
Citation: Ni, L.; Zhang, X.; Zhou, L.;

Yang, X.; Yan, B. An Inverse Analysis

for Establishing the Temperature-

Dependent Thermal Conductivity of

a Melt-Cast Explosive across the

Whole Solidification Process.

Materials 2022, 15, 2077. https://

doi.org/10.3390/ma15062077

Academic Editor: Anton Trník

Received: 19 January 2022

Accepted: 9 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

An Inverse Analysis for Establishing the Temperature-
Dependent Thermal Conductivity of a Melt-Cast Explosive
across the Whole Solidification Process
Lei Ni 1, Xiangrong Zhang 1,* , Lin Zhou 1, Xiufen Yang 1 and Bo Yan 2

1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,
Beijing 100081, China; 3120185174@bit.edu.cn (L.N.); zhoulin@bit.edu.cn (L.Z.);
y18801328015@gmail.com (X.Y.)

2 Research Institute of Gansu Yinguang Chemical Industry Group, Baiyin 730900, China; yanb6825@gmail.com
* Correspondence: zhangxr@bit.edu.cn

Abstract: Thermal conductivity is one of the most important thermophysical properties of a melt-cast
explosive. However, the temperature-dependent thermal conductivity of such explosives cannot be
easily measured across the whole solidification process (including the liquid, semi-solid, and solid
states). This study used an inverse analysis method to estimate the temperature-dependent thermal
conductivity of a 2,4-dinitroanisole/cyclotetramethylenetetranitramine (DNAN/HMX) melt-cast
explosive in a continuous way. The method that was used is described here in detail, and it is
verified by comparing the estimated thermal conductivity with a prespecified value using simulated
measurement temperatures, thereby demonstrating its effectiveness. Combining this method with
experimentally measured temperatures, the temperature-dependent thermal conductivity of the
DNAN/HMX melt-cast explosive was obtained. Some measured thermal conductivity values for this
explosive in the solid state were used for further validation.

Keywords: melt-cast explosives; temperature-dependent thermal conductivity; inverse heat-transfer
problem; Gauss–Newton algorithm

1. Introduction

In the manufacturing of melt-cast explosives, a high-temperature suspension of molten
explosives begins to cool down until it finally solidifies at room temperature. During this
solidification process, there is a significantly inhomogeneous temperature distribution
inside the explosive charge and there are notable temperature gradients [1]. This could
result in severe thermal stress and cause cracking or damage if the mechanical strength
of the explosive is not high enough to withstand the resulting forces [2,3]. To reduce
or eliminate such thermal cracking and damage, the thermophysical and/or mechanical
properties of the explosive charge need to be improved.

As a key thermophysical property, thermal conductivity has been widely investigated
to enhance the thermal-environment adaptability of brittle materials [4–7]. Before investi-
gating the effects of thermal conductivity on the thermal safety of these brittle materials,
their temperature-dependent thermal conductivity should be experimentally measured
over as wide a temperature range as possible. Recently, a steady-state hot-wire method has
been proposed to measure the thermal conductivity of liquids [8], and an unconventional
laser flash technique method has been used to measure solids such as CFRP [9]. However,
the temperature-dependent thermal conductivities of materials in their liquid and solid
states are generally measured separately using commercially available instruments [10],
and the thermal conductivity in the semi-solid state has to be interpolated in some way.
Although Sandia National Laboratories recently developed a new method combining
finite-element analysis with cookoff data to determine the temperature-dependent thermal
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conductivity of melt-cast explosives [11], their method involves the complicated solution
of Navier–Stokes equations, and it thus cannot be easily followed. Therefore, there is still a
need for a simple method for obtaining the temperature-dependent thermal conductivity
of melt-cast explosives continuously across the whole solidification process.

Inverse heat transfer problems (IHTPs) have been widely accepted and used as alter-
native or essential approaches in many engineering applications [12–14]. IHTPs originally
emerged in the late 1950s when it was found that the aerodynamic heating of space ve-
hicles is so high during re-entry to the atmosphere that the surface temperature of the
thermal shield cannot be measured directly using temperature sensors. Since then, IHTPs
have been used to estimate all kinds of unknown quantities [14–21], including, among others,
initial/boundary conditions, source terms, geometry, heat flux, and thermophysical properties.

