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Abstract: In real engineering applications, machine parts are rarely completely homogeneous; in
most cases, there are at least some minor notch effects or even more extensive inhomogeneities,
which cause critical local stress concentrations from which fatigue fractures develop. In the present
research, a shift of the Coffin–Manson εa–N material curve in a structure with random porosity
subjected to dynamic LCF loads was studied. This allows the rest of the fatigue life prediction process
to remain the same as if it were a homogeneous material. Apart from the cyclic σ–ε curve, which
is relatively easy to obtain experimentally, the εa–N curve is the second most important curve to
describe the correlation between the fatigue life N and the strain level εa. Therefore, the correct shift
of the εa–N curve of the homogeneous material to a position corresponding to the porous state of
the material is crucial. We have found that the curve shift can be efficiently performed on the basis
of numerical simulations of a combination of five porosity-specific geometric influences and the
associated regression analysis. To model the modified synthetic εa–N curve, five geometric influences
of porosity by X-ray or µ-CT analysis are quantified, and then the porosity-adjusted coefficients of
the Coffin–Manson equation are calculated. The proposed approach has been successfully applied to
standard specimens with different porosity topography.

Keywords: low-cycle fatigue; aluminium alloy; porosity; Coffin–Manson relationship; Taguchi;
multivariate regression analysis

1. Introduction

Porosity is a constant issue in the foundry industry [1,2]. Although some progress
has been made in estimating the durability of porous structures [3–5], new approaches
are still being sought to improve fatigue life prediction further. The larger scatter of test
results and consequently, larger discrepancies in predictions are mainly caused by the
randomness of the porosity phenomenon [6], which is difficult to evaluate in large-scale
production of castings, because the porosity is not always of the same size and not always
in the same position within the load-bearing structure. By using the established continuum
damage mechanics (CDM) [7–9], porosity can be addressed in two ways. Porosity can be
accurately reconstructed after µ-CT examination, and stress analysis can be performed on
digital twins of porous structures [10,11]. The increased stresses σ at the pores are then
transformed to equivalent strain levels εa using the σ–ε cyclic curve and finally transformed
to the number of cycles N by using the εa–N curve of the homogeneous material. This
procedure is known as Method A in the literature [12–14]. Good predictions of the fatigue
life can be expected due to the quality of the stress analysis, which is important in the
damage calculation. However, there is a significant problem linked to the application of
the CDM–Method A approach in practice. To use it the actual inhomogeneities actually
need to be modelled, which was shown in two of our previous articles [11,14]. In our
case, the corresponding finite element models for the clustered macro porosity consisted
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of approximately 900,000 finite elements and it took a long time to predict the fatigue life
for a geometry that is very simple in practice (a cylinder). It was for this reason that our
idea of predicting the fatigue life for homogenized structures with adapted fatigue-life
curves was developed. Such a procedure is not outdated, because it is daily applied for
the welded structures—see, for example, EUROCODE 3: Part 1–9 standards for steel. It is
also embedded into every up-to-date commercial finite element code, which is used for
fatigue-life calculation (e.g., Magna FEMFAT). In our opinion, CDM–Method A or X-FEM
approaches have relatively low usage potential for the real-life structures (due to their
complexity and longer processing times), which are often far more complex than simple or
component-like specimens. Besides, it is very difficult to assure convergence of the X-FEM
method for cyclic loads and structures with a real geometry. Lastly, X-FEM is based on the
linear-elastic fracture mechanics principle, which validity is highly questionable in our case.
Therefore, an alternative approach, named Method B in the literature [14], is increasingly
being used. In this case, porosity is not taken into account directly by increased stresses
around the pores as a consequence of notch effects but is instead included in the calculations
by an appropriately reduced level of the εa–N curve for the porous material. The main
objective of the research is to adapt the fatigue-life curve of the porous material according to
the actual porosity geometries. The main scientific contribution of this research is to prove
that this is possible with a separate family of well-planned numerical simulations, which
summarise the most important porosity parameters in a meaningful manner. On the basis
of this simulation, a multivariate regressive model is set up that enables the calculation of
the porosity-adapted fatigue-life curves.

After the introduction, the article consists of the presentation of the AlSi9Cu3 alloy
material data and the experimental data on the strength of the analysed porous samples.
Section 3 presents the derivation of the proposed regression model for the estimation of
the shift of the Coffin–Manson curve of the porous material, followed by the analyses
carried out and the presentation of the experimental/theoretical agreement of the results in
Section 4. The paper ends with conclusions, acknowledgements and a list of references.

2. Materials and Methods
2.1. Methodology

In the introductory part of the research, a methodology for predicting the service life in
randomly porous alloys was first set up. The methodology is graphically shown in Figure 1.
It is divided into four successive phases:

(i) From the experimental tests, the basic Coffin–Manson endurance curve of a homo-
geneous material is determined. The least-squares method is used to connect the
experimental points into a uniform curve.

(ii) To analyse the porosity in the alloy, the geometry of the pores is determined by using
the µ-CT examination and reverse engineering based on the voxel-processing tech-
nique.

(iii) This is followed by the most important phase, i.e., modelling the porosity of the
adjusted C–M curve. Since the influence of notch effects can be estimated using FE
simulations, a Taguchi matrix of randomly distributed pores was defined, which
enabled the formation of the combinations of pore size, position, pore flatness, pore
distance and pore orientation. These are the main effects that reduce the fatigue
life of the porous alloy. Based on the FE simulations for every combination of pore
geometry, the relationship between the five geometric influences and the parameters
of the fatigue-life curve for the porous material are determined using a multivariate
regression model. It shows the sensitivity of the fatigue life to the variation of the
individual geometric parameters of the pores. Once all the regression model is built
and the porosity state for a certain specimen/component is determined, the porosity-
adjusted Coffin–Manson fatigue life curve can be modelled.
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(iv) In the final stage, the prediction of the service life is based on the case-wise adjusted
Coffin–Manson curve of the porous material. Based on this curve, the fatigue life of
the NB porous alloy can be estimated for a known load amplitude εB.

Figure 1. Flowchart of a procedure for estimation the fatigue life of a porous structure.

The presented method is validated by comparing the predicted fatigue life to the
experimental data for selected porous samples.

