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Abstract: SiO2-TiO2-C aerogel photocatalysts with different carbon loadings were synthesized by
using sol-gel chemistry. The anatase crystal and nonmetal carbon dopant were introduced during
the sol preparation and formed by hydrothermal treatment, which can simultaneously enhance the
adsorption ability and visible light photo-activity. A high surface area (759 g cm−3) SiO2-TiO2-C
aerogel composite can remove up to 80% tetracycline hydrochloride within 180 min under visible
light. The characterization of the gel structures shows that the homogeneous dispersion of O, Si,
Ti and C in the skeleton, indicating that hydrothermal synthesis could provide a very feasible way
for the preparation of composite materials. n(C):n(Ti) molar ratio of 3.5 gives the best catalytic
performance of the hybrid aerogel, and the cyclic test still confirms over 60% degradation activity
after seven use cycles. All catalysis reaction followed the pseudo-first-order rate reaction with high
correlation coefficient. The electrons and holes in the compound could be effectively restrained with
doping proper amount of C, and ESR results indicate that the oxidation process was dominated by
the hydroxyl radical (•OH) and superoxide radical (•O2

−) generated in the system.

Keywords: hydrothermal synthesis; SiO2-TiO2-C aerogel; visible light photocatalysis

1. Introduction

Tetracycline (TC) is widely used in the medical industry and ultimately discharged
through human waste to municipal wastewater plants [1]. Conventional sewage treatment
processes are difficult to remove completely due to its stable chemical properties [2], which
poses a great risk to human health [3,4]. In the past ten years, the pollution of TC was
gradually valued by environmental scientists. The research on its degradation and removal
technology was listed as a key environmental remediation project by many countries [5–9].

Based on the characteristics of low cost, high chemical stability and optical stability, and
no secondary pollution, the photocatalytic technology represented by TiO2 is considered
as a desirable method to deal with environmental pollution and an important way to
solve the global energy crisis [10,11]. However, as a single component oxide, TiO2 still
has some problems in practical application. The band gap width of the TiO2 is wider
(3.2 eV). Therefore, the ultraviolet light (4%), which occupies only a few parts of sunlight,
can not be used to absorb the visible wavelength and can not respond to visible light. High
recombination rate of photon-generated carrier and low quantum efficiency, which leads to
the decrease in photocatalytic activity [12,13]. In the visible area, the photocatalytic activity
of titanium dioxide attracted significant research interest because visible light accounts
for about 45% of the solar energy. The results show that the doping modification of TiO2
crystals by metal [14], composite semiconductor [15] and nonmetal [16] can enlarge the
light absorption range, inhibit the photo-electron-hole pair recombination, and improve
the photocatalytic performance effectively.