The application of IHTPs for establishing thermophysical properties usually involves
the estimation of temperature-dependent thermal conductivity and/or specific heat ca-
pacity [22,23]. Generally, both the thermal conductivity and specific heat capacity can
be identified by a parameter-estimation or function-estimation method [14], and both of
these methods can be either deterministic or stochastic. However, both methods involve
minimization of the sum of the squares of the difference between the experimental and
computational (recovered from an inverse method) temperatures [14]. It should be noted
that although such inverse analysis methods have achieved much success in the estimation
of the temperature-dependent thermal conductivity of inert materials excluding the solidi-
fication process, few studies to date have investigated energetic materials such as melt-cast
explosives across the whole solidification process (including the liquid, semi-solid, and
solid states).

This study focused on the estimation of the temperature-dependent thermal conduc-
tivity of a 2,4-dinitroanisole/cyclotetramethylenetetranitramine (DNAN/HMX) melt-cast
explosive during the whole solidification process using an inverse analysis method. The
melt-cast explosive examined consists of 70 wt% HMX, 29.5 wt% DNAN, and 0.5 wt%
N-methyl-4-nitroaniline (MNA). The small amount of MNA was used as a processing agent
to lower both the melting point of DNAN and the viscosity of the molten explosive suspen-
sion [24]. The explosive performance of this formulation was designed to be comparable
to that of Octol (65 wt% HMX and 35 wt% trinitrotoluene (TNT)) [25], but the explosive
insensitivity of this formulation is significantly better than that of the Octol formulation.

With the help of other known temperature-dependent thermophysical properties
(density and specific heat capacity), the Gauss–Newton algorithm was used in the inverse
analysis method to minimize the sum of the squares of the difference between the experi-
mental and computational temperatures. In the remainder of this paper, the experiments
and the inverse analysis method will be described in detail. After the inverse analysis
method was verified, it was used to estimate the thermal conductivity of the DNAN/HMX
melt-cast explosive. Partial validation of the inverse analysis method and factors affecting
the estimation are also discussed.

2. Experiments and Inverse Analysis Method
2.1. Experimental Design

The aforementioned inverse analysis method requires the experimental measurement
of temperature profiles. The temperature-dependent density and specific heat capacity of
the DNAN/HMX melt-cast explosive also need to be measured for this analysis.

Figure 1 shows a schematic of the experimental setup for measuring the temperature
profiles of different parts of the sample. This consists primarily of a casting-mold system
and a thermocouple temperature-measurement system. The casting-mold system comprises
a cylindrical mold with an inner diameter of 50 mm, an outer diameter of 80 mm, a
height of 250 mm, and a sealed cover. The mold is made from 45# steel (0.42–0.50 wt% C,
0.50–0.80 wt% Mn,≤0.035 wt% P,≤0.035 wt% S). Four K-type thermocouples are embedded
at different circumferential and radial positions in the explosive charge; these positions
are located radially at 5 mm (A1 and A3) and 21 mm (A2 and A4) from the center of
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the explosive cylinder. Adjacent thermocouples differ in their positions by 90◦ in the
circumferential direction. The temperatures recorded at the two positions (5 and 21 mm
from the center of the cylinder) are approximately one-dimensional and differ only in their
radial direction.

Figure 1. Schematic of experimental setup.

The experimental procedures involved the following steps:

1. The molten DNAN/HMX explosive was prepared with an initial temperature of 100.1 ◦C.
2. The molten explosive was poured into the mold and the sealing cover was placed

immediately on the top of the mold and held securely in place using tightening bolts.
3. The molten explosive began to cool, and the four thermocouples recorded the temper-

ature time history until the temperature had decreased to reach that of the ambient en-
vironment.

The density of the solid-state explosive charge at normal temperature (21.1 ◦C) was
measured by hydrostatic weighing with an electronic balance. The density of the molten
explosive at high temperature (100.1 ◦C) was measured by the following procedure:

1. The molten explosive was poured into a steel mold with an inner diameter of 25 mm
and a height of 100 mm, ensuring that the mold was completely filled so the volume
(V) of the molten explosive was roughly equal to that of the mold.

