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Abstract: Good heat dissipation performance of aero-engine an effectively improve the service
performance and service life of aero-engine. Therefore, this paper studies the machining method
of cooling holes of high-temperature existent material GH 4169 for aero-engine innovatively puts
forward the mask electrochemical machining method of cooling holes and explores the entrance
morphology and taper formation law of the hole structure of high-temperature resistant material GH
4169. The mathematical model of anode dissolution of cooling holes in ECM is established, and the
influence of voltage and electrolyte flow rate on cooling holes in ECM is analyzed. Compared with
the mask-less electrochemical machining, the inlet radius of cooling holes in mask electrochemical
machining is reduced by about 16.0% and the taper is reduced by 52.8% under the same machining
parameters, which indicates that the electrochemical machining efficiency of mask is higher and the
machining accuracy is better. Experiments show that the diameter of the mask structure improves
the accuracy of the inlet profile of the cooling hole in the ECM. The diameter of the mask increases
from 2 mm to 2.8 mm, and the inlet radius of the cooling hole increased from 1.257 mm to 1.451 mm
When the diameter of the mask is 2.2 mm, the taper of the cooling hole decreased by 53.4%. The
improvement effect is best, and the thickness of the mask has little influence on the forming accuracy
of the cooling hole.

Keywords: electrochemical micro machining of titanium alloy; manufacturing process; shape accuracy;
modeling; mask electrochemical machining; influence of tool electrode on titanium alloy

1. Introduction

With the rapid development of aerospace, weapons, automobiles, medical and other
fields, the development trend of mechanical parts is miniaturization and precision. Turbine
blade is an important part of the aero-engine, and its structure and process in technology
directly affect the performance of the engine. In order to improve the power of the turbine
engine, it is necessary to ensure that the turbine works in the high-pressure gas above 1 MPa
and the high-temperature environment of 1000 degrees Celsius, which will greatly reduce
the service life of turbine blades and lead to the failure of the combustion chamber. Turbine
blades are mainly made of high temperature resistant alloys, such asGH 4169. GH4169
nickel-based superalloy has good thermal strength, thermal stability and thermal fatigue,
and has become an essential alloy material for manufacturing heat-resistant, corrosion-
resistant and impact-resistant parts such as disks and blades of aero-engines and various
gas turbines [1].

Machining cooling holes on high temperature resistant alloys can effectively improve
the performance and service life of aero-engine [2]. Generally speaking, the machining
methods of cooling holes include EDM, laser machining and traditional machining methods
such as milling, drilling and hinge. A high-frequency pulse power generator of EDM
was developed by Li, C.J. et al., to find the influence of processing speed and the recast
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layer thickness [3]. Zheng, H. et al. Substrate temperature was observed to affect the
machined hole depth and diameter during Ti: sapphire femtosecond laser machining of
a copper substrate [4]. Liu, H. et al. Percussion drilling was presented using picosecond
ultrashort pulse laser in order to explore processing of deep holes in Ni-based superalloy,
ceramic TBCs, and ceramic TBCs/substrate multilayer material. This research has potential
applications to blade film cooling holes [5]. Xu, J. et al. hole quality of CFRP/Ti6Al4V
stacks using the TiAlN-coated and diamond-coated drills [6]. Iqbal, A. et al. presents a
novel technique of cooling only the twist drill between drilling of holes with no effect of
the applied cryogenic coolant transferred to the work material [7]. Wang, F. presents the
cryogenic cooling milling method can improve milling hole effect and restrict machining
defects for AFRP [8]. Zhang, W et al. presents film cooling performance of one row of
cylindrical holes integrated with saw-tooth slots was numerically studied at blowing ratios
of 0.5, 1.0, 1.5 and 2.0, respectively [9]. Ye, Z. three different cooling conditions were applied
to reaming aluminum alloy 7050-T7451 with polycrystalline diamond (PCD) reamers. The
results showed that the chip morphology was strongly influenced by the cutting parameters
and cooling strategies [10]. As a kind of difficult-to-machine material, GH4169 alloy has
the characteristics of poor thermal conductivity, severe work hardening, high affinity and
so on, which easily leads to the problems of poor machinability, short service life of cutting
tools and poor machined surface quality [11]. The residual stress on the machined surface
is the stress that the surface remains and reaches equilibrium when the part is at a constant
temperature and is not subjected to external load after cutting [12]. Residual stress on
the surface will deform the workpiece and reduce its service life and corrosion resistance.
However, hole machining on GH 4169 material by traditional machining method will affect
its metal surface performance, the traditional machining requires high hardness of the drill
bit, and it is easy to break in the feeding process, so it is difficult to process microstructure
on high temperature resistant cemented carbide. In addition, EDM and laser machining
are hot machining, which inevitably leads to the formation of hot recast layers and micro
cracks on the metal surface. These methods will affect the machining accuracy, stability
and working performance of cooling hole. Electrochemical machining utilizes the principle
of electrochemical dissolution of anode in electrolyte, and the machined cooling holes has
good surface quality, no stress concentration and no surface hardening layer. Therefore,
electrochemical machining technology has a broad application prospect in the field of high
precision manufacturing such as thin film cooling holes [13].