The transition metal ions and the rare earth metal ions are the most widely studied
metal ions at present [17,18]. The charge transitions between the d electrons of the transition
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metal ions and the conduction bands or valence bands of the TiO2 can improve the optical
quantum efficiency and the photocatalytic effect ability. Rare earth metals have a unique 4f
electronic structure, which can be transferred between f-f and f-d configuration to become
the trapping traps of optical electrons or cavities, but also can cause lattice distortion from
the formation of oxygen vacancies to reduce the forbidden band width and broaden the
spectral absorption range [19]. The addition of narrow band gap semiconductors such as
ZrO2 [20], SiO2, WO3 [21], or Al2O3 [22], is also considered as an effective way to improve
the thermal stability and visible light photocatalytic activity of TiO2. Among them, SiO2
–TiO2 materials have been widely studied in the field of photocatalysis because they have
higher photocatalytic activity than pure TiO2. Si4+ ions mainly exist in the form of Ti–O–Si
structure on the surface of TiO2 particles, forming surface state energy levels in the certain
regions of the conduction band [23]. The electron was transferred from the valence band to
the surface state level in illumination, which stimulated the visible absorption effect. The
surface hydroxyl and redox properties of catalytic agent under visible light is enhanced by
doping silica material [24]. The results show that when doping nonmetal, its valence band
rises and produces low band gap energy, thus improving catalytic efficiency [25]. Since
Sato presented nitrogen-doped titanium dioxide as a visible photocatalytic performance in
1986, the study of nonmetallic doping TiO2 did not attract enough attention. Until 2001,
Rasahi et al. [26] confirmed that N atoms replaced O atoms to form a hybrid orbit in the
lattice of N-TiO2 materials, which causes the red shift of the absorption spectrum of TiO2
composites. Subsequently, other nonmetals such as S, C and P have also been incorporated
into a TiO2 matrix for visible light-activated material. In a report by a group, the residual
S was shown to occupy O sites in TiO2 and the band gap lowering was attributed to the
mixing of S 3p and O 2p states [27]. Another group has indicated that C-doped TiO2
photocatalyst with high specific surface could be prepared by furfural as carbon source
and the main reason for the response of visible light was that the carrier could transfer
on both TiO2 and C simultaneously [28]. In conclusion, TiO2 is a general catalyst for
photocatalytic degradation of many nonbiodegradable organic pollutants [29], but the pure
TiO2 is only functional at UV radiation range. Doping TiO2 with nonmetals such as N, S or
C extends the absorption wavelengths from UV to visible region, which has been ascribed
to the introduction of localized electronic states in the band gap but will not influence the
degradation selectivity of the TiO2 [30].

In the present study, high surface area charge transfer support material SiO2 aerogel
was selected to hybrid with anatase TiO2 with a design target to improve the interactions
between the pollutant and the catalyst; in addition, a nonmetal dopant carbon was applied
for the enhancement of the system’s visible light response. All three components were
prepared ‘one-pot’ in one aerogel composite by using the wet sol-gel chemistry, followed
by hydrothermal treatment, in which the crystallization of TiO2 and carbonization of
D-fructose were carried out simultaneously. The final SiO2-TiO2-C aerogel composite
displays a high photocatalytic activity, which could efficiently reduce/remove the medical
pollutants, i.e., tetracycline in this study, from the aqueous solution (by 80%) in 180 min.
The micro morphologies, crystal structure, pore size distribution and chemical structures
are intensively studied to compare the aerogel properties loaded with various amounts
of carbon dopants, which correlate to the final photocatalytic performance. Finally, the
catalytic mechanism of the newly developed aerogel composite catalyst was examined by
studying the charge transfer and free radicals formation in the porous structure.

2. Experimental
2.1. Chemicals

Titanium tetraisopropoxide (Ti{OCH(CH3)2}4, Shanghai Macklin Biochemica Co., Ltd.,
Shanghai, China, 95%), tetraethoxysilane (TEOS, Si(OC2H5)4, Shanghai LingFeng Chemical
Reagent Co., Ltd., Shanghai, China, 28.0%) and D-Fructose (C6H12O6, Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China) were used as titanium, silicon and carbon sources,
respectively. Trimethylchlorosilane (TMCS, C3H9ClSi, Sinopharmynthes Chemical Reagent
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Co., Ltd., Shanghai, China, 98.0%), n-Hexane (C6H14, Chinasun Specialty Products Co., Ltd.,
Shanghai, China, 95.0%) and iso-propyl alcohol (IPA, Shanghai LingFeng Chemical Reagent
Co., Ltd., Shanghai, China, 99.7%) were used for one-step solvent exchange and surface
modification processtion process. Sulfuric acid (H2SO4, Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, China, 95.0%) was added as a complexing agent. Distilled water, made
by our laboratory, which was used as the solvent. All the chemical reagents were used
as received.

