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Abstract: This paper deals with the cross-sectional analysis of the resistance of RC members subjected
to a bending moment with or without axial forces. To determine section resistance, the nonlinear
material law for concrete in compression is assumed according to Eurocode 2, taking into account the
effect of concrete softening. It adequately describes the concrete behavior of RC members up to failure.
The idealized stress–strain relation for the reinforcing steel is assumed. For the ring cross-section
subjected to bending with axial force and for areas weakened by an opening, normalized resistances
have been derived by integrating corresponding equilibrium equations. They are presented in the
form of interaction curves and compared with the results of testing conducted on RC eccentrically
loaded columns. Furthermore, the ultimate normalized bending moment has been derived for the
RC rectangle subjected to bending without axial force. It was applied to the cross-sectional analysis
of steel and concrete composite beams consisting of the RC rectangular core located inside a reversed
TT-welded profile. Comparative analysis indicated good agreements between the proposed section
models and experimental data. The objective of the paper is the dimensioning optimization of the
considered cross-sections with the fulfillment of structural safety requirements.

Keywords: resistance; bending; axial force; reinforced concrete; composite; section models

1. Introduction

For structural safety reasons, the load-bearing capacity (resistance) of any designed
or existing structures should satisfy the conditions of ultimate limit states. In recent years,
intensive developments and advanced applications of RC structural members with the
increased resistances are observed in newly designed and erected tower buildings. The
resistance of RC (reinforced concrete) members subjected to bending with or without axial
force is undertaken both as a structural and a practical task. Such members are commonly
encountered in engineering practices, e.g., reinforced concrete columns, tower-like struc-
tures, steel and concrete composite columns and beams. In the formulation accepted in
this paper, the resistance of RC cross-section is determined by the occurrence of the ulti-
mate strains occurring anywhere in that section, which means that it depends both on the
material laws and the geometrical characteristics of the section. With respect to material
laws, a simplified approach is the most often used on the basis of the rectangular stress
distribution in concrete, represented among others by Knauff [1]. For the design of annular
cross-sections, a parabola–rectangle diagram for concrete in compression is commonly
assumed, which was introduced by Nieser and Engel [2] in German code DIN 1056 as
well as in CICIND Model Code for Concrete Chimneys [3]. The dimensioning diagrams
attached to these codes were developed on the assumption of the thin ring’s thickness and
central layout of reinforcement. The parabolic–trapezoidal stress distribution for concrete
in compression was proposed in turn by Hognestad [4] and applied in ACI Standard
307-08 [5]. A review of material laws for concrete and the experimental justification of for-
mulae for the estimation of the complete stress–strain diagram of concrete were presented
by Popovics [6,7]. For analysis of the resistance of noncircular cross-sections, deforma-
tion models were proposed by Lechman [8] on the basis of the parabola–rectangle stress
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distribution. Moreover, the author developed an algorithm for determining the analyzed
resistance that takes into account the effect of concrete softening [9,10]. Among the struc-
tural members that underwent eccentric loading, reinforced concrete columns are the most
encountered ones in the engineering practice. Majewski et al. [11] and Rodrigues et al. [12]
presented the results of FE modeling of failure behavior of RC eccentrically loaded columns.
A computational method with verification by a series of tests for predicting the behavior of
RC columns subjected to axial force and biaxial bending was proposed by Kim and Lee [13].
The eccentricity of the applied axial load causes significant variation in the failure load and
mode. The load-bearing capacity of RC columns under eccentric compression was investi-
gated among others by Lloyd et al. [14]; Chruściel [15]; and Trapko et al. [16]. Strengthening
and repairing techniques of RC columns by means of CFRP, FRP and GFRP composites
currently attract the attention of many researchers and engineers. The results of the per-
formed investigations in this range are reported among others by Campione et al. [17];
Maaddawy et al. [18]; Elwan and Rashed [19]; Sadeghian et al. [20]; Eid and Paultre [21];
Wu and Jiang [22]; and Quiertant and Clement [23]. When increased column resistances
are needed, concrete-filled steel tubular columns (CFST) or concrete-filled double skin steel
tubular columns (CFDST) may form effective options [24–27]. For the given normal force N
and bending moment M and when the nonlinear material law for concrete is assumed, the
task consists in the determining the unknown section strains. In this case, the problem is
described mathematically by a set of two equations that are highly nonlinear and difficult
to be solved. Therefore, a numerical optimization strategy must be employed [28].