2. The mass (M) of the molten explosive was measured with a balance after it had
solidified and cooled down to normal temperature.

3. The density (ρ) of the molten explosive was evaluated according to ρ = M/V.

The temperature-dependent specific heat capacity of the DNAN/HMX melt-cast
explosive could then be determined by differential scanning calorimetry (DSC). In this
study, the temperature-dependent thermal conductivity of this explosive during the whole
solidification process was estimated by an inverse analysis method. Besides, the thermal
conductivity values in the solid state were also measured using a C-Therm (TCi) thermal
conductivity analyzer, and the results were used to partially validate the present method.

2.2. Inverse Analysis of Thermal Conductivity

In contrast to the function-estimation method, if some information is available on the
functional form of the unknown quantities, then the parameter-estimation method only
requires the estimation of a few unknown parameters. Using the parameter-estimation
method, we assume that the temperature-dependent thermal conductivity k(T) of the
DNAN/HMX melt-cast explosive can be represented as a polynomial in the form [26,27]

k(T) =
N

∑
j=1

KjT j−1, (1)



Materials 2022, 15, 2077 4 of 18

where k is the thermal conductivity, T is the temperature, Kj (j = 1, · · · , N) are unknown
polynomial parameters, and N is the number of unknown parameters. The inverse analysis
of the unknown function k(T) is then reduced to the problem of estimating a limited
number of parameters Kj.

The solution of this IHTP for the estimation of the N unknown parameters Kj is based
on the minimization of the least-squares norm (in matrix form)

S(K) = [Y − T(K)]T[Y − T(K)], (2)

where the superscript T denotes the matrix transpose, Y is the vector of experimental
temperatures, K is the vector of unknown parameters K = [K1 K2 · · · KN ]

T, and T(K) is
the vector of computational temperatures at the experimental measurement location.

The minimization of Equation (2) is implemented by a Gauss–Newton algorithm,
which mainly involves the solution of a direct problem and a sensitivity problem.

2.2.1. Direct Problem

In cylindrical coordinates, the one-dimensional transient heat-conduction equations
with a phase change can be written as [28]

ρ(T) ∂H(r,t)
∂t = 1

r
∂
∂r

[
rk(T) ∂T(r,t)

∂r

]
for 0 < r < r0, t > 0,

∂T(r,t)
∂r = 0 for r = 0, t > 0,

T(r, t) = f (t) for r = r0, t > 0,
T(r, 0) = g(r) for 0 ≤ r ≤ r0, t = 0,

(3)

where r is the distance from the origin, t is time, r0 is the outer radius of the one-dimensional
cylindrical geometry, and H is the enthalpy of the explosive. We assume linear release of
latent heat over the temperature range Ts ≤ T ≤ Tliq, where Ts and Tliq are the solidus
and liquidus temperatures, respectively. The variation of H with temperature can be
expressed as

H =



∫ T

T0

c(T)dT if T < Ts,∫ T

T0

c(T)dT +
T − Ts

Tliq − Ts
l if Ts ≤ T ≤ Tliq,

∫ T

T0

c(T)dT + l if T > Tliq,

(4)

where c is the specific heat capacity of the explosive charge and l is the latent heat of
solidification associated with the phase change of the molten explosive.

Since the thermophysical properties (density, specific heat capacity, and thermal
conductivity) are temperature dependent and/or a phase change exists, the direct problem
(Equation (3)) is nonlinear without an analytical solution, and it can be numerically solved
iteratively. Given the thermophysical properties and the initial and boundary conditions,
the direct problem can be solved using the standard enthalpy method [29–31].

2.2.2. Sensitivity Problem

The core of the sensitivity problem is to determine the elements in the sensitivity
matrix J (also called the Jacobian matrix). The elements of this matrix (called the sensitivity
coefficients) Jij represent the sensitivity of the estimated temperature Ti with respect to
changes in the unknown parameter Kj; that is,

Jij =
∂Ti
∂Kj

, (5)

where the subscript i indicates time ti (i = 1, 2, · · · , I) and j = 1, 2, · · · , N.
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Generally, the sensitivity coefficients can be obtained in one of three ways: using the
analytical, finite-difference, or boundary-value methods [14]. Since the direct problem is
nonlinear, the analytical method is not available. Additionally, the finite-difference method
can be very time consuming. Therefore, the boundary-value method was adopted for
determining the sensitivity coefficients.