Electrochemical machining involves many factors, such as electrochemistry, heat trans-
fer, hydrodynamics and so on. Its dissolution and formation state are complex, which
cannot be directly determined [14,15]. Many scholars have carried out a lot of simulation
and theoretical research according to the morphology of pore structure and the dissolu-
tion and removal of materials after electrochemical processing [16–20]. Electrochemical
machining technology and theory are improving day by day. For the simulation analysis
of electrochemical machining, a large number of scholars have studied and optimized
the simulation model [21]. Mesh reconstruction [22,23], influence of process parameters
on machining [24–26], electrode shape optimization [27], electrochemical machining of
mask [28,29], machining stability [30], multi-field coupling analysis [31], etc. For high-
temperature resistant material GH 4169, there are few reports on the accuracy of mask-
assisted electrochemical machining cooling holes.

In order to improve the problem of uneven electric field distribution at the entrance
stage of electrochemical machining of tube electrode and reduce the stray electric field
corrosion, a method of electrochemical machining cooling holes with mask was proposed.
In order to study the effectiveness of this method, this paper establishes a mask electro-
chemical machining simulation model to explore the influence of the mask structure on
the current density distribution on the surface of the workpiece, the distribution of electric
field lines in the processing area and the distribution of current density on the workpiece
surface with time were simulated and analyzed under the conditions of no mask and mask.
Finally, the forming precision of the two methods is compared.
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2. Modeling of Electrochemical Machining of Cooling Holes and Process Evaluation Index
2.1. Mathematical Model of Anodic Dissolution in Electrochemical Machining

The schematic view of the machine and processing system for cooling hole electro-
chemical machining is shown in Figure 1. There is an insulating layer on the outer surface
of the electrode, and the electrolytic reaction occurs only at the end of the electrode. With
continuous electrochemical machining, the electrolyte is continuously sprayed from the
electrode to the workpiece surface. Electrolysis takes place in the electric field between the
tubular electrode and the workpiece. The processing gap is filled with flowing electrolyte,
which is the conductor for the electrolytic reaction. Oxidative dissolution occurs near
the workpiece, while a reduction reaction occurs near the electrode to produce hydrogen,
oxygen, etc. With the continuous addition of new electrolytes, the electrolytic corrosion
products and electrolytic pyrolysis in the machining gap are also removed.
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Figure 1. Diagram of ECM equipment processing small hole (1. Filter 2. pump 3. control system 4. 
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Figure 1. Diagram of ECM equipment processing small hole (1. Filter 2. pump 3. control system 4.
motor 5. electrode 6. working table).

The process of electrochemical machining of the mask is as follows. First, coating
a layer of liquid photoresist on the surface of the workpiece, and then developing by
lithography, the required insulating template with bare structure can be formed on the
surface of the workpiece. Next, the hole structure in the non-insulated region of the
workpiece is machined by electrolytic machining of the tubular electrode. Among them,
the protective effect of the insulating film makes the surface of the workpiece less affected
by the current stray corrosion and can be processed into a better size structure.

In order to establish the mathematical model, the mass chemical equivalent of GH4169
is first determined. The main element composition and content of high temperature
resistant nickel-base alloy GH4169 are shown in Table 1. Mass electrochemical equivalent
and volume electrochemical equivalent can be calculated by the Equation (1):
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Table 1. The main elements and content of GH4169.

Element Ni Cr Nb Mo Ti Ai Fe

Atomic mass 59 52 93 96 47 27 56
Percentage 50–55 17–21 4.75–5.5 2.8–3.3 0.65–1.15 0.2–0.8 Margin

Substituting the above data into the equation, it can be calculated that the den-
sity of GH4169 is about 8.24 g/cm3, the volume electrochemical equivalent is about
0.00178 cm3/(A·min), and the mass electrochemical equivalent is 0.01467 g/(A·min). Based
on Faraday’s law, a two-dimensional electric field model of cooling hole in mask electro-
chemical machining was established. The following assumptions are made for the electric
field model:

(1) The influence of temperature and bubble on conductivity is ignored. The conductiv-
ity of the electrolyte solution remains constant and isotropic. (2) Electrochemical machining
is carried out in an ideal state. That is, the actual value of anode metal dissolution is the
same as the theoretical value. The current efficiency η is only related to the current density.
(3) The electric field in the processing area is regarded as a stable electric field. The electric
field model of machining area is regarded as constant current electric field. The electric
field parameter is a function of the relative position. The potential ϕ(x,y) at any point in the
machining gap between the cathode and anode satisfies the Laplace equation, as shown in
the Equation (2):

∇2ϕ =
∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2 = 0 (2)

An equipotential surface of two different potentials, a constant potential U and a
ground potential, will form at the interface between the electrode and the electrolyte
solution. The insulating template on the surface of the workpiece and the insulating layer
on the outer wall of the tube electrode form the insulating boundary. According to Laplace’s
equation, the boundary conditions are shown in the Equation (3):

Anode boundary : ϕa = U
Cathode boundary : ϕb = 0

Insulating boundary : ∂ϕ
∂n

∣∣∣Γc = 0

Other boundaries : ∂ϕ
∂n

∣∣∣Γs ≈ 0

(3)

The electric field intensity E is the negative gradient of potential ϕ. According to Ohm’s
law, the relation between current density i and electric field intensity E and potential ϕ in the
processing area is shown in the Equation (4). Where E is the electric field intensity (V/m),
σ is the conductivity of electrolyte (S/m), and ϕ is the potential (V). The normal dissolution
rate of the anode workpiece is shown in Equation (5). By solving the displacement of each
point on the workpiece surface with time, the contour morphology of the cooling hole in
different times was obtained.

E = −∇ϕ
i = σE = −σ∇ϕ

(4)

vn = ηωi = −ηωσ∇ϕ (5)

2.2. Evaluation Index of Electrolytic Machining Cooling Hole Process

In order to better analyze the forming process of electrolytic machining of cooling
holes, the inlet radius (Rin in Figure 2), outlet radius (Rout in Figure 2), mean radius (Raver is
calculated from Equation (6)), taper of electrolytic machining of cooling holes were defined
(θ in Figure 2), as shown in Figure 2.
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Figure 2. Schematic diagram of electrochemical machining dimensions of cooling holes.

The definition of each process evaluation index is as follows:
(1) Mean radius of cooling hole Raver (mm), inlet radius Rin (mm), outlet radius Rout

(mm). The mean radius of the cooling hole is the average from the center line of the tube
electrode to the side wall of the hole along the depth direction, which can be obtained by
Equation (6):

Raver =
1
n

n

∑
i=1

Ri (6)

(2) Cooling hole taper θ (◦). Taper refers to the included Angle between the cooling
hole side wall obtained by actual electrochemical machining and the theoretical vertical
line, and its calculation method is shown in Equation (7). The smaller the taper of the hole,
the better the shape accuracy, the more ideal the processing effect. On the contrary, the
greater the taper of the side wall of the hole, the worse the shape accuracy, the worse the
processing effect. The taper of the side wall of the small hole cannot reach 0◦, but it can
approach 0◦ by optimizing the process parameters.

θ =
180
π

arctan
Rin − Rout

h
(7)

2.3. Establishment of Simulation Model of Cool Hole in ECM

According to the established electrochemical machining mathematical model and
process evaluation standard, the electrochemical machining simulation model of tubular
electrode is established. Using the current module and moving grid module of COMSOL
Multiphysics finite element analysis software, the formation process of the electric field
and size and shape of the cooling holes in mask electrochemical machining are simulated
and analyzed. Figure 3 shows a simplified simulation model of cooling holes in mask
electrochemical machining. The model was numerically divided into 20 zones. According
to Equations (3) and (5), the corresponding electric field conditions are applied to the
boundary of the geometric model as shown in Table 2.

Table 2. Boundary condition setting of cooling hole for mask electrochemical machining.

numerical value 5/6/7 14/15/17/18 2/6/4/8/9/10/13/19
Current module boundary conditions electrical potential electrical potential electrical isolation

set V = U V = 0 n×j = 0

numerical value 5/6/7 13/14/15/17/18/19 Remaining boundary
Mobile grid boundary conditions speed speed Fixed grid

set Vn = ηωi Vx = 0, Vy = v
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Figure 3. Simulation model of mask electrochemical machining cooling hole.

The basic simulation parameters of mask electrochemical machining are shown in
Table 3. In this paper, 16% NaNO3 solution was used as electrolyte, mainly because it is
soluble in water and is an ionic compound [32]. The change of flow characteristics can also
be ignored, and the dynamic viscosity of water can be used for calculation.