2.2. Application of Homogenised Approach

The upgrade of the established procedure for the estimation of the fatigue life in
Method B should result in a highly suitable tool for engineering applications in an industrial
environment. The procedure, schematically shown in Figure 2, is based on assuming a
theoretically homogeneous structure to predict fatigue life, while the influence of porosity
is taken into account via a shift of the Coffin–Manson (hereinafter C–M) εa–N curve of the
material. The shift of the C–M curve is done due to the influence of various notch effects
on the dynamic durability. There are several different approaches when dealing with notch
effects [15–17] and estimating durability curves, taking crack growth into account [18]. We
used the critical plane approach [19] of a dynamically loaded sample. The advantage of
Method B is that after the C–M curve level has been lowered, a conventional procedure can
be used to estimate the fatigue life of a porous structure by calculating the extent of damage
achieved based on a simulation of the stabilised load cycle. This is carried out on the basis
of a modified C–M curve, which is entered into software for fatigue life assessment, which
works on the same basis; examples of such software include Siemens LMS Virtual.lab,
Magna FEMFAT, Dassault Systèmes SIMULIA fe-safe, Ansys nCode DesignLife, etc. The
main factor for the quality of the prediction is the correct shift of the εa–N C–M curve of the
homogeneous material to a lower level adapted to the state of porosity. Several procedures
based on the concept of a synthetic curve shift have been proposed in the past [20], but
they have been tested for steel alloys and applied to S–N curves (HCF region). Usually,
they also require a series of additional experimental tests. In the design of the procedure
for lowering the level of the durability curve, our objective was to use easily obtainable
data from the analysed porous samples, so the necessary geometrical data on pore sizes,
their position and orientation can be obtained by available non-destructive methods, such
as X-ray imaging or by more advanced and accurate CT scans [21]. It should be noted that
in our studies the detected macro-porosity was always larger than micro-defects [22,23],
so this is a real analysis of the influence of structural porosity and not so much a material
analysis. The specimens were manufactured using a high-pressure die-casting (HPDC)
process in the CIMOS d.d. factory in Roc (Croatia). The macro-porosity was introduced by
varying the process parameters, i.e., by changing the pressure in the final casting phase
and by casting the specimens into the cold tool (form).

The sequence of steps in the implementation of Method B shown in Figure 2 is an
interesting and simple way to estimate the fatigue life of porous structures, as it is based
on processing the homogeneous composition of the sample under consideration. In this
method, various porosity effects are taken into account by a reduced level of the C–M curve
of the material. Just like any basic C–M curve of a homogeneous material, the parameters
of a uniform lower C–M curve of a porous material can also be estimated with a real-valued
genetic algorithm (RVGA [24]); see Figure 3. However, as the pores vary randomly from
sample to sample, a larger scatter of measurement points usually results in a worse fatigue
life prediction (see Figure 3). In the field of low cyclic fatigue strength (the steepest part
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of the C–M curve), a good agreement can be expected for samples no. 7 and no. 4, a
satisfactory agreement for sample no. 16, while prediction for sample no. 36 is likely
over-conservative and non-conservative for sample no. 31, etc.

Figure 2. Sequential steps in predicting the fatigue life N of a porous structure using Method B.

Figure 3. Preliminary assessment of the error in predicting the fatigue life if the strategy is based on a
uniform shift of the C–M curve.

As can be seen from the preliminary analysis in Figure 3, when using a uniform C–M
curve for a porous material, greater discrepancies of results can be expected; hence, the
idea that the predictions can be improved if the strategy is modified and adapted for more
individual treatment of porous samples. Figure 4 shows the expected values of the lowered
levels of the C–M durability curves of AlSi9Cu3 material from the homogeneous to the
porous state, formed on the basis of experimental observations [14]. The main challenge
in this part is achieving these values analytically as close as possible, i.e., keeping the
modelled C–M εa–N curves as close as possible to the experimental results.

The correct shift of the C–M curve is crucial, as excessive deviations from the experi-
mental data can lead to larger discrepancies in the prediction of the fatigue life, especially
when moving towards the high cycle fatigue (HCF) region, where the C–M curve sections
have a lower slope, and this gives a larger ∆ region, within which the predicted number of
cycles N is expected. The final, crucial part is still missing (i.e., a procedure for modelling
appropriate synthetic Coffin–Manson curves), so a method is presented in the next chapters,
which can be used to make a good estimate of the new adapted curve by taking into account
all known influences of porosity. A similar approach that includes a phase for modelling
the shift of a synthetic S–N curve is described in the DNVGL-ST-0361 standard [25]. The
adjustment of the durability curve of material on the basis of the ratio between the stress
amplitude and the maximum normal stress is described by Susmel [26]. Our methodology
for adjusting the level of the C–M curve for porous material is based on taking into account
the local geometric characteristics of porosity. The shift is performed on the basis of the size,
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position, and orientation of the pores, which effects on the yield of the material are based
on the results of Murakami and Endo [27] and our research [14]. Five different geometric
influences (shown in Figure 5) have been combined, and they have been evaluated at four
strain levels εa. Individual geometric parameters xi are presented in Table 1.

Figure 4. Individual, porosity-adjusted shifts of the C–M curves are a better strategy for predicting
the fatigue life.

Figure 5. Shift of the Coffin–Manson εa–N durability curve due to the presence of individual
geometric porosity influencing factors.

Table 1. Geometric characteristics of the critical pores and the fatigue life of the tested samples.

Sp.
No.

Strain εa [%]
Number of

Cycles Reached
Nexp

Volume of the
Critical Pore ‡ V

[mm3]

Distance of the
Pore from the

Surface L [mm]

Ellipticity of
the Poren/m

[/]

Distance
between Two
Pores g [mm]

Orientation
of the Pore α

[◦]

C–M of the
Porous Structure

x1 x2 x6 x10 x14 σ’f b

12 0.2 * (0.19 **) 4243 2.7 2.3 0.95 0.25 1 1063 −0.22

31 0.15 * (0.13 **) 1853 0.17 4.5 0.35 0.5 12 411 −0.18

36 0.17 * (0.16 **) 48,619 0.11 2.2 0.85 1 2 801 −0.172

17 0.22 * (0.21 **) 98 1.3 4 0.1 –0.1 12 331 −0.154

16 0.25 * (0.25 **) 282 16.7 2.5 0.9 –0.2 4 1790 −0.408

4 0.3 * (0.28 **) 370 0.83 3.6 0.95 0.2 6 772 −0.205

7 0.3 * (0.28 **) 415 1.3 3.8 0.9 0.2 4 851 −0.206

* Theoretically determined value. ** The actual average experimental values obtained on the MTS extensometer.
‡ The biggest pore, which was detected by µ-CT scanner was considered as a critical pore.
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The theory is derived in the form of equations, by which the appropriate shift of the
C–M curve is made. At the same time, numerical simulations of the response are performed
for individual geometric porosity parameters and their combinations.