The governing equations of the sensitivity problem can be obtained by differentiating
the original direct problem with respect to the unknown parameters. After Equation (1) is
substituted into Equation (3), the derivative ∂/∂Kj is taken on both sides of the equations.
Then, we have

ρ(T)c(T)
∂Jj(r,t)

∂t = k(T)
∂2 Jj(r,t)

∂r2 +
(

∂T
∂r

)2 ∂2k(T)
∂T∂Kj

+
[

∂k(T)
∂T

∂T
∂r + k(T)

r

]
∂Jj(r,t)

∂r

+
[

∂2T
∂r2 + 1

r
∂T
∂r

]
∂k(T)
∂Kj

for 0 < r < r0, t > 0,
∂Jj(r,t)

∂r = 0 for r = 0, t > 0,
Jj(r, t) = 0 for r = r0, t > 0,
Jj(r, t) = 0 for 0 ≤ r ≤ r0, t = 0,

(6)

where Jj = ∂T/∂Kj (j = 1, 2, · · · , N). Combining Jj with Jij (as defined in Equation (5)), it
can be seen that Jij = Jj(rmeas, ti), where transient temperature measurements are taken at
location r = rmeas and at time t = ti.

If k(T), ρ(T), c(T), and T are known, Equation (6) is linear and can be directly solved
by the finite-difference method. The sensitivity problem needs to be solved N times to
compute the sensitivity coefficients with respect to each parameter Kj (j = 1, 2, · · · , N).

2.2.3. Gauss–Newton Algorithm for Minimization

The Gauss–Newton algorithm was used to minimize the least-squares norm (S(K)
in Equation (2)). Compared to Newton’s algorithm, the Gauss–Newton algorithm has
the advantage that it does not require the computation of second derivatives [32]. The
necessary conditions for the minimization of S(K) require that the gradient of S(K) with
respect to the vector of parameters K must be zero, i.e.,

− 2JT(K)[Y − T(K)] = 0, (7)

where the superscript T denotes the matrix transpose, and J is the Jacobian matrix
(Equation (5)), which can be constructed by numerically solving the sensitivity problem
(Equation (6)).

The vector of temperatures (T(K) in Equation (7)) can be further linearized by a
Taylor-series expansion,

T(K) = T(Kn) + Jn(K − Kn), (8)

where T(Kn) and Jn are the estimated temperatures and the sensitivity matrix evaluated at
iteration n, respectively. Substituting Equation (8) into Equation (7) and rearranging the
resulting expression, the iterative procedure to obtain the vector of unknown parameters K
can be given by

Kn+1 = Kn +
[
(Jn)T Jn

]−1
(Jn)T[Y − T(Kn)]. (9)

2.2.4. Stopping Criterion

The iterative procedure (Equation (9)) is not stopped until the criterion

S
(

Kn+1
)
< ε (10)
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is satisfied, where ε can be chosen as a sufficiently small number for errorless measurements.
However, errorless measurements are generally impossible. When measurement error is
involved, the discrepancy principle is used to stop the iterative procedure [14]. In this case,
it will be stopped when the residuals between the measured and estimated temperatures
are of the same order of magnitude as the measurement errors. The temperature residuals
might be approximated by

|Y(ti)− T(rmeas, ti)| ∼= σ, (11)

where σ is the standard deviation of the measurements, and this is assumed to be a constant.
Substituting Equation (11) into Equation (2), the value of the stopping criterion ε can be
given by

ε = Iσ2. (12)

2.2.5. Computational Procedure

The iterative procedure for estimation of the unknown parameters K is shown in
Figure 2. Data including the temperature-dependent density (ρ(T)) and specific heat
capacity (c(T)), the solidus and liquidus temperatures, and the latent heat are inputted in
advance. The present algorithm was implemented using MATLAB.

Solve sensitivity problem, Eq.  6 , to obtain
Jacobian matrix 

Solve direct problem, Eq.  3 , 
to obtain 𝑇 𝑟, 𝑡

Start

New estimation of  with 
Eq.  9

Stopping criterion 
Eq. 10  is satisfied?