Table 3. Basic simulation parameters of mask electrochemical machining.

Basic Parameter Numerical Value

Voltage(V) 22
Mask diameter (mm) 2/2.2/2.4/2.6/2.8/3
Mask thickness(mm) 0.08/0.09/0.1/0.11/0.12/0.13

Electrode feed rate (mm/min) 0.7
Feed depth (mm) 6.2

Initial clearance (mm) 0.2
Electrolyte conductivity (S/m) 10.1

Initial temperature (K) 293.15

By introducing the principle of electrochemical machining of tubular electrode, the
mathematical model of electrochemical machining is established, and the boundary condi-
tions and parameters are set, which provide the support of principle and parameters for
simulation modeling and analysis.

3. Simulation Analysis
3.1. Analysis of Dynamic Forming Process of Cooling Hole

In electrochemical machining, under the action of electric field, the surface morphology
of workpiece changes due to electrolytic reaction and the geometric structure of machining
gap changes. The formation process of cooling holes is numerically simulated by COMSOL
software. The conditions used in the simulation are shown in Table 3, acquire the cooling
hole forming rule, as shown in Figure 4. As can be seen from the figure, with the increase
of processing time, the variation law of cooling aperture accords with Faraday’s law. The
forming process of cooling holes can be roughly divided into three stages: 0.1–5 s is the
initial stage of machining, and the dissolution rate in the middle area of the workpiece
surface is relatively low, while the dissolution rate of the two sides is relatively high;
10–50 s is the middle stage of machining, and the dissolution rate in the middle area of the
workpiece surface gradually increases, while the dissolution rate on both sides gradually
decreases. The time of 140–252 s is the stable stage of machining, and the dissolution rate
of the workpiece surface is relatively uniform.



Materials 2022, 15, 1973 7 of 19

Materials 2022, 15, x FOR PEER REVIEW 7 of 20 
 

 

3. Simulation Analysis 
3.1. Analysis of Dynamic Forming Process of Cooling Hole 

In electrochemical machining, under the action of electric field, the surface morphol-
ogy of workpiece changes due to electrolytic reaction and the geometric structure of ma-
chining gap changes. The formation process of cooling holes is numerically simulated by 
COMSOL software. The conditions used in the simulation are shown in Table 3, acquire 
the cooling hole forming rule, as shown in Figure 4. As can be seen from the figure, with 
the increase of processing time, the variation law of cooling aperture accords with Fara-
day’s law. The forming process of cooling holes can be roughly divided into three stages: 
0.1–5 s is the initial stage of machining, and the dissolution rate in the middle area of the 
workpiece surface is relatively low, while the dissolution rate of the two sides is relatively 
high; 10–50 s is the middle stage of machining, and the dissolution rate in the middle area 
of the workpiece surface gradually increases, while the dissolution rate on both sides 
gradually decreases. The time of 140–252 s is the stable stage of machining, and the disso-
lution rate of the workpiece surface is relatively uniform. 

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0

El
ec

tr
oc

he
m

ic
al

 m
ac

hi
ni

ng
 s

pe
ed

 (m
m

/m
in

)

Electrochemical machining area (mm)

 0.1s
   5s
  10s
  50s
 140s
 252s

 
Figure 4. Numerical simulation diagram of cooling hole forming. 

Figure 5 shows the numerical simulation diagram of mask and maskless cooling hole 
formation. It can be seen from Figure 5a that the maskless electrochemical machining has 
a larger radial overcut at the entrance, a smaller dissolving area on the side wall, and a 
larger taper of the side wall during processing for 10 s. It can be seen from Figure 5b that 
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Figure 4. Numerical simulation diagram of cooling hole forming.

Figure 5 shows the numerical simulation diagram of mask and maskless cooling hole
formation. It can be seen from Figure 5a that the maskless electrochemical machining has
a larger radial overcut at the entrance, a smaller dissolving area on the side wall, and a
larger taper of the side wall during processing for 10 s. It can be seen from Figure 5b that
as the processing depth increases, the sidewall dissolution range of the two processing
methods is basically the same. Therefore, the mask has a greater impact on the accuracy of
the ECM entrance, and the impact on the diameter and taper gradually becomes smaller as
the processing depth increases.
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Figure 5. Numerical simulation of the forming of mask and mask-free cooling holes.