2.3. AlSi9Cu3 Alloy

Our tests have been carried out on AlSi9Cu3 alloy, which has a good die-casting
ability [28] and is, therefore, widely used in the automotive industry. In a homogeneous
state, the alloy has the following static properties [14]: σy = 178 MPa, σu = 322 MPa and
E = 79,631 MPa. The density of the alloy is ρ = 2.76 g/cm3, and the Poisson’s ratio ν = 0.33.
Tests were carried out according to the ASTM E606 standard [29]. The alloy was cast into
the standard specimen shape shown in Figure 6. Two series of the specimens were made:
(i) quasi-homogeneous specimens, which were used to obtain the durability curve of the
base material, and (ii) porous specimens, for which the pores inside were deliberately
created by varying the pressure and temperature of the die casting mould, to study the
effect of porosity on the dynamic durability. In general, the geometric irregularities present
in AlSi9Cu3 alloy are much larger than the material defects, which has a decisive influence
on the extent and size of the damage. Macro-porosity is larger than the metallurgical
micro-defects, so this method allows a direct assessment of the effect of macro-porosity on
the strength of the material. Seven samples analysed in detail with identification numbers
4, 7, 12, 17, 31, and 36 can be seen in Figure 6. The porosity structure inside the samples was
determined by the µ-CT analysis on a General Electric (GE) V|tome|x s 240. The scanned
porosity was then described geometrically by ellipsoids [14] so that the size, position and
orientation were known for each pore (i.e., the associated ellipsoid).

Figure 6. Specimen geometry (bottom), LCF-tested specimens (top), µ-CT-scanned samples for
analysis of results (left/right).

2.4. Low-Cycle Fatigue Life

All porous specimens in Figure 6 have been tested using the high-strain, low-cycle
fatigue (LCF) procedure [14,28] under alternating load (R = −1) to failure. The tests were
carried out on an MTS servo-hydraulic machine with an extensometer MTS 632.53F-14
installed, with gauge length l0 = 12 mm [28]. Load amplitudes εa varied from sample to
sample, from 0.15 to 0.3%. The values of εa and the experimentally determined numbers of
cycles to failure Nexp are listed in Table 1, and these results can be seen in Figures 3 and 4.
Table 1 also shows the geometric characteristics x1-x2-x6-x10-x16 of the critical pore, which
were extracted from the µ-CT scans of the porous specimens in Figure 6 using the voxel
technique [14] and then modelled with ellipsoids in CATIA V5 software. These characteris-
tics are described in Section 3. If the schematic procedure for the fatigue life estimation of a
porous structure in Figure 2 is followed, a cyclic curve for the transformation of the stress σ
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to the strain εa is also needed in an intermediate step. The homogeneous AlSi9Cu3 alloy
has Ramberg–Osgood cyclic curve coefficients K′ = 542 MPa and n′ = 0.0979 [14,28]. Strain
is modelled by equation (Equation (1)) as:

ε =
σ

E
+
( σ

K′
) 1

n′ (1)

The values of the coefficients of the Coffin–Manson ratio in homogeneous form
(Equation (2)) are: σ′f = 1087 MPa, ε′f = 0.0001, b = −0.152 and c = −1.605 [14,28]. The
Coffin–Manson (C–M) curves of the homogeneous samples are shown in Figures 3 and 4.

εa =
σ′f
E
(2·Nf)

b + ε′f(2·Nf)
c (2)

After determining all the parameters of the AlSi9Cu3 alloy in homogeneous form, the
most important phase follows: the determination of the coefficients of the C–M curve for
the porous structure, which is the main topic of the next chapters of this paper.

3. Numerical Simulations

A review of the literature shows that most data on dynamic durability are limited to
homogeneous structures. For porous-cellular structures, most of the available literature
on fatigue life is related to different 2D samples [30,31]. There are some data on the
durability of 3D porous structures [32], with analyses of crack development due to different
influences [33]. In our paper, we want to address the influence of completely random
3D porosity by numerically modelled εa–N durability curves. Two types of numerical
simulations need to be carried out to do this comprehensively: (i) simulations of the
response by individual influences and (ii) simulations of the response of a combination
of influences.

3.1. Separate Simulations for Each Geometric Parameter

With the use of simulations, the effect of five geometric parameters xi on the fatigue life
is first assessed separately at different strain values εa. The results of these simulations are
summarised in Table 2, sorted by levels: in the vertical direction, the individual geometric
influences are listed in the ascending order, while in the horizontal direction, the values
of the strain εa are listed ascending to the right. The limiting values εa,1 and εa,4 are taken
from the minimum (0.131%) and maximum (0.282%) loading values of the experimental
specimens in Table 1. The values εa,2 (0.181%) and εa,3 (0.231%) are calculated incrementally
at regular intervals using Equation (3). The full range of εa,i values is defined as:

εa,i = {εa,min; (εa,min + (εa,max − εa,min)/3); (εa,min + 2(εa,max − εa,min)/3); εa,max} (3)

In addition to experimental data on εa values, data from numerical simulations are
also needed. Figure 7 is helpful here. (x1i) represents the most important influence: the
influence of the pore size (volume) V on the fatigue life, etc. There are two drawings in
Figure 5 for each influence; the upper case represents a more favourable situation in terms
of dynamic durability and the lower a less favourable one. In other cases, the numerical
calculations refer to the average pore size on a representative sample no. 12. The half axes
of the average pore shape, which can be seen in Figure 5, top right, are: x (a) = 0.23968 mm,
y (b) = 0.2085 mm, z (c) = 0.19022 mm. Given the known dimensions of the half axes, the
volume of the ellipsoid is calculated as:

V = 4/3 · π · a · b · c (4)
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Table 2. Separate prediction of the reached stress σ and the fatigue life N for each geometric influence
and strain levels εa.

(1) Pore Size (Volume) V

/

(6) Strain Level εa

εa1 = 0.00131 εa2 = 0.001812 εa3 = 0.002314 εa4 = 0.002816

Stress σ
[MPa]

Cycles N
[Cycle]

Stress σ
[MPa]

Cycles N
[Cycle]

Stress σ
[MPa]

Cycles N
[Cycle]

Stress σ
[MPa]

Cycles N
[Cycle]

11 127 5.468 *
(293,764) 175 4.536 *

(34,356) 204 4.061 *
(11,508) 227 3.689 *

(4887)

12 122 5.384 *
(242,103) 181 4.447 *

(27,990) 209 3.966 *
(9247) 225 3.712 *

(5152)

13 149 5.004 *
(100,925) 197 4.433 *

(27,102) 226 3.689 *
(4887) 254 3.261 *

(1824)

14 165 4.702 *
(50,350) 208 3.987 *

(9705) 241 3.447 *
(2799) 271 2.996 *

(991)

(2) Distance of the pore from the surface L

21 123 5.552 *
(356,451) 170 4.621 *

(41,783) 202 4.294 *
(19,679) 226 3.698 *

(4989)

22 162 4.751 *
(56,364) 206 4.012 *

(10,280) 239 3.486 *
(3062) 266 3.075 *

(1189)

23 161 4.771 *
(59,020) 204 4.039 *

(10,940) 236 3.506 *
(3206) 263 3.082 *

(1208)

24 157 4.825 *
(66,834) 202 4.053 *

(11,298) 233 3.548 *
(3532) 261 3.125 *

(1334)