End

No

Yes

Initial guess of parameters 
vector       with 𝑛 0

J

nK

1nK

Figure 2. Flow chart of iterative procedure.

3. Results and Discussion
3.1. Experimental Temperatures and Thermophysical Properties

Figure 3 shows the experimental temperature profiles at the positions r = 5 mm (A1
and A3 in Figure 1) and r = 21 mm (A2 and A4 in Figure 1). The two temperature profiles
at the same distance (r = 5 or 21 mm) almost overlap, indicating that the position errors
for the thermocouple sensors were negligibly small. Additionally, since the inner diameter
(50 mm) of the mold was small, the temperature profiles (r = 21 mm) near to the inner
surface of the mold dropped rapidly, and their initial values were only about 81 ◦C, while
the initial temperature of the molten explosive was 100.1 ◦C. Compared to the temperature
profiles at r = 21 mm, the temperature profiles at r = 5 mm (near to the center of the mold)
dropped gradually. This is due to the latent heat of the liquid–solid phase transition, and
the latent heat is released slowly because the measuring points (A1 and A3 in Figure 1) are
far away from the wall of the mold.

The temperature-dependent density and specific heat capacity of the DNAN/HMX
melt-cast explosive can be described by Equations (13) and (14), respectively:

ρ
(

kg/m3
)
= 1765− 1.25T (20 ◦C ≤ T ≤ 100 ◦C), (13)

c[J/(kg ·K)] = 1240 + 2T (20 ◦C ≤ T ≤ 100 ◦C). (14)
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The densities of the explosive at 100.1 ◦C (liquid state) and 21.1 ◦C (solid state) were
respectively measured as 1640 and 1740 kg/m3, clearly complying with the rule of a
common material that expands when heated and contracts when cooled. The density
values of the explosive at temperatures greater than 21.1 ◦C and less than 100.1 ◦C were
obtained by linear interpolation. Based on the DSC curve of the heat flow, the dependence
of the specific heat capacity of the explosive on the temperature can also be approximated
by a linear function. However, it should be noted that the specific heat capacity of the
explosive at temperatures above the solidus line and below the liquidus line were not
obtained directly from the DSC curve due to the lack of physical meaning, rather, these
were also interpolated linearly.

Figure 3. Experimental temperature profiles.

As shown in Figure 4, the measured thermal conductivity of the DNAN/HMX melt-
cast explosive in the solid state decreases with increasing temperature. However, this
temperature effect is not prominent since the relative difference between the maximum
(0.398 W/(m·K)) and the minimum (0.374 W/(m·K)) is only about 6%.

Figure 4. Thermal conductivity of the DNAN/HMX melt-cast explosive in the solid state.

3.2. Verification of Inverse Analysis Method

The inverse analysis method was verified using two types of prespecified functions for
temperature-dependent thermal conductivity. In type one, the thermal conductivity varies
linearly with temperature; in type two, the thermal conductivity varies with temperature
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in a quadratic polynomial form. Furthermore, for either type of function, a simulated
measurement temperature was used. This temperature was generated by combining the
solution of the direct problem (to obtain an exact temperature) with the addition of random
noise to the exact temperature [14]. The direct problem was solved with the prespecified
thermal conductivity function, while the random noise was ωσ, where ω is a random
variable with a value of between −2.576 and 2.576 for a 99% confidence bound and σ is the
standard deviation of the measurement (assumed to be the same for all measurements).

When solving the direct problem (Equation (3)), the geometry, initial/boundary con-
ditions, and thermophysical properties are the same as those in the practical solidifica-
tion/cooling of the DNAN/HMX melt-cast explosive (with respect to Figure 1), except
for the prespecified temperature-dependent thermal conductivity. Although the radius
of the explosive charge was 25 mm in the approximately one-dimensional cylindrical
geometry, the actual radius used in the computation was 21 mm (A2 and A4 in Figure 1),
and the measured temperature profile was treated as a boundary condition. The total
computational time t = 3000 s. The time step dt = 2 s and mesh size dr = 0.21 mm; this
allowed a good balance between computational efficiency and accuracy. Initial tempera-
tures between r = 5 mm and r = 21 mm were interpolated linearly. The latent heat l was
29.5 kJ/kg, and the solidus (Ts) and liquidus (Tliq) temperatures were 62 ◦C and 88 ◦C,
respectively. The temperature-dependent density and specific heat capacity are given by
Equations (13) and (14), respectively. As mentioned earlier, the two types of prespecified
thermal conductivity are given by Equations (15) and (16):