2.2. Catalyst Preparation

The starting compositions of sample gels prepared are listed in Table 1. The compostion
of SiO2-TiO2-C aerogel photocatalysts can be preformed with two parts. In the first place,
TEOS was added into deionized water, the whole mixture was slightly stirred (200 rpm)
for 1 h at normal temperatures and pressures. Thereafter, iso-propyl alcohol, deionized
water and sulfuric acid were added to the above-mixed liquor and stirred for 1.5 h at
40 ◦C. Subsequently, Ti{OCH(CH3)2}4 was slowly dropped followed by stirring at a normal
temperature for 2 h. Then, the above solution was allowed to stand for 1 h to prepare
the SiO2–TiO2 wet gel. Second, the wet gel and fructose solution were put together in
the reactor at 80 ◦C for 4 h, then the temperature of the reaction was raised to 180 ◦C
within 7 min and kept as steady as possible for 12 h. SiO2-TiO2-C wet gel was taken
out after the reaction completed, aged at normal temperatures for 24 h, modified with
TMCS/IPA/n-Hexane(volume ratio of TMCS/IPA/n-Hexane = 1:0.3:1) solution which
changed once every 24 h until the water was completely replaced, the gel blocks could be
observed floating on the modified solution. The SiO2-TiO2-C aerogel was obtained after
heat treatment at 50, 80, 150 and 180 ◦C for 2 h, respectively, in the oven.

Table 1. Starting Compositions of the Samples.

Sample TEOS
(g)

Titanium
(g)

H2O
(g)

H2SO4
(g)

IPA
(g)

C6H12O6
(g) N(C):n(Ti)

STC–0 4.67 1.28 2.22 0.04 5.26 0 0
STC–1 4.67 1.28 2.22 0.04 5.26 0.40 1.5
STC–2 4.67 1.28 2.22 0.04 5.26 1.21 2.5
STC–3 4.67 1.28 2.22 0.04 5.26 2.02 3.5
STC–4 4.67 1.28 2.22 0.04 5.26 2.83 4.5
STC–5 4.67 1.28 2.22 0.04 5.26 3.65 5.5

2.3. Characterization

Powder X-ray diffraction (XRD). The crystal structure of the TiO2 was recorded on a
Bruker APEX II DUO diffractometer equipped with Cu Kα radiation (λ = 1.5418Å).

Evaluation of the Brunauer–Emmett–Teller (BET) specific surface area. Nitrogen
adsorption/desorption measurements were carried out by a Micromeritics TriStar II 3020
V1.03 (Atlanta, GA, USA) analyzer at 77.350 K. The surface area and pore volume of
the sample were calculated using Brunauer-Emmett-Teller and Barrett-Joyner-Halenda
methods, respectively.

SEM characterization. SEM analysis of all materials was performed on a Hitachi
FE-SEM SU8000 instrument (Tokyo, Japan) at an accelerating voltage of 5 kV and a working
distance of 9.1 mm.

Fourier transform infrared spectroscopy (FTIR). FTIR spectroscopy was recorded on a
Nicolet iS50 instrument (Thermo Fisher Nicolet, Waltham, MA, USA).

X-ray photoelectron spectroscopy (XPS). XPS analysis was measured on an ESCALAB
250 photoelectron spectroscopy (Thermo Fisher Scientific Inc., Waltham, MA, USA) at
3.0 × 10−10 bar with monochromatic Al Kradiation.

UV–vis spectra analysis. UV–vis diffuse reflectance spectroscopy was recorded on
UV-3600 UV–vis spectrometer, operated in the diffuse reflectance mode, for the wavelength
in the range of 200–700 nm.
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Electron Spin Resonance. ESR (Bruker A300, Billerica, MA, USA) was used to detect
the active species of sample prepared by photocatalytic material.