Figure 6 shows the formation process of the cooling hole of the mask electrochemical
machining. It can be seen from the figure that the inlet processing stage is 10–30 s, and the
diameter change of the cooling hole inlet processing section tends to be stable with the
increase of the electrode feed depth. When the processing time is 30–300 s, the diameter
change of the ECM cooling hole is gradually stable, and the overall appearance is that
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the entrance diameter is larger, and the diameter change is smaller during the stable
processing stage.
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Table 4 shows the data comparison of the forming accuracy of mask electrochemical
machining. It can be seen from the table that mask electrochemical machining plays
an important role in increasing the entrance radius of the cooling hole. The entrance
radius of the mask electrical machining is reduced by about 16.0%, and the end radius
and the average radius are increased by about 2.4% and 1.3%, respectively. However,
the taper is 52.8% lower, which greatly reduces the taper error of the cooling hole in
electrochemical machining.

Table 4. Comparison of forming accuracy of mask electrochemical machining.

Entrance Radius
Rin (mm)

Front Radius
Rend(mm)

Mean Radius
Raver (mm)

Taper
θ (◦)

Mask electrochemical machining 1.257 1.024 1.106 2.227
Error (%) 3.9 4.0 3.0 4.0

Maskless electrochemical machining 1.496 1.000 1.092 4.723
Error (%) 5.5 5.7 3.5 4.3

According to the basic principle of electrochemical machining, under the action of
voltage, the electrolyte is sprayed on the workpiece from the inside of the tubular electrode,
forming an electric field. Since the mask is insulated, the range of action of the electric
field between the electrode and the workpiece is effectively limited [33–35]. Therefore,
the size and shape of the inlet section can be improved, and the taper of the inlet section
due to electrochemical corrosion can be reduced. However, when the machining enters
a stable stage, the electric field between the electrode and the workpiece is stable, and
the electrolytic reaction speed is balanced with the electrode feeding speed. Therefore,
the shapes of the mask stabilizing section are basically the same as that of the unmasked
cooling hole machining, and the simulation accords with electrochemical machining.
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3.2. Simulation Analysis of Electric Field Distribution

The conditions used in the simulation are shown in Table 3. The mask diameter
is 2 mm, and the mask thickness is 0.1 mm. Figure 7 shows the distribution of electric
field lines in the machining area at the initial stage of the cooling hole in electrochemical
machining. The white lines in the figure are electric field lines. The arrow direction is
the direction of current flow. The more concentrated the electric field line, the greater the
current density. As shown in Figure 7, the electric field lines are mainly distributed in
the machining area composed of electrode end face and workpiece surface. The number
of field lines decreases gradually along both sides. Figure 7a the number of electric field
lines is 60 and the distribution range is large. Figure 7b the number of electric field lines
is 84 and evenly distributed within the mask range. These results indicate that the mask
ECM can improve the electric field distribution and the entrance precision of machining.
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Figure 7. Distribution of electric field lines in the processing area at the initial stage ((a) is the
simulation of maskless electrochemical machining process and the distribution of power lines, and
(b) is the simulation of mask electrochemical machining process and the distribution of power lines).

The distribution of the surface current density of the workpiece in the entry stage
with time is shown in Figure 8. It can be seen from the figure that the current value at
the electrode end of the workpiece surface is larger and the distribution range is larger,
and it gradually approaches zero along the two sides of the electrode. The surface current
density of the mask electrochemical machining workpiece is relatively large. For example,
when the machining time is 0.1 s, 10 s, and 17 s, the maximum current density of the
mask electrochemical machining at the entrance stage is 118.081 A/cm2, 77.917 A/cm2

and 69.309 A/cm2, the maximum current density of maskless electrochemical machining is
107.307 A/cm2, 74.452 A/cm2 and 64.933 A/cm2, respectively. This shows that the mask
electrochemical machining efficiency is higher, the effective current density range (current
density >10 A/cm2) is more concentrated, and the entrance accuracy is better.
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According to Faraday’s law, the greater the number of power lines per unit area,
the greater the current density [36,37]. Since the voltage between the electrode and the
workpiece is constant, the mask can effectively increase the number of power lines per
unit area and the current density between the electrode and the workpiece, so the current
density of electrochemical machining with mask is higher than that without mask.

3.3. Process Parameter Analysis

In order to better analyze the influence rule of process parameters in the process of
ECM, the simulation conditions are as follows: the processing voltage is 24 V, the electrolyte
is 16% NaNO3 solution, and the inlet flow rate is 8 m/s. The electric field distribution
law in the process of cooling hole electrochemical machining is simulated, which provides
guidance for analyzing the influence of different technological parameters on the forming
law of cooling hole electrochemical machining.