(3) Ellipticity of the pore n/m

31 136 5.214 *
(163,682) 188 4.275 *

(18,836) 209 3.911 *
(8147) 236 3.495 *

(3126)

32 131 5.064 *
(115,878) 192 4.276 *

(18,880) 209 3.953 *
(8974) 233 3.577 *

(3776)

33 171 4.502 *
(31,769) 210 3.845 *

(6998) 242 3.331 *
(2143) 267 2.973 *

(940)

34 190 4.120 *
(13,183) 223 3.535 *

(3428) 256 3.070 *
(1175) 270 2.842 *

(695)

(4) Distance between two pores g

41 133 5.291 *
(195,434) 184 4.356 *

(22,699) 211 3.888 *
(7727) 237 3.473 *

(2972)

42 134 5.241 *
(174,181) 185 4.323 *

(21,038) 209 3.917 *
(8260) 235 3.501 *

(3170)

43 147 5.005 *
(101,158) 193 4.245 *

(17,579) 219 3.791 *
(6180) 246 3.373 *

(2360)

44 200 4.054 *
(11,324) 241 3.402 *

(2523) 271 2.953 *
(897) 271 2.842 *

(695)

(5) Orientation of the pore α

51 123 5.552 *
(356,451) 170 4.621 *

(41,783) 202 4.072 *
(11,803) 226 3.698 *

(4989)

52 139 5.207 *
(161,065) 190 4.406 *

(25,468) 214 3.945 *
(8810) 236 3.560 *

(3631)

53 141 5.136 *
(136,773) 191 4.247 *

(17,660) 216 3.820 *
(6607) 245 3.374 *

(2366)

54 137 4.911 *
(81,470) 184 4.356 *

(22,699) 215 3.826 *
(6699) 240 3.431 *

(2698)

* N in LOGLife form (Brown–Miller–Morrow criterion used)—e.g., LOGLife of 100 cycles = 2. ( ) number of
cycles N.
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Figure 7. Analysis of different geometric influences of porosity on fatigue life.

The ratio of volumes of the average pore to the largest pore is as follows for the
representative sample no. 12:

Vaverage pore ≈ Vmax/86 (5)

Likewise, parametric relationships apply between the other geometric dimensions
(processed below). As a computational dimension d (valid for the examples in Figure 5),
the default value of the smallest half axis of the average pore is dz(2) = 2 × 0.19022 = 0.38044
mm. The maximum experimental value is dz(max) = dz(4) = 1.6812 mm. The full set of
parametrically calculated ellipsoid diameters dz(1–4) is:

dz(i) = {(dz(4)/8); dz(2); (dz(4)/2); dz(4)} (6)

To obtain the full spectrum of geometric influences of porosity on fatigue life, a se-
ries of routine simulations are performed (maximum number = 5 × 4 × 4 = 80 separate
simulations). Five separate porosity influences (1–5), shown in Figure 7, with four geo-
metric sizes (1–4), are simulated at four different strain levels in the range (εa1–εa4), in the
following sequence:
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(1i) Pore volume at the centre (x1i): V (see Figures 5 and 7). The geometry of the
ellipsoid always has such an orientation that, according to Figure 5, the x (a) half-axis
coincides with the direction of the load (hence α = 0◦).

(11) V = Vmax/491 ≈ 0.007 mm3

(12) V = Vaverage pore ≈ Vmax/86 ≈ 0.040 mm3

(13) V = Vmax/8 ≈ 0.430 mm3

(14) V = Vmax ≈ 3.436 mm3

(2i) Distance of the pore from the surface (x2i): L (see Figures 5 and 7). The average
volume V and the shape of the ellipsoid with orientation α = 0◦ according to Figure 5 are
always assumed.

(21) L ≈ 10.8·dy(2) ≈ 4.5 mm (pore in the centre of the specimen)
(22) L ≈ 7.7·dy(2) ≈ 3.21 mm
(23) L ≈ 4.6·dy(2) ≈ 1.92 mm
(24) L = 3/2·dy(2) ≈ 0.63 mm

(3i) Ellipticity of the pore (x6i): n/m (see Figures 5 and 7). The starting point of the
analyses is set around the average pore size V. The ellipticity n/m is calculated by varying
the ratio of the two smallest half-axes b and c according to Figure 5. The ellipsoid always
has an orientation α = 90◦.

(31) n/m = 1 (sphere)
(32) n/m = 0.75
(33) n/m = 0.5
(34) n/m = 0.25

(4i) Distance between two pores (x10i): g (see Figures 5 and 7). For this part of
simulations pore of average size V (α = 0◦) and a sphere with d = dz(2) = 0.38044 mm are
always compared to each other at the centre of the sample, i.e., the central axis of the
specimen is always in the middle between the two pores with the distance between the
pore and the central axis equal to g/2.

(41) g = dz(2) = 0.380 mm
(42) g = 2/3·dz(2) ≈ 0.254 mm
(43) g = 1/3·dz(2) ≈ 0.127 mm
(44) g = −0.1·dz(2) ≈ −0.038 mm (overlapping of pores)

(5i) Orientation of the average pore (x14i): α (see Figures 5 and 7). In all cases, this
is the average pore size V located in the centre of the sample. The angle α is the angle
between the central axis of the specimen and the biggest half-axis of the ellipsoid.

(51) α = 0◦

(52) α = 30◦

(53) α = 60◦

(54) α = 90◦

To estimate the stress-strain distribution in the porous mid-part of the specimens (see
Figure 7 above) an implicit finite-element analysis was carried out in Abaqus software.
The smallest edge of the finite elements was 0.2 mm long, which enabled satisfactory
adaptation of the finite-element mesh to the smallest modelled pores. C3D4 tetrahedron
finite elements were used in a combination with the free-meshing technique. For the
surfaces of the ellipsoid voids manually applied seeds were used. The global finite element
size was selected in such a manner that each of the 80 + 64 finite element models from
Tables 1 and 2 consisted of approximately 90,000 finite elements and 16,000 nodes. The
Besseling multilinear plasticity material model was applied with the plastic flow curve
determined on the basis of the cyclic σ–ε curve for the AlSi9Cu3 alloy from Section 2.3 that
was transformed into the true stress/true strain form [14].
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Figure 8 shows two simulated examples of fatigue life calculations at different pore
sizes, while Table 2 summarises all 80 results of the numerical simulation series. The proven
Brown–Miller (Morrow) criterion [14,34] has been used for the calculation of the fatigue
life. The selected fatigue-life damage parameter considers normal strains (∆εn) as well as
shear strains (∆γ) in the critical plain, as follows:

∆γ

2
+

∆εn

2
= 1.65

(σ′f − σm)

E
(2·Nf)

b + 1.75·ε′f(2·Nf)
c (7)

An important factor that influences the crack initiation is also surface roughness. The
surface finish factor κt, which depends on the tensile strength σu and surface roughness
Ra, a value of κt = 1.02 was selected [35]. The same roughness factor was presumed for the
outer specimen surface as well as internal surfaces of the pores. The factor κt is defined
in the SIMULIA fe-safe software, which was used for calculating the fatigue damage D.
The damage calculations D are converted to the achieved number of cycles N, and the
maximum stress concentrations in MPa are also given. An estimate for the shift of the
Coffin–Manson curve is then made on the basis of the numerical simulations of the number
of cycles reached. For example, when estimating the fatigue life N based on the effect of the
pore size V, an array of 11–4 × εa1–4 results is obtained (Table 2). From the array (database)
of tabular results, the corresponding number of cycles N can be predicted on the basis of
the detected pore volume Vi and the strain εi of the analysed sample.