Newly designed floor slab systems are currently the subject of particular interest of
designers because they provide a flat lower surface of finished floor slab. These systems
consist of steel and concrete composite beams that are structurally connected with prefabri-
cated or cast in situ slabs [29–32]. The results of FEM modeling of their failure behavior
revealed that significant differences in the ultimate bending moments occur compared to
the bending test results. Therefore, the cross-sectional analysis was employed to solve
this problem. The related issues were presented in other research papers concerning the
resistance of RC buildings subjected to vertical earthquake or blast loads [33,34], as well
as reporting the examination results of prestressed concrete beams and so-called concrete
structures with symmetries [35–37]. The current state of knowledge showed that despite the
variety of calculation and experimental methods concerning the paper topic, there are no
analytical solutions for the section resistance based on the nonlinear material laws and tak-
ing into account the effect of concrete softening. In this contribution, an analytical solution
for the ring section resistance is being formed step-by-step and presented in the form of the
actual carrying capacity curves in axial force–bending moment, which satisfy the stability
conditions by Drucker [38]. Moreover, the ultimate normalized bending moment is derived
for the RC rectangle subjected to bending without axial force and applied for determining
the resistance of steel and concrete composite beams. Both proposed section models were
verified by experimental results to confirm their suitability in the engineering practice.

In the presented considerations, two basic assumptions are made in which plane
cross-sections remain in plane and the tensile strength of concrete is neglected.

According to Eurocode 2, the stress–strain relation for concrete σc-εc in compression for
short term uniaxial loading is recommended for nonlinear structural analysis as follows [39].

σc =
kη − η2

1 + (k− 2)η
fcm (1)

For both reinforcing and profile steels, the linear elastic–ideal plastic model is applied.

2. Ring Cross-Section Subjected to Bending with Axial Force
2.1. Derivation of Analytical Formulae for the Resistance

• The RC ring cross-section of outer radius R, inner radius r and thickness t = R − r
is subjected to axial force N and bending moment M (Figure 1). The section may
be unreinforced or reinforced with the reinforcing steel spaced at one or two layers,



Materials 2022, 15, 1957 3 of 16

which can be replaced by a continuous ring of equivalent area located on the reference
circumference of radius rs, r ≤ rs ≤ R. When rs = R or rs = r, this reinforcement is
treated as an “external reinforcement”.

• For the section under combined compression and bending, the relations for strains in
concrete εc (‰) and in reinforcing steel εs (‰) are given by the following.
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Figure 1. Representation of the RC ring cross-section; distribution of strains ε; stresses in concrete σc;
and stresses in reinforcement σs.

εc = (cos φ− cos α)ε′α; (2)

εs = (ρ cos φ− cos α)ε′α. (3)

All angles are measured from the compressive to the tensile zone. The sectional
equilibrium equation of the axial forces is described as follows.

∫
Ac

σcdAc+
∫
As

σsdAs+N = 0 (4)

The sectional equilibrium equation of the bending moments about the symmetry axis
of the section is expressed as follows.

∫
Ac

σc rm cos φ dAc+
∫
As

σs rs cos φ dAs −M = 0 (5)
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Taking into account physical and geometrical relationships (1)–(3) in equilibrium
Equations (4) and (5), the problem results in a purely mathematical task consisting in
searching the indefinite integrals of the following functions of variable φ:

fN(φ) =
k k2(cos φ − k1)− k2

2(cos φ− k1)
2

1 + (k− 2) k2(cos φ− k1)
; (6)

fM(φ) =
k k2(cos φ − k1)− k2

2(cos φ− k1)
2

1 + (k− 2) k2(cos φ− k1)
cos φ, (7)

where the following is the case.

k1 = cos α; k2 = ε′α /εc1. (8)