As can be seen from Figure 9, the minimum conductivity in the machining gap occurs
in a narrow area in the end gap, and the maximum conductivity occurs in the corner of the
electrode. The electrical conductivity in the gap first decreases and then increases, while the
temperature at the side channel and electrolyte outlet gradually increases. The maximum
electrical conductivity in the machining gap is 17.6, and the range of electrical conductivity
is about 8.1. Main reasons: the electrical conductivity is affected by temperature and gas.
When the temperature rises, the electrical conductivity increases, the gas volume fraction
increases and the electrical conductivity decreases. At the narrow area in the end face, the
temperature and gas volume fraction are particularly small, so the electrical conductivity is
the smallest under the combined action of them. The influence of the temperature at the
corner of the electrode on the electrical conductivity is far greater than the volume fraction
of hydrogen, so the electrical conductivity is the largest.

As can be seen from Figure 10: the conductivity of the front part of electrolyte flow
slowly increases with the increase of machining voltage, and the conductivity of the
second half decreases rapidly with the increase of machining voltage. When the processing
voltages are 12 V, 16 V, 20 V and 24 V, the range of surface conductivity of the workpiece
is 0.63 S/m, 0.95 S/m, 1.44 S/m and 1.81 S/m, respectively. The main reason is that the
change of electrical conductivity is the result of the interaction of temperature and hydrogen.
With the increase of voltage, more and more heat and hydrogen are accumulated in the
machining gap, and the increase or decrease of the surface conductivity of theworkpiece
is faster and faster with the increase of machining voltage. It can be seen from Table 5
that the average current density of the workpiece surface increases with the increase of
voltage, which is beneficial to improving the efficiency of cooling holes in electrochemical
machining. However, with the increase of machining voltage, the range and variance of



Materials 2022, 15, 1973 11 of 19

current density on the workpiece surface gradually increase, which leads to “bulge” on the
workpiece surface during machining and increases the profile error.
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Figure 10. Influence of processing voltage on conductivity distribution.

Table 5. Analysis of current density on workpiece surface under different machining voltages.

Voltage/V Average
Value/A/cm2

Extreme
Difference/A/cm2 Variance

12 56.64 28.76 11.21
16 76.74 40.05 15.5
20 97.89 53.14 20.53
24 120.62 69.85 26.66

Different inlet flow rates of electrolyte (6 m/s, 9 m/s, 12 m/s, 15 m/s) were used to
simulate and analyze cooling holes in electrochemical machining. Select fixed processing
parameters, that is, the processing voltage was 20 V, and the electrolyte was 12% NaNO3
solution. The temperature, hydrogen volume fraction and conductivity distribution of the
workpiece surface under different electrolyte inlet flow rates are analyzed, and the current
density distribution of the workpiece surface to the tool electrode under multi-physical
field coupling conditions is studied.

As can be seen from Figure 11: when the inlet flow rate is low, the conductivity of
the front part of electrolyte flow increases relatively quickly, and with the increase of inlet
flow rate, the conductivity of the second half of the electrolyte flow gradually increases, but
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generally keeps the law of decreasing first and then increasing. When the inlet flow rate
increases within a certain range, the electrical conductivity changes little. When the maxi-
mum inlet velocities are 6 m/s, 9 m/s, 12 m/s and 15 m/s, the surface conductivity ranges
of the workpiece are 1.831, 1.535, 1.413 and 1.319, respectively. Main reasons: Low-speed
electrolyte can not take away heat and hydrogen in the machining gap in time, which leads
to the continuous rise of the overall temperature of the workpiece surface and the rapid
accumulation of hydrogen. The increase of flow velocity will aggravate the eddy current
effect and increase the difficulty of removing heat and hydrogen. The electrical conductivity
in the front part increases slowly mainly due to the influence of temperature, while the
electrical conductivity of the second half decreases rapidly mainly due to the increase of
hydrogen volume fraction, while the electrical conductivity increases continuously with
the decrease of hydrogen content and the continuous increase of temperature.
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It can be seen from Table 6 that with the increase of electrolyte flow rate, the average
range and variance of current density on the workpiece surface gradually decrease, but the
overall change range is small. Increasing electrolyte flow rate is beneficial to improve the
uniformity of current density on the machined surface of the cooling hole.

Table 6. Analysis of current density on the surface of workpieces atdifferent inlet flow rates.

Flow Rate/m/s Average
Value/A/cm2

Extreme
Difference/A/cm2 Variance

6 100.5 58.6 21.96
9 97.79 53.25 20.67
12 97.06 51.87 20.04
15 96.72 51.17 19.8

According to the mathematical model of electrochemical machining established in
Section 2.1, it can be seen that when the voltage between the electrode and the workpiece
increases, the current density increases, the electrolyte flow at the inlet of the electrode
increases, the removal rate of electrolysis products, electrolysis heat and bubbles between
the electrode and the workpiece in unit time increases, the electrolyte renewal rate increases
and the current density increases [38,39]. Therefore, the analysis in this section is correct
and is consistent with the mathematical model established in Section 2.1.