Figure 8. Two examples of numerical calculations of fatigue lives (in LOGLife form) for pores 12 (at
εa2) and 14 (at εa3).

In addition to the damage calculation (i.e., the number of cycles reached N), Table 2
lists the estimated stress peaks σ. The graphical analysis in Figure 9 shows the spatial linear
interpolation of the points in Table 2; it can be seen that there are significant discrepancies
in the shapes of the response surfaces representing the C–M curves for different levels
of the individual geometrical characteristics of the critical pores. The distribution of the
stresses σ around the pores indicates continuous changes of values, whereas these changes
are much more variable and pronounced when analysing the final N cycles. A comprehen-
sive analysis of the experimental and theoretical data suggests that the methodology for
estimating the fatigue life should be designed on the basis of numerical analyses of the
damage D or calculations of the cycles N (where N = 1/D) and not just on the basis of a
general estimate of the stress σ.

From the examples in Figure 9 left it can be seen that, as the strain εa increases, a
distinct limit is reached, where we can see a transition from the steeper to the flatter part
of the surfaces, representing the number of cycles reached N. This partly coincides with
the transition of the material from the elasto-plastic to the elastic region. The transition
is more pronounced for smaller pores, where proportionally, due to the smaller pore
volume, there are also smaller proportions of material plastification zones, while a higher
proportion of material plastification occurs already at lower strain (lower εa values) for
larger pore volumes.
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Figure 9. Distribution of fatigue lives N (left) and stress concentrations σ (right) as a function of the
geometric influences of porosity and strain εa.
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3.2. Simulations of Influences of Parameter Combinations on the Fatigue Life

In the research conducted thus far, we have defined five main geometric parameters
(and a sixth one: the strain εa) that have the greatest impact on the lowered level of the
C–M curve of a porous material. Next, we attempt to take a step forward and combine
the influences of different factors and determine the overall measurable effect that will be
reflected in the correspondingly lower level of the C–M curve of the material, from the
initial state of homogeneity to the corresponding state of porosity (see Figure 4).

After analysing the separate effects of the individual geometrical characteristics of the
pores on the fatigue life, these partial effects are combined into a single synthetic Coffin–
Manson porosity durability curve for a given specimen. Taguchi orthogonal arrays are
used for this purpose. One of the advantages of the Taguchi method [36] is the introduction
of orthogonal arrays [37,38], which can considerably reduce the required number of tests
without losing information. Orthogonal arrays Ln (Yx) of different shapes are used. The
notations mean: n—number of simulations needed, where up to X porosity influential
parameters at Y levels are varied. In our case, the orthogonal array L64 (421) was used. With
this analysis, a total of 5 + 1 factors or influences are checked. The five factors represent
geometric parameters f 1–5, with an additional sixth factor (+1) influencing f 6, representing
the varying strain εa. The jointly formed chain of combined influences by lines has the form:

f 1(1–4)-f 2(1–4)-f 3(1–4)-f 4(1–4)-f 5(1–4)-f 6(1–4) (8)

which is equivalent to the original Taguchi array L64 (421) in Table 3:

x1(1–4)-x2(1–4)-x6(1–4)-x10(1–4)-x14(1–4)-x18(1–4) (9)

The factor xi represents the column of the Taguchi array L64 (421), and the index (1–4)
represents the range of quantities that vary within each influence. These six factors were
defined at four levels or sizes, as shown in the previous Section 3.1. In this orthogonal array
set up, which can be seen in Table 3, the combinations run from 1-1-1-1-1-1 to 4-4-4-1-3-2.
In practice, this means that there are always two pores involved in a single simulation of a
given combination, which are positioned relative to each other in size, shape and orientation
according to a given arrangement. One of the pores always has the average shape and size
of the Vaverage pore. Two examples of the fatigue life calculations of a combination of pores
from an orthogonal table can be seen in Figure 10. The fatigue life was calculated in the
same way as in Section 3.1. A presentation of all combinations of simulated pore shapes is
shown in Figure 11.

Figure 10. Two examples of numerical calculations of fatigue lives (in LOGLife form) for the combi-
nations of influences 2-2-1-2-3-4 and 4-1-3-3-3-3-3.
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Table 3. Prediction of stress magnitude σ and fatigue lives N for different pore combinations.

Pore
Volume V

Taguchi
Combinations Stress σ

[MPa]
Cycles N
[Cycle]

Pore
Volume V

Taguchi
Combination Stress σ

[MPa]
Cycles N
[Cycle]

x1 x2 x6 x10 x14 x18 x1 x2 x6 x10 x14 x18

11

1-1-1-1-1-1 124 5.113 *
(129,718)

13

3-1-1-1-1-1 147 5.000 *
(100,000)

1-1-2-2-2-2 188 4.302 *
(20,045) 3-1-2-2-2-2 206 3.986 *

(9683)

1-1-3-3-3-3 268 3.001 *
(1002) 3-1-3-3-3-3 252 3.192 *

(1556)

1-1-4-4-4-4 271 2.713 *
(516) 3-1-4-4-4-4 271 2.555 *

(359)

1-2-1-2-3-4 239 3.479 *
(3013) 3-2-1-2-3-4 258 3.187 *

(1538)

1-2-2-1-4-3 208 3.958 *
(908) 3-2-2-1-4-3 237 3.487 *

(3069)

1-2-3-4-1-2 217 3.432 *
(2704) 3-2-3-4-1-2 214 3.883 *

(7638)

1-2-4-3-2-1 178 4.367 *
(23,281) 3-2-4-3-2-1 188 4.047 *

(11,143)

1-3-1-3-4-2 203 4.074 *
(11,858) 3-3-1-3-4-2 205 4.033 *

(10,789)

1-3-2-4-3-1 204 3.779 *
(6012) 3-3-2-4-3-1 188 3.996 *

(9908)

1-3-3-1-2-4 254 3.252 *
(1786) 3-3-3-1-2-4 260 3.161 *

(1449)

1-3-4-2-1-3 207 4.010 *
(10,233) 3-3-4-2-1-3 206 4.032 *

(10,765)