2.4. Photocatalytic Measurements

The photocatalytic degradation test was conducted in an XPA-2 photochemical reaction
apparatus. Under the action of the circulating cooling water and the electric fan, the entire
photocatalytic reaction was performed under visible light (λ ≥ 420 nm) at about 30 ◦C.
Take 50 mL TC solution with a concentration of 10 mg L−1 into a test tube, then turn on the
light source for photocatalytic degradation reaction, sample 2 mL every 30 min, and the
entire photocatalytic reaction lasts for 180 min. The sample was centrifuged at 6000 rpm for
10 min and the supernatant was stored for testing. In addition, 7 cycles of TC degradation
tests were performed to investigate its optical stability. The photodegradation efficiency
was calculated using the following equation:

D = (C0 − C)/C0 (1)

where C0 (mg·L−1) and C (mg·L−1) are values of concentration of dye solution at initial
and time ‘t’, respectively.

The SiO2-TiO2-C aerogel catalytic redox reactions with TC proceed via pseudo-first-
order kinetics [31]. The apparent rate constant (k) was determined from pseudo-first-order
rate equation which is:

ln(C0/C) = kt (2)

where C0 (mg·L−1) and C (mg·L−1) are values of concentration of dye solution at initial
and time ‘t’, k is the apparent rate constant.

3. Results and Discussion
3.1. XRD Analysis

Figure 1 displays the XRD patterns of the SiO2-TiO2-C aerogel photocatalytic materials
with different C amounts. After heat treatment, six especial reflection peaks at 25.39◦ (101),
37.96◦ (004), 48.16◦ (200), 54.12◦ (105), 55.23◦ (211) and 62.56◦ (204) are ascribed to the anatase of
TiO2 (JCPDS 21-1272), which proves the aerogels obtained possess anatase phase. Consequently,
the incorporation of Si can effectively inhibit the transition of the TiO2 anatase to rutile phase [32].
The doped carbon element could move to the gap position or diffuse into the TiO2 lattice to
form impurity [33,34]; the peak around 20◦ assigned to SiO2 is very wide due to the amorphous
structure of SiO2 in the sample [23,24]. Compared with STC–0, the diffraction peaks of other
photocatalysts are obviously enhanced, considering the relative intensities of the TiO2 and
SiO2, indicating that C-doping increases the crystallinity of the samples. However, the
position of the diffraction peak moves slightly toward the low angle, which may be caused
by the substitution of the C atom for the O atom or Ti in the TiO2 lattice, thus increases the
atom’s distance.
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Figure 1. XRD diagrams of SiO2-TiO2-C aerogels with different C content.

3.2. SEM and BET Analysis

Figure 2a–f analyze the morphology of SiO2–TiO2 and five different SiO2-TiO2-C
aerogel photocatalysts. All six samples are nanostructures. The morphology of the SiO2-
TiO2-C aerogel is significantly more compact and smaller than the SiO2-TiO2 aerogel. This
suggested that C-doping improve the photocatalytic activity of SiO2–TiO2 aerogels, and the
catalytic performance of STC–3 may be the strongest [35], followed by TC degradation tests
to further verify. With the increase of C content, the gel morphology changes from isolated
macroporous structure (Figure 2b), through co-continuous structure (Figure 2c,d) to particle
aggregates (Figure 2e,f). In other words, when the amount of C is few, aerogels with
nanometer-sized pores are obtained; when the amount of C is large, serious agglomeration
of internal structures occurs. The possible reason is that the driving force for agglomeration
comes from the high surface free energy and large capillary force of the SiO2-TiO2-C aerogel.
Aerogel has a large specific surface area and accordingly has a very high surface free energy.
A large number of capillaries in the gel adsorb the dispersion medium in order to reduce its
surface free energy [36]. During modification, colloidal particles coalesce due to the effects
of surface energy and capillary forces, which resulted in hard agglomeration.

Figure 3a–d show the EDX element mappings of STC–3. No aggregation is observed,
which indicates that O, Si, Ti and C are dispersed uniformly in the skeleton. The C:Ti
proportion is shown in Figure 3c, the average value is around 3.58:1, which is consistent with
the stoichiometric design of 3.5:1. Compared with other synthetic techniques (sol-gel [37],
impregnation [38], liquid-phase precipitation [39], etc.), hydrothermal synthesis can be more
evenly doped, allowing the crystallites to grow according to their crystallization habit.