4. Experimental Verification of Electrochemical Machining

In this part, the simulation model analysis is verified by experiments, and the electro-
chemical machining process parameters and workpieces are the same as the simulation
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settings. The specific experimental conditions are shown in Table 7. The workpiece is GH
4169, the electrode is a tubular titanium (high current density efficiency and high corrosion
resistance) alloy electrode with an inner diameter of 0.6 mm and an outer diameter of
1.4 mm (covered with PTFE insulating film), and the electrolyte is sodium nitrate aqueous
solution (according to the workpiece material GH 4169, strong acid electrolyte is selected,
which has high current density efficiency).

Table 7. Experimental conditions of electrochemical machining of cooling holes.

Experimental Project Condition

Electrode Titanium alloy tube electrode
Workpiece GH4169 nickel base superalloy

Processing voltage 12–24 V (DC voltage)
Electrolyte concentrations 16% NaNO3 solution

Electrolyte flow rate 6–12 mm/min

Combined with the parameter values of mask diameter and mask thickness in Table 3
and the parameter values of voltage, electrolyte concentration and electrolyte flow rate
in Table 7, an orthogonal test was carried out, and the hole was cut open by wire cutting.
According to the Formulas (6) and (7), measure the inlet diameter and calculate the taper
of cooling holes, analyze the change of inlet diameter and taper in mask electrochemical
machining and maskless electrochemical machining, and analyze the influence rules of
different mask diameters and mask thicknesses on the inlet diameter and taper of cooling
holes. The entrance morphology and side taper of small holes are measured by SEM, as
shown in Figures 12 and 13.
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Figure 12. Morphology of cooling hole inlet.

The analysis shows that in maskless electrochemical machining, the range of electric
field lines between electrode and workpiece is larger than that in maskless electrochemical
machining, which leads to stray corrosion [40–42]. As shown in Figure 12a–c, the stray area
is irregular, which is related to the uniformity of the composition distribution of GH 4169
alloy. However, in maskless ECM, the stray corrosion at the inlet end is obviously reduced,
and the appearance accuracy of the inlet section is high, as shown in Figure 12d–f. The
experimental results are consistent with those of the three-part simulation analysis, which
proves the authenticity and reliability of the three-part simulation analysis.
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The Figure 13 shows the cross-sectional view of the actual machining hole (1–5 mark
electrochemical machining and 6–10 mark less electrochemical machining).

As can be seen from Figure 13, when using maskless ECM (1–5), the diameter of the
inlet end of ECM is larger than that of the middle section, and the taper of the whole cross
section is larger; when using mask ECM (6–10), the diameter of the inlet end of ECM is
smaller than that of the middle section, and the taper of the whole cross section is smaller.
This is because the mask structure effectively concentrates the electric field area at the
entrance end, which is consistent with the simulation results in Section 3.2.

Figure 14 shows the influence of the diameter of the mask on the entrance radius of
the cooling hole when the height of the mask is 0.1 mm. It can be seen from the figure that
as the diameter of the mask increases from 2 mm to 2.8 mm, the entrance radius of the
cooling hole increases from 1.257 mm to 1.451 mm, indicating that the improvement effect
of the mask structure on the entrance size of the cooling hole increases with the increase of
the mask diameter and gradually decreases. For example, when the diameter of the mask
continues to increase to 3 mm, the cooling hole entrance radius is 1.521, and the influence
of the mask structure disappears.
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Figure 15 shows the influence of the mask diameter on the taper of the cooling hole. It
can be seen from the figure that as the diameter of the mask increases from 2.0 mm to 3 mm,
the taper reaches its minimum value before the diameter of 2.2 mm, and then gradually
increases. Therefore, reducing the diameter of the mask does not always reduce the taper
of the cooling hole. When the mask diameter is 2.2 mm, the taper of the cooling hole is
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reduced by 53.4% compared with electrochemical machining, and the improvement effect
is the best.
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Figure 15. The influence of the diameter of the mask on the taper of the cooling hole.

Figure 16 shows the influence of the mask thickness on the initial radius of the cooling
hole when the mask diameter is 2.2 mm. It can be seen from the figure that when the mask
thickness is increased from 0.08 mm to 0.13 mm, the overall cooling hole radius changes
little, floating in the range of 1.318 mm to 1.334 mm, but the overall size is lower than the
ECM entrance size. It can be seen that the change of the mask thickness has little effect on
the distribution of the entrance radius of the cooling hole.
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model analysis and simulation analysis [43,44]. The structural insulation of the mask can 
improve the current density between the electrode and the workpiece and reduce stray 
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Figure 16. The influence of the mask thickness on the entrance radius of the cooling hole.