Upon transformation, Equations (6) and (7) result in the following:

fN(φ) = (k2/(k− 2))[sin φ− (k1 + W2) + 2 W1 W2
1

cos φ + b
)]; (9)

fM(φ) = (k2/(k− 2)) [0.5 (0.5 sin 2φ + φ) + W1 W2 φ− k1 W2 sin φ− 2 W1 W2 b/(
√

b2 − 1 )
1

cos φ + b
], (10)

where W1 = 1/(k − 2)k2; W2 = W1 + k/k2; and b = W1 − k1.
An indefinite integral of function 1/(cosφ + b) occurring in Equations (9) and (10) has

been found as follows.∫ dφ

cos φ + b
=

2√
b2 − 1

arctg
(b− 1)tg0.5φ√

b2 − 1
for b2 > 1; (11)

∫ dφ

cos φ + b
=

1√
1− b2

ln

∣∣∣∣∣ (1− b)tg0.5φ +
√

1− b2

(1− b)tg0.5φ −
√

1− b2

∣∣∣∣∣ for b2 < 1. (12)

Having calculated the definite integrals of Equations (9)–(12), normalized ultimate
resistances nRm and mRm are obtained in the following final form:

−nRm = (k2/(k− 2))
{

sin α− (k1 + W2)α + 2 W1 W2/(
√

b2 − 1 ) arctg( (b−1)tg(0.5α)√
b2−1

)
}
+

+µ
fyk
fcm

{
−α1 +

ε′α
εss
(sin α2 − sin α1 − cos α (α2 − α1))

[π − α2 + εss (π − α2)]

}
(13)

mRm = (k2/(k− 2))

{
0.5 (0.5 sin 2α + α) + W1 W2 α− k1 W2 sin α− 2 W1 W2 b/(

√
b2 − 1 )

arctg( (b−1)tg(0.5α)√
b2−1

)

}

+ µ
fyk
fcm


[− sin α1 + εss sin α1)]+

ε′α
εss
(0.5(α2 − α1) + 0.5(sin 2α2 − sin 2α1 − cos α (sin α2 − sin α1))+

[− sin α2 + εss sin α2)]


(14)

where the following is the case.

NRm = N/(π dm t fcm); mRm = M/(π dm
2 t fcm), (15)

Here, µ is the reinforcement ratio; and α1 and α2 are angles determining the depth of
the plastified zones of steel in compression and in tension, respectively.

The graphic interpretations of Equations (13)–(15) are the interaction diagrams with
normalized resistances nRm-mRm valid for the case, when both compressive and tensile
strains occur in the analyzed section characterized by the following: the limiting value
εcu = −3.5‰; the concrete grade C20/25 (fcm = 28 MPa); fyk = 500 MPa; Ecm = 30 GPa;
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substitute reinforcement ratio µ fyk/fcm = 0; 0.1; 0 ≤ εs ≤ 10‰ (Figure 2). These curves
denoted by the solid line (EC2) are compared with those based on the parabola–rectangle
diagram (the dashed line, parabola). It is apparent that the coordinates of curves denoted
by EC2 are lower than for the parabola due to the effect of concrete softening.

1 
 

 

Figure 2. Interaction curves nRm-mRm based on nonlinear relation σc-εc (EC2) versus those based on
the parabola–rectangle material law (parabola) for the ring section subjected to bending with axial
compressive force (εcu = −3.5‰).

In a similar manner, the corresponding formulae are obtained for the section that is
entirely in compression. The relevant relationship for strains is given by the following.

ε = 0.5 (ε2 − ε1) (1− cos φ) + ε1. (16)

The formulae determining cross-sectional forces nRm and mRm are described in the
following form:

−nRm = (k2/(k− 2))π
{
−(k1 + W2) + W1 W2/(

√
b2 − 1 )