Figure 4a shows N2 the adsorption–desorption isotherm of the STC–3 sample which
according to the IUPAC classification corresponds type IV isotherms with H3-type hystere-
sis loop. There is a shifting process on the adsorption section with a relative pressure of less
than 0.1, which indicates that there is a certain amount of microporous structure inside the
sample. A sharp inflection in P/P0 > 0.48 related with capillary condensation is observed
for the STC–3 sample which denotes a steep jump in the N2 adsorption volume indicat-
ing their mesoporous structures. The pore size distribution is mainly between 3–4.5 nm
(Figure 4b, and the peak is sharp, indicating that the mesopores of the sample are relatively
uniform. The results obtained at standard temperature and pressure (STP) indicate that
the surface area is 759.28 m2/g, the mean pore diameter is 4.01 nm and the pore volume is
0.821 cm3/g.
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3.3. FT-IR Spectra Analysis of Catalysts

Figure 5 shows the FT-IR spectra of STC–0, STC–1, STC–2, STC–3, STC–4 and STC–5,
respectively. The absorption bands at 1088, 808 and 459 cm−1 are observed in all spectra,
which can be ascribed to the antisymmetric stretching vibration and symmetrical stretching
vibration of Si–O–Si and stretching vibration of Ti–O–Ti, respectively [40–43]. A peak at
960 cm−1 corresponding to the stretching vibration of the Ti–O–Si bond is observed [44].
The vibrational feature at 3445 cm−1 is due to the surface OH groups [45]. The peaks of
all TiO2—SiO2/C aerogels are relatively strong because C interacts with H, which caused
the stretching and broadening of characteristic peaks of hydroxyl groups. The absorption
peak near 2962 cm−1 corresponds to CH3 groups. The presence of the CH3 group has
been attributed to the wet gel silanization effect [46] and shows hydrophobicity of the
samples. The peak at 1621 cm−1, which is due to the vibration of C–C bonds, can confirm
the successful doping of C. However, the sample STC–0 also has a weak peak at 1621 cm−1,
which may be an impurity introduced during the preparation. Many significant peaks at
748 and 591 cm−1 are mainly related to the vibrations of Ti–O–C and Ti–C, respectively [47].
With the increase in C content, the absorption peak of Ti–O–C group is more and more
obvious, and the intensity of the Ti–O–Ti bond absorption peak is accordingly enhanced.
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3.4. XPS Analysis of Catalysts

XPS survey spectra of the as-prepared STC–3 is shown in Figure 6. Figure 6a is a
schematic diagram of the full spectrum scan of the sample. The surface contains strong
peaks such as Ti 2p, Si 2p, C 1s and O 1s, indicating that STC–3 contains four elements
of Ti, Si, C, O, and the purity of SiO2-TiO2-C aerogel is higher. To further determine the
valence state of each element in STC–3, high-resolution XPS studies were performed on
Ti 2p, C 1s, O 1s and Si 2p (Figure 6b–e). The two peaks of Ti 2p can be resolved into
two Gaussian peaks (Figure 6b). The binding energy peaks (464.82 and 459.04 eV) can be
indexed to the 2p1/2 and 2p3/2 core levels of Ti4+, respectively, while the two peak energies
at 463.76 and 458.82 eV are consistent with the characteristic Ti 2p1/2 and Ti 2p3/2 peaks
of Ti3+ [48], respectively. Because the STC–3 sample is not doped by other elements, the
possible defect states are responsible for the existence of oxygen vacancies and surface
hydroxyl groups on TiO2 [49]; the peak of Ti 2p3/2 (459.04 eV) shows the Ti–O–C bond,
which further proves that the carbon is integrated into the lattice and oxygen substitutes.
The peaks at 286.07 and 287.65 eV (Figure 6c) are assigned to the C–OH and C=O bonds,
indicating that the combination of C and O in TiO2 produces a large number of oxygen
vacancies, which can be attributed to the carbon in the titanium dioxide crystal lattice [50].
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The main peak of C 1s at 284.76 eV can be attributed to the elemental carbon on the surface
of the sample, which may originate from environmental or dry residues. The O 1s signals
of the STC–3 sample is shown in Figure 6d. The high-intensity peak situates at 531.75 eV,
corresponding to Ti, Si and O atoms joined to form Ti–O–Si bond. The peak at the low
intensity of 533.76 eV returns to C-O bond. Figure 6e shows a Si 2p XPS spectrum with
peaks at 103.71 eV, indicating the formation of a Si–O–Si bond. These results show that the
SiO2-TiO2-C aerogel photocatalyst was successfully prepared by hydrothermal method,
and no other impurities appeared. The quantitative analysis results of XPS are shown in
Table 2. SiO2-TiO2-C (3.5) photocatalyst consists of 5.3% Ti, 25.07% Si, 50.67% O and 18.96%
C. The ratio of C:Ti is 3.577, which is basically consistent with the analysis of EDX result.
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Table 2. The atomic percentage of each element in STC–3 sample.