1-4-1-4-2-3 252 3.214 *
(1637) 3-4-1-4-2-3 259 3.173 *

(1489)

1-4-2-3-1-4 258 3.210 *
(1622) 3-4-2-3-1-4 270 3.000 *

(1000)

1-4-3-2-4-1 186 4.288 *
(19,409) 3-4-3-2-4-1 201 4.000 *

(10,000)

1-4-4-1-3-2 240 3.342 *
(2198) 3-4-4-1-3-2 265 2.928 *

(847)

12

2-1-1-1-1-1 128 5.269 *
(185,780)

14

4-1-1-1-1-1 181 4.422 *
(26,424)

2-1-2-2-2-2 189 4.269 *
(18,578) 4-1-2-2-2-2 217 3.823 *

(6653)

2-1-3-3-3-3 240 3.395 *
(2483) 4-1-3-3-3-3 264 3.040 *

(1096)

2-1-4-4-4-4 271 2.812 *
(649) 4-1-4-4-4-4 271 2.558 *

(361)

2-2-1-2-3-4 236 3.515 *
(3273) 4-2-1-2-3-4 271 2.926 *

(843)

2-2-2-1-4-3 209 3.942 *
(8750) 4-2-2-1-4-3 270 2.959 *

(910)

2-2-3-4-1-2 204 4.034 *
(10,814) 4-2-3-4-1-2 203 4.052 *

(11,272)
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Table 3. Cont.

Pore
Volume V

Taguchi
Combinations Stress σ

[MPa]
Cycles N
[Cycle]

Pore
Volume V

Taguchi
Combination Stress σ

[MPa]
Cycles N
[Cycle]

x1 x2 x6 x10 x14 x18 x1 x2 x6 x10 x14 x18

2-2-4-3-2-1 127 5.215 *
(16,406) 4-2-4-3-2-1 194 3.896 *

(7870)

2-3-1-3-4-2 192 4.272 *
(18,707) 4-3-1-3-4-2 219 3.775 *

(5957)

2-3-2-4-3-1 167 3.741 *
(5508) 4-3-2-4-3-1 187 4.318 *

(20,800)

2-3-3-1-2-4 250 3.301 *
(2000) 4-3-3-1-2-4 270 2.996 *

(991)

2-3-4-2-1-3 210 3.926 *
(8433) 4-3-4-2-1-3 208 3.985 *

(9661)

2-4-1-4-2-3 264 2.990 *
(977) 4-4-1-4-2-3 266 3.079 *

(1199)

2-4-2-3-1-4 252 3.306 *
(2023) 4-4-2-3-1-4 271 2.978 *

(951)

2-4-3-2-4-1 175 4.489 *
(30,832) 4-4-3-2-4-1 192 4.024 *

(10,568)

2-4-4-1-3-2 243 3.308 *
(2032) 4-4-4-1-3-2 271 2.796 *

(625)

* N in LOGLife form (Brown–Miller–Morrow criterion used)—e.g., LOGLife of 100 cycles = 2. ( ) number of
cycles N.

3.3. Formulation of Equations to Calculate the Shift of the Synthetic εa–N Curve due to
Porosity Effects

Using a large database of 144 simulations (80 simulations for the basic parameters and
64 simulations based on the Taguchi orthogonal array), the variation of the Coffin–Manson
(C–M) curve as a function of the geometric parameters can be made in such a way to fit
the simulated data in the best manner. The first finding is that the inverse value of the
pore-to-surface distance (L→1/L; i.e., parameter x2 in the Taguchi array) and the inverse
value of the distance between two pores (g→1/g; i.e., the parameter x10 in the Taguchi
array) must be taken into account in the approximation model. In this case, the modelling
of the influence of the pore geometry parameters on the position of the C–M curve is
significantly improved.

As the notch effect coefficient decreases from high-cycle fatigue strength to low-cycle
fatigue strength and is practically equal to 1 under static load or at ultra-low cycle fatigue
strength [39,40], this means that there is a transition of the curve slope in the LCF area.
Therefore, both the exponent b of the elastic term and the parameter σ′f must be varied
in the Coffin–Manson equation (Equation (2)). The parameters of the plastic term of the
equation (ε′f and exponent c) are retained; thus, a reduction in the notch effect factor in
the region of low-cycle fatigue strength is achieved as well as the increased sensitivity of
the material to the notched geometry in the high-cycle domain. Such fatigue behaviour
is typical for less ductile materials and it can be observed from experimental results that
the AlSi9Cu3 alloy is relatively brittle. The parameters of the elastic term of the equation
are changed as a function of the porosity parameters, which were as follows in our case
(summarised from Figure 5):

(1) Pore size V (parameter x1 in the Taguchi array);
(2) Distance of the pore from the surface of the specimen L (parameter x2 in the Taguchi array);
(3) Pore ellipticity n/m (parameter x6 in the Taguchi array);
(4) Distance between two pores g (parameter x10 in the Taguchi array);
(5) Orientation of the pore α (parameter x14 in the Taguchi array).
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Figure 11. The full range of simulated pore combinations for the Taguchi method.
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To determine the functional dependence of the parameters σ′f and b of the Coffin–
Manson equation, it is necessary to transform the C–M equation (Equation (2)) into the
following form:

εa − ε′f·(2·Nf)
c =

σ′f
E
·(2·Nf)

b (10)[
εa − ε′f·(2·Nf)

c]︸ ︷︷ ︸
K(Nf)

·E = σ′f·(2·Nf)
b (11)

Y = log10[K(Nf)·E] = log10σ′f + b·log10(2·Nf) (12)

Given the structure of equation (Equation (12)), it is possible to deal with the effects of
the above-mentioned five porosity parameters on the variation of the σ′f and b parameters of
the Coffin–Manson equation independently by two multivariate linear regression models:

log10σ′f = s0 + s1·x1 + s2·
(

1
x2

)
+ s3·x6 + s4·

(
1

x10

)
+ s5·x14 (13)

b = b0 + b1·x1 + b2·
(

1
x2

)
+ b3·x6 + b4·

(
1

x10

)
+ b5·x14 (14)

si; i = 0, . . . , 5 are the regression coefficients for calculating the parameter σ′f, bj;
j = 0, . . . , 5 are the regression coefficients for calculating the parameter b. The estimation of
the regression coefficients in equations (Equations (13) and (14)) is carried out on the basis
of 144 simulation results in the form of the following dataset:

{(x1, x2, x6, x10, x14, Nf)k; k = 1, . . . , 144} (15)

Based on the combined model in the equation below:

Y = log10[K(Nf)·E] = log10σ′ f + b·log10(2·Nf) =

= s0 + s1·x1 + s2·
(

1
x2

)
+ s3·x6 + s4·

(
1

x10

)
+ s5·x14+

+
[
b0 + b1·x1 + b2·

(
1
x2

)
+ b3·x6 + b4·

(
1

x10

)
+ b5·x14

]
·log10(2·Nf)