k[W/(m ·K)] = 0.26− 5× 10−4T (20 ◦C ≤ T ≤ 100 ◦C), (15)

k[W/(m ·K)] = 0.2625− 6.5× 10−4T + 2.64× 10−6T2 (20 ◦C ≤ T ≤ 100 ◦C). (16)

Figures 5 and 6 show the effect of random noise on the recovered temperatures and on
the estimated temperature-dependent thermal conductivity. It can be seen that the random
noise has a negligible effect on the recovered temperature curves (Figures 5a and 6a), even
if the standard deviation (σ = 0.5 ◦C) is much larger than normally expected in precise
temperature measurements. However, the random noise does have an appreciable effect
on the estimated thermal conductivity (Figures 5a and 6b). Figure 7 further examines this
effect on the basis of relative average error, which is defined as [27]:

(a)

Figure 5. Cont.
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(b)

Figure 5. Effect of random noise on the recovered temperatures and on the estimated thermal
conductivity; a linear function of k(T) is prespecified. (a) Temperature. (b) Thermal conductivity.

Era =
1
Nt

Nt

∑
i=1

∣∣∣∣∣ k(Ti)− k̂(Ti)

k̂(Ti)

∣∣∣∣∣× 100%, (17)

where k(T) and k̂(T) are the estimated and prespecified values of thermal conductivity,
respectively, and Nt is the total number of temperature interpolation points to calculate
the relative average error. As shown in Figure 7, the maximum relative average error is
less than 0.5%, demonstrating that the present inverse analysis method is applicable to the
estimation of temperature-dependent thermal conductivity with the help of experimen-
tal temperatures.

(a)

Figure 6. Cont.
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(b)

Figure 6. Effect of random noise on the recovered temperatures and on the estimated thermal
conductivity; a quadratic function of k(T) is prespecified. (a) Temperature. (b) Thermal conductivity.

Figure 7. Effect of random noise on the relative average error.

3.3. Estimation of Temperature-Dependent Thermal Conductivity

After the verification using the simulated measurement temperatures with a prespeci-
fied thermal conductivity, the present inverse analysis method was used to estimate the
temperature-dependent thermal conductivity of the DNAN/HMX melt-cast explosive with
the help of the experimentally measured temperatures. A third-order polynomial (N is 4 in
Equation (1)) was used to approximate the temperature-dependent thermal conductivity.
The total computational time was taken as 1500 s since a larger computational time would
make temperature profiles A1 (Figure 3, used in the inverse analysis) and A2 (Figure 3,
serving as a boundary condition) tend to coincide, resulting in considerable inaccuracy
when estimating the thermal conductivity [14].

As shown in Figure 8a, the recovered and experimental temperatures are in very
good agreement. Below the solidus line (62 ◦C), the temperature has a nonsignificant
effect on the estimated thermal conductivity, and good agreement also exists between
the estimated and measured values (Figure 4) of the thermal conductivity (Figure 8b).
However, above the solidus line, the estimated thermal conductivity is affected greatly
by the temperature, and it increases with increasing temperature. Furthermore, if the
temperature profiles A3 (r = 5 mm, the same as A1) and A4 (r = 21 mm, the same as
A2), instead of A1 and A2, are used to estimate the thermal conductivity, basically the
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same results can be obtained (Figure 9). The estimated temperature-dependent thermal
conductivity for the DNAN/HMX melt-cast explosive during the whole solidification
process can be expressed as

k(T) = −0.6651 + 9.4186× 10−2T − 2.3696× 10−3T2 + 1.8228× 10−5T3, (18)

(20 ◦C ≤ T ≤ 100 ◦C).