Figure 17 shows the effect of mask thickness on the entrance radius of the cooling hole.
It can be seen from the figure that when the mask thickness is increased from 0.08 mm
to 0.13 mm, the taper of the cooling hole fluctuates in the range of 2.858◦ to 2.947◦, and
the overall floating range is small, but the overall taper is lower than the ECM entrance.
The change of the mask thickness has little effect on the distribution of the taper of the
cooling holes.
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Through the comparative analysis of the above experiments, it can be seen that the
appearance of the entrance of the mask ECM is good, which is consistent with theoretical
model analysis and simulation analysis [43,44]. The structural insulation of the mask
can improve the current density between the electrode and the workpiece and reduce
stray corrosion, thus verifying the accuracy of the second part of mathematical modeling
and the third part of simulation analysis. At the same time, the influence of the thick-
ness and diameter of the mask on the entrance diameter and taper of the cooling hole
ECM is analyzed.

5. Conclusions

In this paper, through studying the principle of electrochemical corrosion, combin-
ing with classical electrochemical theory, the simulation model of mask electrochemical
machining is established, and the distribution of electric field in the process of mask and
unmasked electrochemical machining is analyzed. Through simulation experiments, the
influence of different mask diameters and heights on the size and morphology of cooling
holes in electrochemical machining is studied, and the mask electrochemical machining
process has no damage and can be reused, which improves the machining efficiency [45,46].
Based on the current density of workpiece surface obtained by multi-physical field cou-
pling simulation model, with the help of any Lagrange-Eulerian formula, the mathematical
model of anode boundary movement with respect to current density is established, and the
formation law of the size and shape of cooling holes in electrochemical machining under
different machining voltages and electrolyte inlet flow rates is analyzed. The conclusions
are as follows.

1. Establish the simulation model of cooling hole in mask electrochemical machining.
The electric field distribution in the initial stage of masked and unmasked electro-
chemical machining was compared. The dynamic forming process of cooling hole
in electrochemical machining is obtained. the deviation between experimental and
simulated inlet diameter is 5.6%, the deviation between experimental and simulated
outlet diameter is 5.9%, the deviation between experimental and simulated average
diameter is 2.9%, the deviation between experimental and simulated taper is 4.3%.

2. The simulation model of cooling holes in electrochemical machining is established,
and the distribution of electrical conductivity in machining gap is adjusted. The
relationship between this rule and processing voltage and inlet flow is analyzed by
simulation. Simulation result show that the uniformity of electric field distribution
is poor with the increase of processing voltage; The current density distribution on
the surface of cooling holes under different process parameters is also studied. With
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the increase of processing voltage from 12 V to 24 V, the surface conductivity of the
workpiece increases from 0.63 s/m to 1.81 s/m. When the inlet speed increases from
6 m/s to 15 m/s, the surface conductivity of the workpiece decreases from 1.83 s/m
to 1.32 s/m. The results show that the machining voltage is an important factor that
affects the machining accuracy of cooling holes, and the influence of the change of
inlet speed is relatively small.

3. Under different mask conditions, the size characteristics of cooling holes were an-
alyzed. The results show that the inlet radius of cooling hole decreases with the
decrease of mask diameter. The change of mask thickness has little effect on the form-
ing precision of cooling hole. The diameter of the mask increases from 2 mm to 2.8 mm,
the entrance radius of the cooling hole increases from 1.257 mm to 1.451 mm, when
the diameter of the mask continues to increase to 3 mm, the cooling hole entrance
radius is 1.521, and the influence of the mask structure disappears. The diameter of
the mask increases from 2.0 mm to 3 mm, the taper reaches its minimum value before
the diameter of 2.2 mm, and then gradually increases.

To sum up, mask electrochemical machining can effectively improve the machining
accuracy of GH 4169 cooling hole and provide a new machining method for improving the
service performance and service life of aero-engine.
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Abbreviations

ECM Electrochemical machining
K mass electrochemical equivalent
ω volume electrochemical equivalent
A1, A2, . . . Ai the relative atomic mass
n1, n2, . . . ni the valence
a1, a2, . . . ai percentage of metal element content
ϕ the potential
E the electric field intensity
σ the conductivity of electrolyte
Rin the inlet radius
Rout theoutlet radius
Raver themean radius
θ thetaper of electrolytic machining of cooling holes
n the sampling times along the radius of the cooling hole depth
Ri the measured radius along the radius of the cooling hole depth
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