}
+

(µ fyk/ fcm){−α1 + 1/εss[(k1 + k2)(α2 − α1) + k2(sin α1 − sin α2) + π − α2]}
(17)

mRm = −(k2(k− 2))π
{

0.5 + W1 W2 − 2 W1 W2 b/(
√

b2 − 1 )
}
+

(µ fyk/ fcm){− sin α1 + 1/εss[(k1 + k2)(sin α2 − sin α1)− 0.5(α2 − α1 + sin 2α2 − sin 2α1)− sin α2]}
(18)

where k1 = 2ε1/(ε2 − ε1) + 1; and k2 = −0.5 (ε2 − ε1)/εc1 shall be substituted.
For the section that is entirely in compression, when |εcu | > |εc1 |, Equations (17)

and (18) describe the ring cross-section at the stage of concrete instability (at failure).
This means that Drucker’s stability postulates may not be satisfied [38,40]. Therefore, the
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obtained curves cannot be, in general, regarded as the carrying capacity curves. This is the
case presented in [9]. Figure 3 presents interaction curves (EC2) resulting in the relation
(1) versus those derived on the basis of the parabola–rectangle (parabola) extended to
the ring cross-section that is entirely in compression (εc1 = −2.0 ‰; εcu = −3.5‰), with
a limitation to the values mRm ≥ 0. All curves in Figures 2 and 3 satisfy the condition
of convexity according to Drucker’s postulate. In particular, for εcu = εc1 = −2‰, the
stability condition by Drucker is satisfied for any values of εc and εs. Thus, the obtained
curves based on Equations (13)–(15) and Equations (17) and (18) can be regarded as the
actual carrying capacity curves accepted in design codes. It is worth highlighting that
these interaction diagrams (EC2) are very close to those based on the parabola–rectangle
(parabola) (Figure 4).

1 
 

 
Figure 3. Interaction curves nRm-mRm based on nonlinear relation σc-εc (EC2) versus those based on
the parabola–rectangle material law for concrete (parabola), extended for the ring cross-section that is
entirely in compression (εcu = −3.5‰; mRm ≥ 0).
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1 
 

 
Figure 4. Comparison of the solution based on nonlinear relation σc-εc (EC2) with that based on
the parabola–rectangle material law for the ring cross-section (parabola) and the limiting value
εcu = εc1 = −2‰.

As the next section model, the ring cross-section weakened by one opening is consid-
ered and is subjected to ultimate axial force Nu and bending moment Mu = Nu · e (Figure 5).
The stress distributions in concrete and reinforcing steel are described by design values
fcd = fck/γc and fyd = fyk/γs, while the size of opening is denoted by angle α1. Following the
above outlined algorithm, normalized ultimate resistances nu and mu are derived for this
section in the following form:

+µ
fyd
fcd
[α1 − αa1 +

ε′α
εss
(sin αa2 − sin αa1 − cos α (αa2 − αa1)) + π − αa2];

−nu = (k2/(k− 2))

 sin α− sin α1 − (k1 + W2)(α− α1) + 2 W1 W2/(
√

b2 − 1 ) [arctg( (b−1)tg(0.5α)√
b2−1

)+

−arctg( (b−1)tg(0.5α1)√
b2−1

)]

 (19)

mu = (k2/(k− 2))

{
0.5 [0.5 (sin 2α− sin 2α1) + α− α1] + W1 W2 (α− α1)− k1 W2(sin α− sin α1)+

−2 W1 W2 b/(
√

b2 − 1 )[arctg( (b−1)tg(0.5α)√
b2−1

)− arctg( (b−1)tg(0.5α1)√
b2−1

)]

}
+µ

fyd
fcd
[sin α1 − sin αa1 + ε′α

εss
(0.5(αa2 − αa1) + 0.5(sin 2αa2 − sin 2αa1 − cos α (sin αa2 − sin αa1))

− sin αa2]

(20)

where αa1 and αa2 are the angles determining the depth of the plastified zones of steel in
compression and in tension, respectively.
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Figure 5. Representation of the RC ring cross-section weakened by one opening; distribution of 
strains ε, stresses in concrete σc and stresses in reinforcing steel σs. 
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inforcement of the columns consisted of longitudinal bars ∅16 mm made of steel B500C 
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length of 0.5 m. The tested specimens and the experimental setup are exhibited in Figure 
6. In each load step, the strains were measured in the middle section using strain gauges 
located along its circumference up to failure. The test results of the examined columns are 
collected in Table 1. The failure of the columns manifested itself by crushing the concrete 
and yielding the longitudinal reinforcing steel for all tested members (Figure 6). The 
above-described test results have been compared with the cross-section model presented 
in Section 2.1. with the substitute reinforcement ratio of μ fyk/fcm = 0.2688. Using the de-
rived Equations (13)–(18), the interaction chart nRm–mRm has been plotted. The effect of 
confinement of the column (stirrups) was not analyzed. The comparisons presented in 
Figure 7 illustrates a good convergence between the section model and the values of 
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Figure 5. (a) Representation of the RC ring cross-section weakened by one opening; (b) distribution
of strains ε, stresses in concrete σc and stresses in reinforcing steel σs.