(16)

the regression parameters were assessed using the IBM SPSS software. The target function
was the sum of the squares of distances between the simulated and regression-modelled
results. For our specific case of 144 simulations, equations (Equations (13) and (14)) have
the following forms:

log10σ′f = 2.771 + 0.025·x1− 0.014·
(

1
x2

)
+ 0.200·x6 + 0.006·

(
1

x10

)
− 0.020·x14 (17)

b = −0.137− 0.015·x1− 0.003·
(

1
x2

)
− 0.029·x6− 0.003·

(
1

x10

)
− 0.002·x14 (18)

If equations (Equations (17) and (18)) are inserted into equation (Equation (12)), the
correlation coefficient of the model based on 144 simulations is equal to R = 0.8991, and
the corresponding determination coefficient is equal to R2 = 0.8092. This means that the
regression models for the parameters σ′f and b of the Coffin–Manson equation describe
more than 80% of the total variance of the simulated results for the prediction of the fatigue
life if macro-pores are present. If the pairwise interactions from the Taguchi L64 (421)
array were also included in the regression models of Equations (13) and (14) the quality
of the combined model of Equation (16) would be only marginally improved (R = 0.9132;
R2 = 0.8341). However, such an improvement does not justify extending the model with
additional pairwise interactions, because they do not significantly correct the calculation of
the σ′f and b parameters.
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4. Comparison of Theoretical and Experimental Results

The acquired porosity data were, due to the combined action of different pore notch ef-
fects, first simulated with FEM and then converted to modified Coffin–Manson coefficients,
based on regression calculations, using Taguchi combinations. An additional advantage
of the presented method is that it can also be applied in cases of isolated single pores or
other local anomalies, such as inclusions. One of the most important objectives of the study
was to determine the influence of the accuracy of different geometrical porosity factors on
fatigue life. The most important criterion in the modification of the Coffin–Manson (C–M)
durability curve εa–N is the shape of the pores. The research and the results of the dynamic
durability N in Figure 9 show, for values around n/m ≈ 0.5, a clear characteristic division
into two main influential groups of porosity: the more favourable spherical pores, and in
contrast, disc-shaped (flat) pores, which produce much more significant local plastification,
especially if the longest axis of the ellipsoid is not aligned with the loading direction.

At the critical points, a strong increase in notch effects can be observed from the stress
analysis, leading to a rapid fatigue failure. It can also be seen from Figure 9 that even a
small off-centre position of the pores in the specimen results in a large increase of damage
D. Similarly, even a small rotation of the pore away from the neutral axis (α > 30◦) results
in a noticeable decrease in fatigue life. Based on the results, we believe that the presented
method is more suitable for dealing with gas porosity, where more regular pore shapes are
present. Shrinkage porosity tends to be more diffuse and irregularly shaped, making it
more difficult to predict the behaviour of the material and to lower the level of the C–M
curve properly. Moreover, asymmetrically placed pores in the structure, even if volumetric
(sphere-like), can be more dangerous, as is the case in sample no. 16, in which the pores are
larger at one half of the critical cross-section A than at the other. The presence of similarly
sized pores of similar volume, even if the degree of porosity is greater, is a more favourable
condition due to the more symmetrical, uniform elongations of the structure.

Figure 12 shows an example (as described in Section 3.3) of the shift of the AlSi9Cu3
C–M durability curve for the representative porous sample no. 12. The shift is performed
by calculating the terms σ′f and b using equations (Equations (13) and (14)), into which
the regression coefficients si, bj are inserted, calculated for the general porosity state of the
AlSi9Cu3 alloy. Based on this, equations (Equations (17) and (18)) are derived, and then
the locally observed peculiarities of the critical pore values, as seen in Figure 13, e.g., for
sample no. 12, are inserted, which further improves the trend (shape) of the durability
curve. The newly modelled lowered level of the synthetic C–M curve for sample no. 12 now
has values σ′f = 1063 MPa, b = −0.22, while the other two parameters of the C–M equation
are retained: ε′f = 0.0001, c = −1.605. In some cases, such as sample no. 4, with a dominant
large pore in the centre, there is no doubt that a potential critical failure location lies around
it. If there is any doubt as to where the most critical part is, several quick calculations can
be made using the method presented, taking into account the combination of geometric
influences that gives the shortest prediction of the fatigue life.

It can be seen from the results in Figure 12 that the shift of the synthetic C–M curve
for the typical porosity of specimen no. 12 is slightly non-conservative. We estimate this is
because the shift of the synthetic curve is based only on the interaction of two pores, one
of which has an average size. However, since there is an interaction of pores significantly
larger than average for specimen no. 12 (see Figure 13), the actual fatigue life is slightly
shorter than that predicted by the shift of the C–M durability curve. Porous sample no.
12 has experimentally withstood 4243 cycles, while we estimated about 5000 cycles using
the presented method. If we had used dedicated software (e.g., SIMULIA fe-safe, nCode,
etc.), which also allows defining the surface condition of the specimen and if we had used
one of the specific criteria to deal with failure due to cyclic strain at the critical plane, the
predictions of the fatigue-life N could have been improved further. As can be further seen
from Figure 12, a homogeneous sample withstands around 350,000 cycles at the same load
εa = 0.2%. As part of the data comparisons, a test duplicate method was performed, where
we compared the influence of two different criteria for predicting the fatigue life of our
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specimens, i.e., the before-mentioned Brown–Miller–Morrow criterion and the well-known
Smith–Watson–Topper criterion (Equation (19)) for the same boundary conditions.

σmax·εa =

(
σ′f
)2

E
(2·Nf)

2b + σ′f ·ε′f(2·Nf)
b+c (19)

Figure 12. Shift of the calculated C–M curve of AlSi9Cu3 alloy for porous sample no. 12.

Figure 13. Assessment of critical areas with dimensions around the largest pore in sample no. 12.
(a) raw data, (b) reconstruction of pores on the critical plane, (c) examination of the pores inside.

Two combinations of pores (i.e., 2-2-1-2-3-4 and 4-1-3-3-3-3 from Figure 10) were
analysed using the two criteria. Based on the data obtained in Table 4, it can be concluded
that the results of the calculated fatigue lives N are comparable for both methods. The
Brown–Miller–Morrow criterion is slightly more conservative, which means that we are on
the safer side of predicting the fatigue life when using it. Additional discussion of results
for both tested criteria is presented in Table 4.
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Table 4. A duplicate response for two pore combinations using two different algorithms.

Combinations
from Taguchi

Array

Brown–Miller–
Morrow

(B–M–M)

Smith–Watson–
Topper

(S–W–T)
Comment of the Results

2-2-1-2-3-4 3.515 *
(3273)

3.583 *
(3828)

When considering pores of the same
size with mutual distances
g < 0.38 mm, the B–M–M criterion
gives slightly more conservative
results. The reason may be the
additional inclusion of the shear stress
in the B–M–M criterion, which has an
additional impact on the interaction
between the proximal pores.