(a)

(b)

Figure 8. Recovered temperature and estimated thermal conductivity based on the experimentally
measured temperatures of the DNAN/HMX melt-cast explosive. (a) Temperature. (b) Thermal con-
ductivity.
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Figure 9. Effect of sensor location errors on the estimated thermal conductivity.

Based on the previous analysis, it seems that the temperature-dependent thermal con-
ductivity of the DNAN/HMX melt-cast explosive can be uniquely expressed by
Equation (18). However, it should be noted that the lowest experimental temperature
value used in the estimation of thermal conductivity was about 40 ◦C (Figures 3 and 8a),
which implies that the agreement between the estimated and measured thermal conductivi-
ties when the temperature is below 40 ◦C may only be coincidental. To further illustrate this,
second-order (N is 3 in Equation (1)) and fourth-order (N is 5 in Equation (1)) polynomials
were additionally used to approximate the temperature-dependent thermal conductivity.

Figure 10 examines the effect of the polynomial order on the recovered temperatures
and on the estimated thermal conductivity. Although the recovered temperatures are in
good agreement (Figure 10a), the estimated thermal conductivity varies greatly for dif-
ferent polynomial orders (second, third, and fourth) when the temperatures are below
40 ◦C or above 90 ◦C (Figure 10b). Clearly, the second-order polynomial is not suitable
for approximating the temperature-dependent thermal conductivity; the order is too low.
However, even for higher-order polynomials (third- and fourth-order polynomials, as
shown in Figure 10b), there is still uncertainty in the estimated thermal conductivity. When
the temperatures are below 40 ◦C, this uncertainty can be attributed to the aforementioned
reason (the experimental temperature values used in the estimation of thermal conduc-
tivity were all above 40 ◦C), while the uncertainty above 90 ◦C can be explained by the
sensitivity coefficient.

Generally, when using an inverse analysis method, the sensitivity coefficient should
be large enough for an accurate estimation of a certain physical quantity [14]. However,
taking the third-order polynomial as an example, the sensitivity coefficient is zero for every
unknown parameter at the beginning of the iterative calculation (Figure 11). Therefore,
there must be some uncertainty in the estimated thermal conductivity at the initial stage of
the high-temperature liquid state of the molten explosive.

However, when the temperature is above the solidus line, all the estimated thermal
conductivities increase with increasing temperature (Figure 10b), no matter the order of
the polynomial. This is because the cooling rate is largely affected by the thermal diffusion
coefficient α (which is equal to k/ρc), and the greater the thermal diffusion coefficient,
the faster the cooling. The temperature profile drops rapidly (large cooling rate) at the
beginning of cooling and solidification (Figure 3), while the product of the density and the
specific heat capacity is almost constant (Equations (13) and (14)); therefore, the thermal
conductivity in the liquid state must be quite large.
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(a)

(b)

Figure 10. Effect of polynomial order on the recovered temperatures and on the estimated thermal
conductivity. (a) Temperature. (b) Thermal conductivity.

Figure 11. Sensitivity coefficient of the unknown parameters to be estimated.
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In this study, only two temperature profiles were measured and used to estimate
the temperature-dependent thermal conductivity; one (at r = 5 mm) was used in the
inverse analysis, while the other (at r = 21 mm) served as a Dirichlet boundary condition.
In contrast, a Neumann (rather than Dirichlet) boundary condition is usually used in
the literature [26,27]. However, the heat flux at r = 21 mm is unknown, meaning that a
Neumann boundary condition cannot be directly applied. An alternative is to simultane-
ously estimate both the temperature-dependent thermal conductivity and boundary (at
r = 21 mm) heat flux, and the two temperature profiles (at r = 5 mm and r = 21 mm) can
then both be used in the inverse analysis. To implement this, a third-order polynomial
is still used to approximate the thermal conductivity, while a second-order polynomial is
used to approximate the temperature-dependent boundary heat flux:

q(T) = Q1 + Q2T + Q3T2, (19)

where q is the boundary heat flux; Q1, Q2, and Q3 are unknown parameters; T is the
boundary temperature (at r = 21 mm). The corresponding Dirichlet boundary condition
(Equation (3)) in the direct problem is replaced with the Neumann boundary condition

− k(T)
∂T(r, t)

∂r
= q(T) for r = r0. (20)

