispensed, and
(e-2) Ru/NF*-HO after the droplet was dispensed for 0.1 s; (f-1) Ru/NF*-AO right after the droplet was
dispensed, and (f-2) Ru/NF*-AO after the droplet was dispensed for 0.1 s.
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3.2. SEM

Figure 2 shows the SEM images of the pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-
AH, and Ru/NF*-AO, respectively. The higher-magnification SEM images with pristine
NF and NF* reveal the smooth structure of the surface Figure 2a,b. Figure 2c shows a thick
Ru layer with a little fractal structure [5]. In comparison to Ru/NF*, the SEM images of the
electrocatalysts with plasma treatment show a few more physical defects, especially more
cracks, on the surface (Figure 2d–f).
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nification; NF* with (b-1) 1000×, (b-2) 5000×, and (b-3) 10,000× magnification; Ru/NF* with
(c-1) 1000×, (c-2) 5000×, and (c-3) 10,000×magnification; Ru/NF*-A with (d-1) 1000×, (d-2) 5000×,
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3.3. XRD

Figure 3 shows the XRD patterns of the pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-
AH, and Ru/NF*-AO. Strong diffraction peaks are seen at 44.5◦, 52.0◦, and 76.4◦; these
correspond to the face-centered cubic (FCC) structure of the NF [5,33]. No peaks of metallic
ruthenium or ruthenium oxide were detected, probably because of their low content [5,34].

Materials 2022, 15, x FOR PEER REVIEW 5 of 14 
 

 

   
(d-1) (d-2) (d-3) 

   
(e-1) (e-2) (e-3) 

(f-1) (f-2) (f-3) 

Figure 2. SEM images of pristine NF with (a-1) 1000×, (a-2) 5000×, and (a-3) 10,000× magnification; 
NF* with (b-1) 1000×, (b-2) 5000×, and (b-3) 10,000× magnification; Ru/NF* with (c-1) 1000×, (c-2) 
5000×, and (c-3) 10,000× magnification; Ru/NF*-A with (d-1) 1000×, (d-2) 5000×, and (d-3) 10,000× 
magnification; Ru/NF*-AH with (e-1) 1000×, (e-2) 5000×, and (e-3) 10,000× magnification; and 
Ru/NF*-AO with (f-1) 1000×, (f-2) 5000×, and (f-3) 10,000× magnification. 

3.3. XRD 
Figure 3 shows the XRD patterns of the pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-

AH, and Ru/NF*-AO. Strong diffraction peaks are seen at 44.5°, 52.0°, and 76.4°; these 
correspond to the face-centered cubic (FCC) structure of the NF [5,33]. No peaks of metal-
lic ruthenium or ruthenium oxide were detected, probably because of their low content 
[5,34]. 

 
Figure 3. XRD patterns of the pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO. Figure 3. XRD patterns of the pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO.

3.4. EDS and XPS

Figure 4 and Table 1 show the EDS results. EDS results of Ru/NF*, Ru/NF*-A, Ru/NF*-
AH, and Ru/NF*-AO reveal the deposition of an Ru layer on NF. The oxygen content in
Ru/NF* decreased after 100% Ar and 95% Ar–5% H2 plasma treatment. Chemical elements
were also determined by XPS. Figures S1–S4 (Supplementary Materials) show the XPS
results. The Ru3d spectra and EDS spectra indicate the successful deposition of Ru. Because
metallic nickel is more chemically active than Ru, the NF substrate can spontaneously act as
an electron donor for the Ru layer. The accumulation of negative charges on the Ru surface
can lead to a higher work function and increase the reduction activity, thereby accelerating
the HER process [4,5]. Ru deposited on NF could greatly improve the HER, as discussed
below in Section 3.5.

Table 1. Elemental analysis of EDS spectra of pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH,
and Ru/NF*-AO.

Element (wt.%)

Ni Ru O C Cl

Pristine NF 96.1 - 3.9 - -
NF* 91.8 - 8.2 - -

Ru/NF* 37.0 49.4 5.6 7.0 1.0
Ru/NF*-A 49.0 42.7 2.8 4.9 0.7

Ru/NF*-AH 45.7 46.9 3.0 3.4 1.0
Ru/NF*-AO 34.3 56.5 5.3 3.0 1.1

After cleaning procedure with 0.1 M H2SO4, DI water, alcohol, and ACE. A: Plasma treatment with 100% Ar. AH:
Plasma treatment with 95% Ar + 5% H2. AO: Plasma treatment with 95% Ar + 5% O2.
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3.5. Evaluation of Electrocatalytic Activity
3.5.1. KOH Electrolyte

Figure 5 and Table 2 show the results of the electrochemical HER activity evaluated in
1 M KOH aqueous solution. Principally, the HER mechanism in a highly alkaline medium
is described by the following three equations:

M + H2O + e− ↔MHads + OH (1)

MHads + H2O + e− ↔M + H2 + OH (2)

2MHads ↔ 2M + H2 (3)

where M indicates metal and Hads indicates adsorbed hydrogen. Reaction (1) (Volmer
step) represents the electroreduction of water molecules by hydrogen adsorption onto the
electrode; reaction (2) (Heyrovsky step) represents the electrochemical hydrogen desorption
process, and reaction (3) (Tafel step) represents the production of H2 by chemical desorption
of absorbed hydrogen atoms [35–37].
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36 to 25 mV with 95% Ar–5% O2 plasma treatment (sample Ru/NF*-AO). The Tafel slope 

Figure 5. In 1 M KOH aqueous solution: (a) LSV polarization curves of pristine NF, NF*, Ru/NF*,
Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO catalysts toward HER. (b) Corresponding Tafel plots of
HER. (c) Nyquist plots of Ru/NF*-AO catalyst at four different applied overpotentials versus RHE.
(d) Nyquist plots of pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*- AH, and Ru/NF*-AO catalysts
at an overpotential of 200 mV versus RHE. (e) CV potential curves of Ru/NF*-AO at different scan
rates. (f) Current density of various electrocatalysts as a function of scan rate.
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Table 2. Corresponding parameters of electrocatalyst in 1M KOH as calculated from Figure 5.

Electrocatalyst
Overpotential (mV)
@Current Density

10 mA/cm2

Tafel Slope
(mV/dec)

Rct
(Ω)

2CdL
(mF/cm2)

Pristine NF 299 147 17.1 1.12
NF* 260 161 10.3 2.19

Ru/NF* 36 44 0.4 44.60
Ru/NF*-A 50 68 0.4 27.85

Ru/NF*-AH 50 49 0.6 30.61
Ru/NF*-AO 25 33 0.2 51.41

After cleaning procedure with 0.1 M H2SO4, DI water, alcohol, and ACE. A: Plasma treatment with 100% Ar. AH:
Plasma treatment with 95% Ar–5% H2. AO: Plasma treatment with 95% Ar–5% O2.

The LSV polarization curves of the pristine NF and NF* indicate overpotentials of
299 and 260 mV at 10 mA/cm2, respectively (Figure 5a and Table 2). The corresponding
Tafel slopes are 147 and 161 mV/dec, as shown in Figure 5b. After depositing Ru, the over-
potentials significantly decreased. The overpotential at 10 mA/cm2 further decreased from
36 to 25 mV with 95% Ar–5% O2 plasma treatment (sample Ru/NF*-AO). The Tafel slope of
Ru/NF*-AO is 33 mV/dec. The HER kinetics follow the Volmer–Tafel mechanism [38,39].

To characterize the electrode/electrolyte interface and the corresponding processes, EIS
measurements were performed at different selected overpotentials: 20, 50, 100, and 200 mV.
At a cathodic overpotential of 20 mV, hydrogen evolution does not begin; at those of 50 mV
and 100 mV, hydrogen production occurs at a very low rate; and at that of 200 mV, hydrogen
is energetically generated [40]. Figure 5c presents the Nyquist plots of the Ru/NF*–AO
catalyst at overpotentials of 200, 100, 50, and 20 mV versus RHE; the equivalent electrical
circuit is shown in the inset. In the model circuit, Rs is the series resistance, Rct is the charge-
transfer resistance and CPE is the constant-phase element. The impedance properties are
similar at different HER overpotentials, as shown in Figure 5c, suggesting the occurrence
of similar electrochemical processes at all these overpotentials [41]. The results show that
the electron transfer kinetics of the HER is faster with increasing overpotential, which is in
accordance with the obtained polarization curves.

Figure 5d shows the Nyquist plots of pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-
AH, and Ru/NF*-AO catalysts in 1 M KOH at an overpotential of 200 mV vs. RHE; the inset
shows magnified views of these plots. The Rct values for Ru/NF*, Ru/NF*-A, Ru/NF*-AH,
and Ru/NF*-AO are 0.4, 0.4, 0.6, and 0.2 Ω, respectively; these are much lower than those
of pristine NF (17.1 Ω at an overpotential of 200 mV) and NF* (10.3 Ω at an overpotential
of 200 mV). This implies a low charge-transfer resistance and highly efficient electron
transport in all Ru-coated NF samples. Furthermore, the Ru/NF*-AO catalyst shows the
lowest Rct value, suggesting that the oxygen-containing plasma most significantly reduces
the interfacial impedance.