Sample Ti Si O C C:Ti

STC–3 5.3% 25.07% 50.67% 18.96% 3.577

3.5. Photocatalytic Activity of Catalysts
3.5.1. UV–Vis Diffuse Reflectance Spectroscopy and Energy Level Spectrum

Figure 7 shows the UV-vis absorption spectra of the six samples, respectively. The
band gap energy of the carbon-doped photocatalysts is significantly reduced, causing red
shifting of the absorption edge to 400–500 nm, and extending the absorption wavelength
response range to the visible light region. Carbon doping may lead to an energy-level
disorder of the hybrid orbital between the C 2p and the O 2p [51], which may be caused
by the partial substitution of C atom for O atom. This promotes the micro-transformation
of the TiO2 lattice to form a new energy level with a smaller band gap. The new energy
level can undergo electron transition under light irradiation of λ ≥ 387 nm (visible light).
In addition, a small amount of carbonized material deposited on the surface of TiO2 will
also have a sensitization effect on absorption of visible light, which can reduce the band
gap energy from 3.05 eV to 2.65 eV. The band gap is confirmed from the Tauc’s Equation
(3), and the (αhυ)1/2 was plotted against the photon energy (hυ), shown in Figure 7b. This
indicates a red shift after carbon doping and a narrower band gap.

(αhυ)1/n = β(hυ − Eg) (3)

where β is a constant called the band tailing parameter, Eg is the energy of the optical band
gap and n is the power factor of the transition mode, which is dependent upon the nature
of the material, here n = 2, whether it is crystalline or amorphous.
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3.5.2. Photocatalytic Degradation Performance Analysis

As shown in Figure 8, the photocatalytic activities of SiO2–TiO2 aerogel and five
different SiO2-TiO2-C aerogels under visible light irradiation followed the order: STC–3
(80.01%) > STC–2 (37.15%) > STC–1 (29.37%) > STC–4 (18.02%) > STC–5 (13.5%) > STC–0
(9.09%) (Equation (1)). After doping with C, the degradation performance of the material
can be significantly improved, mainly because the C-doping can reduce the band gap of
TiO2 (Figure 7b), which increases the material’s ability to absorb visible light, enhances
electron-hole generation and accelerates the redox reaction 28. In addition, C-doping has a
great influence on the photocatalytic activity of TiO2. With the increase in the doping ratio,
the degradation performance of TC becomes stronger and stronger; when n(C):n(Ti) is 3.5,
the degradation of TC by STC–3 is optimal, reaching a maximum of 80.01% at 180 min,
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by using Equation (1). The further increase in doping of the C reduces the photocatalytic
performance of the SiO2-TiO2-C aerogel, which may be caused by a hypothesis of the pore
blockage. Additionally, the excessive doping of C could cause an increase in e− and h+

recombination rate because the average distance between the trap sites decreases, which
results in the decrease in catalytic efficiency [52].
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3.5.3. Kinetics Analysis