Furthermore, the sensitivity coefficients for the unknown parameters Q1, Q2, and Q3
can also be obtained by the boundary-value method (see Section 2.2), and the corresponding
governing equations are given by

ρ(T)c(T)
∂J′j (r,t)

∂t = k(T)
∂2 J′j (r,t)

∂r2 +
[

∂k(T)
∂T

∂T
∂r + k(T)

r

] ∂J′j (r,t)
∂r

for 0 < r < r0, t > 0,
∂J′j (r,t)

∂r = 0 for r = 0, t > 0,

−k(T)
∂J′j (r,t)

∂r = ∂q(T)
∂Qj

for r = r0, t > 0,

J′j(r, t) = 0 for 0 ≤ r ≤ r0, t = 0,

(21)

where J′j = ∂T/∂Qj (j = 1, 2, 3). If the vector of unknown parameters (see Equation (2))

K = [K1 K2 K3 K4]
T is replaced by P = [K1 K2 K3 K4 Q1 Q2 Q3]

T, then the present inverse
analysis method can be extended to simultaneously estimate both the thermal conductivity
and the boundary heat flux. As shown in Figure 12, both the recovered temperature
profiles (at r = 5 and 21 mm) are in good agreement with the measured temperature
profiles (Figure 12a). The boundary heat flux decreases rapidly with decreasing boundary
temperature (Figure 12b). The temperature-dependent thermal conductivity estimated
using the Neumann boundary condition is also in good agreement with that obtained using
the Dirichlet boundary condition (Figure 12c).
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Figure 12. Effect of boundary-condition type on the inverse analysis. (a) Temperature. (b) Heat flux.
(c) Thermal conductivity.
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4. Conclusions

In this study, a Gauss–Newton algorithm was used with an inverse analysis method to
estimate the temperature-dependent thermal conductivity of a DNAN/HMX melt-cast ex-
plosive with the help of known temperature-dependent density, specific heat capacity, and
other thermophysical properties. This method needs only two experimental temperature
profiles; one is used in the inverse analysis, and the other serves as a boundary condition.
The temperature-dependent thermal conductivity of this explosive can be approximated
using a polynomial whose coefficients can be estimated by the present method.

This inverse analysis method was firstly verified by simulated measurement tempera-
tures with two types of prespecified temperature-dependent thermal conductivity. Type
one was a first-order (linear) polynomial, and type two was a second-order (quadratic)
polynomial. Regardless of the type of polynomial used, and no matter how large the
random noise (the maximum standard deviation was 0.5 ◦C) in the simulated measure-
ment temperatures, the estimated thermal conductivity was in good agreement with the
prespecified values, demonstrating the effectiveness of the present inverse analysis method.

The estimated temperature-dependent thermal conductivity of the DNAN/HMX
melt-cast explosive is approximately constant when the temperature is below the solidus
line, and it increases rapidly with increasing temperature above the solidus line. The
polynomial order (greater than or equal to three) has little effect on the estimated thermal
conductivity when the temperature is above the lowest experimental temperature value
used in the inverse analysis method and below the initial high temperature of this molten
explosive. The aforementioned law is consistent whether only the thermal conductivity is
estimated or both the thermal conductivity and the boundary heat flux are simultaneously
estimated. It should be noted that, however, the present method did not investigate the
effect of the flow of the molten DNAN/HMX explosive on the estimated thermal conduc-
tivity of this explosive. In fact, flow effects are important when estimating the thermal
conductivity of Comp-B (a classical melt-cast explosive) [11].

However, whether or not flow effects are included, the thermal conductivity of Comp-
B in the liquid state is higher than that in the solid state [11]. Similarly, the present estimated
thermal conductivity of the DNAN/HMX explosive in the liquid state is higher than that in
the solid state. This fact, together with other results and discussion above, demonstrates that
the present inverse analysis method can provide a good approximation when estimating
the thermal conductivity of melt-cast explosives.

In future work, to generalize the present method to the estimation of the temperature-
dependent thermal conductivity of other melt-cast explosives, flow effects should be
included in the inverse analysis method, and more experiments should be conducted—
in particular, the thermal conductivity of high-temperature molten explosives should be
measured—and the results should be compared.
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