Figure 5e shows the cyclic voltammetry (CV) potential curves of Ru/NF*-AO at scan
rates of 20–300 mV/s. Figure 5f and Table 2 show the corresponding parameters for two
times the double-layer capacitance (Cdl) of the catalyst. The fitting linear slope is equivalent
to that of two times the Cdl value [42,43]; it is frequently used to express the electrochemical
surface area (ECSA) [44–46]. The Cdl value of NF* is increased nearly twofold compared to
that of pristine NF. In addition, the Cdl of the catalyst was significantly improved after Ru
deposition. A value of 95% Ar–5% O2 plasma treatment further increased the Cdl value
and ECSA.

Previous studies have demonstrated that oxygen-containing plasma treatment could
incorporate oxygen species into the surface with increased polarity [10,47]. This might
explain why the electrocatalyst treated with oxygen-containing plasma has better perfor-
mance in 1 M KOH aqueous solution. Furthermore, Ru catalysts with a small amount of
lattice oxygen offer more suitable binding energies of oxygen intermediates for optimal
activity [48]. These results reflect those of Yuanli et al. (2021) [49] who also found enriched
defects in the surface-introduced lattice oxygen in the subsurface of Ru, leading to the
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overall optimization of the electronic structure and coordination environment of the active
sites. The Ru surface model not only weakens the bonding strength of the catalyst and
H but also accelerates water molecule dissociation. This can greatly contribute toward
obtaining excellent HER activity. In accordance with the above results, the oxygen plasma
treatment causing surface defects or a slight oxidation reaction is suggested to enhance the
HER activity.

3.5.2. PBS and H2SO4 Electrolyte

Figure 6 and Table 3 show the electrochemical HER activity evaluated in 0.1 M PBS
aqueous solution. Figure 7 and Table 4 shows the electrochemical HER activity in evaluated
in 0.5 M H2SO4 aqueous solution. In 0.1 M PBS aqueous solution, the pristine NF, NF*,
Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO showed overpotentials (at 10 mA/cm2)
of 617, 544, 300, 320, 300, and 281 mV, respectively (Figure 6a). In 0.5 M H2SO4 aqueous
solution (Figure 7a), the pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-
AO show overpotentials (at 10 mA/cm2) of 291, 243, 94, 89, 87, and 86 mV, respectively.
The overpotential decreased after H2SO4 cleaning. Similar to the case of 1 M KOH solution,
Ru deposition also reduced the overpotential significantly in 0.1 M PBS and 0.5 M H2SO4
solutions. Oxygen-containing (95% Ar–5% O2) plasma treatment also produced electrodes
with the smallest overpotential in these two cases.
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Figure 6. In 0.1 M PBS aqueous solution: (a) LSV polarization curves of pristine NF, NF*, Ru/NF*,
Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO toward HER. (b) Corresponding Tafel plots of HER.
(c) Nyquist plots of the Ru/NF*-AO catalyst at four different applied overpotentials versus RHE.
(d) Nyquist plots of pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO catalysts
at an overpotential of 200 mV versus RHE.
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Table 3. Corresponding parameters of electrocatalysts in 0.1 M PBS as calculated from Figure 6.

Electrocatalyst
Overpotential (mV)
@ Current Density

10 mA/cm2

Tafel Slope
(mV/dec)

Rct
(Ω)

pristine NF 617 56 327.2
NF* 544 68 197.2

Ru/NF* 300 69 4.6
Ru/NF*-A 320 55 5.3

Ru/NF*-AH 300 45 3.5
Ru/NF*-AO 281 45 3.9

After cleaning procedure with 0.1 M H2SO4, DI water, alcohol, and ACE. A: Plasma treatment with 100% Ar. AH:
Plasma treatment with 95% Ar–5% H2. AO: Plasma treatment with 95% Ar–5% O2.
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Figure 7. In 0.5 M H2SO4 aqueous solution: (a) LSV polarization curves of pristine NF, NF*, Ru/NF*,
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RHE. (d) Nyquist plots of pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO
catalysts at an overpotential of 200 mV versus RHE.
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Table 4. The corresponding parameters of the electrocatalyst in 0.5 M H2SO4 aqueous solution
calculated from Figure 7.

Electrocatalyst
Overpotential (mV)
@ Current Density

10 mA/cm2

Tafel Slope
(mV/dec)

Rct
(Ω)

pristine NF 291 39 44.6
NF* 243 49 7.3

Ru/NF* 94 31 0.2
Ru/NF*-A 89 23 0.3

Ru/NF*-AH 87 35 0.3
Ru/NF*-AO 86 26 0.2

After cleaning procedure with 0.1 M H2SO4, DI water, alcohol, and ACE. A: Plasma treatment with 100% Ar. AH:
Plasma treatment with 95% Ar–5% H2. AO: Plasma treatment with 95% Ar–5% O2.