The simplified pseudo-first-order kinetic model of Langmuir-Hinshelwood (Equation
(2)) is used to attempt a description of the apparent rate constant of the degradation process
of TC. The results are shown in Figure 9 and Table 3. The apparent rate constants are
0.00038, 0.00187, 0.00267, 0.00831, 0.00111 and 0.00073 min−1, respectively. All fitting lines
exhibited correlation coefficient (R-square) values more than 0.95. This indicated that the
photodegradation process of TC within 180 min follows a good linear relationship. In
addition, the rate constant k of STC–3 is about 21. Additionally, 4.4, 3.1, 7.5, and 11.4 times
for other samples STC–0, STC–1, STC–2, STC–4 and STC–5, respectively. The results further
confirmed that the prepared STC–3 has the best photocatalytic performance.
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Table 3. First-order kinetic parameters of TC degradation by visible light in six samples.

STC–0 STC–1 STC–2 STC–3 STC–4 STC–5

R-square 0.95058 0.99925 0.9771 0.98878 0.9923 0.99715
K (min−1) 0.00038 0.00187 0.00267 0.00831 0.00111 0.00073

3.5.4. Stability Analysis

The stability analysis of the photocatalyst before and after the catalytic reaction is very
important, and the stable catalyst can reduce the cost of the photocatalytic process to a great
extent in the practical application process. The STC–3 with the strongest photocatalytic
activity is selected as the object of investigation to perform the cyclic degradation TC test
to evaluate the optical properties of SiO2-TiO2-C aerogels in order to verify whether the
SiO2-TiO2-C aerogel prepared in this experiment is suitable for engineering promotion.
The stability is shown in Figure 10. After seven cycles of experiments, the removal effi-
ciency in the first cycle is 80.01%, and in the last cycle, it is 60.72%, a decrease of 19.29%,
indicating that the photocatalytic material prepared in this experiment has good stability.
The comparison between this paper and other work is shown in Table 4.
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Table 4. The comparison with other work.

Literature Preparation Aerogel Target Pollutants Light Source Degradation

Zhao et al. [53] Sol-gel
TiO2/SiO2/Ag

terna-ry composite
aerogel

oxytetracycline UV light 36–66% in 120 min

Xu et al. [54] Sol-gel

TiO2
polymethylsil-
sesquioxane

aerogel

Tetracycline
hydrochloride UV light 98% in 180 min

Shen et al. [55] Sol-gel Three-dimensional
graphene aerogel Tetracycline Xe lamp 99.8% in 160 min

Y.M. Hunge et al. [56] Water-based
precipitation

TiO2@nanodiamond
composites Bisphenol A UV light 100% in 100 min

The comparison of different degradation results is shown in Table 4. It was clear that
TiO2 composite aerogel has a significant degradation on some specific pollutants within
2–3 h, regardless of using UV light or Xe lamp as light source. However, the stability of
removal efficiency was not considered in these studies. In this work, after seven cycles of
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removal experiments, the photocatalytic materials prepared in this experiment still has
good stability.

3.6. Mechanism Analysis
3.6.1. Analysis of Binding Mechanism

Based on the characterization results of XPS, FT-IR, UV-Vis, BET, SEM and XRD, the
formation mechanism of aerogel photocatalyst can be summarized as follows (Figure 11):
on the one hand, the main form of Si atoms incorporated is the formation of Ti–O–Si bonds
through chemical bonds and TiO2, which keeps the crystal structure stable; the introduction
of SiO2 into the TiO2 crystal structure can effectively reduce the size of the crystal particles
and increase the specific surface area of the composite photocatalyst. On the other hand,
part of the incorporated C atoms enters into the TiO2 crystal lattice and replaces part of
the O atoms to form Ti–C bonds. Some C atoms combine with TiO2 through chemical
bonds to form Ti–O–C bonds, which enhances the structural stability of the photocatalyst.
C atoms can introduce new hybridization energy levels into the TiO2 crystal lattice (orbital
hybridization of C 2p and O 2p), which reduce the band gap energy of TiO2 and stimulate
visible light absorption.
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3.6.2. Photocatalytic Mechanism Analysis