The section model is frequently used in the structural design, e.g., flue opening in
chimneys, windows in tower walls [8]. In a similar manner, the corresponding interaction
diagrams can be constructed for other section shapes.

2.2. Experimental Verification with Discussion of the Results

Full-scale tests were carried out on four RC designed columns eccentrically loaded,
with annular cross-section, denoted by Typ 2 [15]. The outer radius of all columns was
R = 0.3 m, the inner one was r = 0.2 m and the height was h = 2.0 m. The mean com-
pressive strength of the column concrete was determined as fcm = 20 MPa; Ecm = 27 GPa;
and εc1 = −1.8‰ by strength test according to Polish Standard PN-EN 12390-3:2011 [15].
The reinforcement of the columns consisted of longitudinal bars ∅16 mm made of steel
B500C (fyk = 500 MPa) and its percentage was µ = 1.024%. The properties of the steel
rebars were established in turn by tensile test according to Polish Standard PN-EN ISO
6892-1:2010, [15]. The columns were strengthened in the both support zones by CFRP mats
at the length of 0.5 m. The tested specimens and the experimental setup are exhibited in
Figure 6. In each load step, the strains were measured in the middle section using strain
gauges located along its circumference up to failure. The test results of the examined
columns are collected in Table 1. The failure of the columns manifested itself by crushing
the concrete and yielding the longitudinal reinforcing steel for all tested members (Figure 6).
The above-described test results have been compared with the cross-section model pre-
sented in Section 2.1. with the substitute reinforcement ratio of µ fyk/fcm = 0.2688. Using
the derived Equations (13)–(18), the interaction chart nRm-mRm has been plotted. The effect
of confinement of the column (stirrups) was not analyzed. The comparisons presented in
Figure 7 illustrates a good convergence between the section model and the values of failure
loads. The occurring differences between the analytical and the experimental results are
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caused by measurement uncertainty (strains, eccentricity) as well as by ignoring transverse
reinforcement in the section model.
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3. RC Rectangle Subjected to Bending without Axial Force
3.1. Derivation of the Ultimate Bending Moment

The RC rectangle of the height t and the width b is subjected to bending moment M
without axial force (Figure 8).
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The relation for strains can be expressed in the following form:

ε = (1− ξ ′

ξ
)ε′, (21)

where ξ ′ = x’/t and ξ = x/t is the dimensionless coordinate of any point of the rectangle
and the dimensionless coordinate describing the location of neutral axis.

The equilibrium equation of the bending moments about the horizontal axis of the RC
rectangle is described as follows.

x∫
0

σc (0.5t− x′ )dAc+σs1 Fa1 (0.5t − t1) + σs2 Fa2 (0.5t− t2)−M = 0 (22)

As a result of integrating Equation (22), the normalized ultimate bending moment
mRm is obtained in the following final form.

mRm = (1/(k− 2))
{

0.5(W1 + (1/(k− 2)))ξ + 0.5[−W1 + 0.5k2 − ((1/(k− 2))]ξ2+
−(1/3)k2ξ3 − (W2 /((k− 2)W3))[0.5 ln W + ξ − (W/W3) ln W]

}
+µ1

fyk
fcm

(0.5− ξ1)
{
−δk1 + δk1+1

ε′
εss
(1− ξ1

ξ )
}
+ µ2

fyk
fcm

(0.5− ξ2)
{

δk2 + δk2+1
ε′
εss
(1− 1−ξ2

ξ )
} (23)
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mRm =
MRm

bt2 fcm
(24)