In neutral aqueous solution, the water molecules are first dissociated to generate
hydrogen atoms adsorbed onto the surface of the electrode, and then, the hydrogen atoms
evolve to form H2 molecules [5,50]. Unlike in alkaline media, protons play an important role
as a source for generating hydrogen molecules in acidic media, as indicated by the following
three equations: Volmer: H+ + M + e− →MHads; Heyrovsky: MHads + H+ + e− →M + H2
and Tafel: 2MHads→ 2M + H2 [5,51]. The Tafel slope of pristine NF, NF*, Ru/NF*, Ru/NF*-
A, Ru/NF*-AH and Ru/NF*-AO for neutral HER was in the interval of 45–69 mV/dec
(Figure 6b), corresponding to a typical Volmer–Heyrovsky HER mechanism in which the
electrochemical recombination represents the rate-determining step [5]. Moreover, the
Tafel slope of the pristine Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and Ru/NF*-AO in acidic
media was approximately 30 mV/dec (Figure 7b), corresponding to a typical Volmer–Tafel
HER mechanism.

To provide further insight into the relative enhancement of the HER catalytic activity
for the Ru/NF*-AO catalyst, EIS analysis was performed at various HER overpotentials
(20–200 mV) in 0.1 M PBS and 0.5 M H2SO4 aqueous solutions, and the Nyquist plots of
the EIS responses are shown in Figures 6c and 7c. As the overpotential increases, the Rct
decreases. The Nyquist plots of pristine NF, NF*, Ru/NF*, Ru/NF*-A, Ru/NF*-AH, and
Ru/NF*-AO catalysts at an overpotential of 200 mV are shown in Figures 6d and 7d. Rct
value was significantly decreased after cleaning with H2SO4 and depositing a Ru layer,
in good agreement with the overpotential results. A lower Rct value usually indicates
faster electron transfer between electrocatalyst–electrolyte interface [41]. In 0.1 M PBS and
0.5 M H2SO4 aqueous solutions, Ru/NF* electrocatalysis changes slightly after three types
of plasma treatments, as indicated by the Rct values and overpotentials.

The long-term durability of Ru/NF*-AO in alkaline, neutral, and acidic solution was
tested through LSV measurement, as shown in Figure S5. The overpotential at 10 mA/cm2

was stable during the measurement in alkaline and neutral solutions. The Ru/NF*-AO
catalyst showed excellent durability and overpotential decay of approximately 29 and
22 mV after 12 h in 1 M KOH and 0.1 M PBS, respectively. Compared with the decay in
1 M KOH and 0.1 M PBS aqueous solutions, that in the 0.5 M H2SO4 aqueous solution was
slightly higher, probably because of the corrosion of the electrode in acid.

4. Conclusions

Low-pressure 95% Ar–5% H2, pure Ar, and 95% Ar–5% O2 plasmas are used for
post-treating Ru/NF. Ru/NF is then tested as a catalyst for HER. The overpotential at
10 mA/cm2 decreased from 36 to 25 mV with 95% Ar–5% O2 plasma treatment in alkaline
solution. A low Tafel slope of 33 mV/dec was achieved under the Heyrovsky–Tafel
mechanism of HER kinetics after oxygen-containing plasma treatment. The EIS results also
indicate that 95% Ar–5% O2 plasma treatment significantly decreases the charge-transfer
resistance, in agreement with the overpotential result. The Ru/NF*-AO catalyst showed
excellent durability and overpotential decay of ~29 mV after 12 h in 1 M KOH.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15072603/s1, Figure S1: XPS spectra of C1s for the catalytic
activity of (a) pristine NF, (b) NF*, (c) Ru/NF*, (d) Ru/NF*-A, (e) Ru/NF*-AH, (f) Ru/NF*-AO.;
Figure S2: XPS spectra of Ru3d for the catalytic activity of (a) pristine NF, (b) NF*, (c) Ru/NF*,
(d) Ru/NF*-A, (e) Ru/NF*-AH, (f) Ru/NF*-AO.; Figure S3: XPS spectra of O1s for the catalytic
activity of (a) pristine NF, (b) NF*, (c) Ru/NF*, (d) Ru/NF*-A, (e) Ru/NF*-AH, (f) Ru/NF*-AO.;
Figure S4: XPS spectra of Ni2p for the catalytic activity of (a) pristine NF, (b) NF*, (c) Ru/NF*,
(d) Ru/NF*-A, (e) Ru/NF*-AH, (f) Ru/NF*-AO.; Figure S5: LSV polarization curves for HER cat-
alyzed by Ru/NF*-AO before and after a durability test in (a) 1 M KOH, (a) 0.1 M PBS, and (c) 0.5 M
H2SO4 aqueous solution.
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