4-1-3-3-3-3 3.040 *
(1096)

3.086 *
(1219)

If there is a combination of the
dominant pores in the middle of the
sample and the distance between the
pores g > 0.38 mm, the criteria B–M–M
and S–W–T are comparable, with
minimal differences in the prediction
of the duration. In this case too, the
B–M–M criterion is somewhat
more conservative.

* N in LOGLife form. ( ) number of cycles N.

Figure 14 shows the other samples processed in the same way. What was only a
prediction in the introduction can now be confirmed: the best match of the experimental
points with the modelled synthetic curves is obtained at the highest strain amplitudes εa,
as is the case for samples no. 4, 7, 16 and 17, where the curve sections are the steepest. A
very good result was obtained for sample no. 36, where the smallest pores are present at
lower cyclic strains εa, where the curve sections are flatter. This indicates the applicability
of the method over the whole elasto-plastic range of the material and for pores of different
sizes. The largest deviation of the modelled synthetic curve from the corresponding
experimental point is observed for sample no. 31. In this specific case, a lamellar structure
was present, whose geometry is difficult to describe accurately using ellipsoids, yet the
estimated deviation is within the double value of the error of the predicted loading cycles
to failure. For all specimens, the calculated values of the coefficients and exponents of the
modelled synthetic C–M durability curves are summarised in Table 1.

Figure 14. Display of the calculated shift of the C–M curves for all porous samples analysed.
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5. Conclusions

From the observations of the experimental testing of the porous structures and the
equivalent numerical simulations of the response of the specimen geometry, the main
highlights of the study can be summarised in a few points:

• The method presented is an efficient and simple procedure for the estimation of the
fatigue life, since the treatment of porosity starts from a homogeneous geometry,
where fewer finite elements are used, and the influence of porosity is incorporated by
a precise shift of the Coffin–Manson (C–M) εa–N durability curve.

• As we have seen from experimental data, because of the large differences in the
durability of differently porous samples, it is not reasonable to base the fatigue life
calculation around one averagely shifted C–M curve because the predictions may
be either too conservative or too optimistic. This brings us to the idea of individual
treatment of a particular porous case.

• Modelling the synthetic durability C–M curve of a porous material based on regression
calculations, its new terms σ′f and b, represents a significant advance in durability
predictions according to the LCF theory since a simple preliminary analysis can give a
reasonably good estimate of the fatigue life of a given porous specimen.

• The presented method allows the modelling of a synthetic C–M durability curve on
two levels. By regression calculations of the coefficients si, bj, the basic course of
the material durability curve is obtained first, which is then individually refined by
entering the geometrical parameters x1–14 for a given analysed specimen. When
studying porosity in AlSi9Cu3 alloy, it can be concluded from the simulations and
regression analyses that this material is most sensitive to the geometric parameter
of the orientation of the disc-shaped pores, defined by the regression coefficients s5
and b5. It is, therefore, important, when examining the porosity, to estimate as best
as possible the angle α of the orientation of the dominant pores within the geometric
influence x14.

• The prediction of the fatigue life is generally good on all samples analysed. The result
is slightly more conservative only for sample no. 31, where the effect of the lamellarity
of the structure around the central axis is more difficult to describe analytically via the
ellipsoids used.
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Nomenclature

a,b,c [mm] Half-axes of ellipsoid
b [-] Fatigue strength exponent

b0,1,2,3,4,5 [-]
Regression coefficients for estimating the Coffin–Manson
exponent b

c [-] Fatigue ductility exponent
d [mm] Nominal diameter of the smallest half-axle of the ellipsoid

n/m [-]
Sphericity ratio: quotient between the biggest and the
smallest axle of the ellipsoid

n’ [-] Cyclic strain hardening exponent
p [-] Porosity

s0,1,2,3,4,5 [-]
Regression coefficients for estimating the Coffin–Manson
parameter σ′f

g [mm] Distance between two pores
l0 [mm] Gauge length (extensometer)
A [mm2] Cross-section
C–M [-] Coffin–Manson curve (equation)
D [-] Damage variable
E [MPa] Young’s modulus
K’ [MPa] Cyclic strain hardening coefficient

L [mm]
The smallest distance between a pore boundary and a
surface of the structure

Ln [-] Taguchi orthogonal array
N [cycle] Predicted fatigue life (cycles)
Nexp [cycle] Observed experimental fatigue life (cycles)
Nf [cycle] Number of cycles to failure
Ra [µm] Surface roughness
V [mm3] Pore volume
ε [-] Strain
εa [-] Strain amplitude
ε′f [-] Fatigue ductility coefficient

α [◦]
Pore direction: angle between the specimen longitudinal
axis and the direction of the biggest pore half-axle

ν [-] Poisson’s ratio
ρ [g/cm3] Density
σ [MPa] Stress
σ′f [MPa] Fatigue strength coefficient
σm [MPa] Mean stress in the cycle
σmax [MPa] Maximum stress in the cycle
σu [MPa] Ultimate strength
σy [MPa] Yield strength
κt [-] Surface finish factor
∆l [mm] Length change
∆εn [-] Normal strain
∆γ [-] Shear strain
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6. Nečemer, B.; Vesenjak, M.; Glodež, S. Fatigue of Cellular Structures—A Review. SV-JME 2019, 65, 525–536. [CrossRef]

http://doi.org/10.1088/1757-899X/367/1/012039
http://doi.org/10.1590/1980-5373-mr-2019-0676
http://doi.org/10.1016/0013-7944(83)90018-8
http://doi.org/10.4028/www.scientific.net/KEM.51-52.37
http://doi.org/10.3390/met11040609
http://doi.org/10.5545/sv-jme.2019.6070


Materials 2022, 15, 2269 23 of 24

7. Liu, A.F. Mechanics and Mechanisms of Fracture: An Introduction; ASM International: Materials Park, OH, USA, 2005; p. 500.
8. Stephens, R.I.; Fatemi, A.; Stephens, R.R.; Fuchs, H.O. Metal Fatigue in Engineering, 2nd ed.; John Wiley & Sons: New York, NY,

USA, 2001; p. 496.
9. Spanos, P.D.; Sofi, A.; Wang, J.; Peng, B. A Method for Fatigue Analysis of Piping Systems on Topsides of FPSO Structures. J.

Offshore Mech. Arct. Eng. 2006, 128, 162–168. [CrossRef]
10. Al-Zubaidy, B.M.; AbidAli, A.K.; Athaib, N.H. Finite Element Analysis Of Porous Aluminium Aa3003 Alloy Under Compression

And Bending Loading. Eur. J. Mol. Clin. Med. 2020, 7, 735–746.
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