•O2
− and •OH were captured by benzoquinone (BQ) and tert-butyl alcohol (t-BuOH),

respectively. The result is shown in Figure 12a. The degradation rate of TC is greatly
reduced after the addition of BQ and t-BuOH in the system, which indicates that •O2

− and
•OH play a key role in the photocatalytic degradation of TC. The STC–3 sample is tested
for active species using ESR, as shown in Figure 12b. ESR is a modern separation technique
used to determine shortlived free radicals. It can be useful to elucidate the mechanism of
photocatalytic reactions 28. It can be seen that the characteristic peak intensity of •O2

− is
significantly stronger than •OH after 60 s of illumination on STC–3 sample. It indicates that
•O2

− is the main active substance produced by STC–3 under light. •OH also plays a role in
improving photocatalytic efficiency, but it is not the main one. The enhanced performance
of the photocatalyst was explained by the following mechanism (Figure 13). Under visible
light irradiation, the carbon creates an additional band around the valence band of TiO2,
which can be excited by visible light to generate carriers (Equation (4)). In the role of carbon
atoms, electrons and holes are separated and migrated to different subsurface locations of
particle, occurring redox reactions occur with •OH, HO2, and •O2

−, etc. In detail, aerogel
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materials absorb energy equal or more than to the band gap, could also react directly with
the O2 molecules, then form •O2

− active species (Equation (6)), positive holes remain in
valence band (VB) (Equation (4)). The reaction between holes and H2O (Equation (5)),
and the reaction between electrons and H2O2 (Equation (8)) both generate •OH. Finally,
pollutant molecules are degraded by these active substances (Equation (9)).

In summary, the removal of the TC is mainly caused by two effects, (i) the absorption
of the porous aerogel structure, and (ii) the photocatalytic degradation by the TiO2 active
sites. We consider that the optimal removal of pollutant TC is the equilibrium between
those two main effects, the TC is absorbed by the porous structure, when the carbon doping
increases, the visible light response of the composite is improved, and we could identify a
higher degradation effect. Meanwhile, carbon doping shows a negative effect to reduce the
surface area of the composite. This means that the pollutant sorption to the photocatalytic
sites is reduced. The direct reflection is the peak degradation on the sample STC–3.

SiO2 − TiO2 −C + hν→ h+ + e− (4)

h+ + H2O→ •OH + H+ (5)

O2 + e− → O2•− (6)

O2•− + 2H+ → H2O2 (7)

H2O2 + e− → •OH + OH− (8)

O2•− + H2O2 + •OH . . . + TC→ degradation products (9)
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Figure 13. The proposed mechanism for the degradation of TC over SiO2-TiO2-C composite aerogels.

4. Conclusions

In summary, SiO2-TiO2-C aerogel is synthesized by a hydrothermal synthesis method;
C content has an important effect on improving the photocatalytic properties of SiO2-
TiO2-C aerogel. When n(C):n(Ti) is 3.5, the sample has the best influence on the crystal
structure and photocatalytic performance. Catalytic degradation studies for SiO2-TiO2-C
aerogel demonstrate that the STC–3 catalysts can efficiently degrade 80.01% of TC dye
in 180 min of illumination time and can retain high stability and reusability. The active
species for photocatalytic degradation of TC are •O2

− and •OH. On the basis of this study,
it can be anticipated that low-cost and high-performance SiO2-supporting composites for
self-cleaning materials, such as self-cleaning ceramics, self-cleaning glass, self-cleaning
cement-based materials, etc., may be fabricated through rationally designing the structure
of composites.
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