ξ =
(1− ξ1)εcu1

−εsu + εcu1
; ε = εuc1;−(1

ξ
− 1)ε, = εsu; (25)

k2 = ε′/(εc1 ξ); W1 = k − k2ξ; W2 = k(k − 2) + 1; W3 = (k − 2)k2; W = 1 + (k − 2)k2ξ; δk = 0.5((−1)k + 1). (26)

3.2. The Resistance of Composite Steel and Concrete Beams Versus Test Results

The presented section model can be applied for determining the resistance of com-
posite steel and concrete beams, named BH beams, subjected to bending. The considered
beams consist of a reinforced (RC) rectangular core placed inside a reversed TT-welded
profile, as shown in Figure 9.
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Figure 9. The cross-section of the composite beam under consideration.

Ultimate bending moment MHRm determining the resistance of the considered BH
beam is derived in terms of strains upon integrating the equilibrium equation of the
bending moments about the horizontal axis of the RC core rectangle [28]. In this derivation,
the reversed TT-welded profile is treated as the external reinforcement with respect to
the RC rectangular core. To compare the obtained analytical solution with experimental
results, four-point bending tests were conducted on three separated BH beams with the
length of L = 7.88 m. They were made of concrete with a mean compressive strength of
fcm = 68 MPa, which was determined by a strength test according to Polish Standard PN-
EN 12390-3: 2011 (concrete grade C 60/75; Ecm = 39 GPa). For the RC rectangle with the
cross-section of 0.27 m × 0.35 m, the reinforcing steel with fyk = 500 MPa and the profile
steel with fHyk = 460 MPa were used. The properties of the steels were established in turn
by tensile tests according to Polish Standard PN-EN ISO 6892-1:2010. The setup of the tests
is exhibited in Figure 10. The range of the tests included determining failure loads and
the relevant strains. In each load step, the strains in concrete εc, in reinforcing steels in
compression εs1 and in tension εs2, as well as in the lower flange of profile steel εHf, were
measured in the middle section of the BH beam.
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Figure 10. Setup of the bending tests.

The failures of all BH beams manifested themselves by concrete crushing (Figure 11).
Table 2 summarizes the values of strains, failure bending moments Mu and resistances MHRm.
The compressive strains in concrete reached ultimate values. The value of εs1 = −2.89‰
indicates that the plastic strains in the rebars in compression may have occurred. The values
of MHRm have been calculated in accordance with derived Equations (23)–(26). It is worth
noting that they are close to failure bending moments Mu (relative differences 4.8–6.5%). This
confirms very good agreements between resistances MHRm and the test results in ultimate
bending moments Mu.
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Table 2. Bending test results of the BH beams.

Concrete Reinforcement
in Compression

Reinforcement
in Tension Profile Steel Failure

Moment Resistance

strain εc
(‰)

strain εs1
(‰)

strain εs2
(‰)

strain εHf
(‰)

Mu
(kNm)

MHRm
(kNm)

−3.21 −2.89 1.15 2.22 902.8 847.7

−3.04 −2.13 1.13 2.25 883 842.4

−2.90 −2.0 1.25 2.28 910.7 854.8

4. Conclusions

The complete analytical solution has been found for the resistance of RC ring cross-
sections subjected to bending with axial force, based on the nonlinear material law for
concrete and taking into account the effect of concrete softening. It applies both to designed
and existing members and structures. In this respect, it can be regarded as a valuable one
in the theory of reinforced concrete:

1. The obtained solutions are presented in the form of interaction diagrams that satisfy
the conditions of convexity in accordance with Drucker’s postulates. This means that
they can be regarded as the actual carrying capacity curves.

2. The proposed ring section models seem to have a wider application field than the
previous ones, due to the assumptions of a noncentral layout of reinforcement and
wall-edge strains. As a result, they are suitable for ring cross-sections with both
the thin and moderate thicknesses. Furthermore, they can be easily adopted when
structure strengthening is required by means of externally bonded CFRP, FRP or
GFRP composites as well as for determining the resistance of composite steel and
concrete columns.

3. Using this approach, the similar formulae can be derived for other sections com-
monly encountered in the engineering practice, for example, a rectangle and the ones
weakened by openings.

4. It was proved that the computational results conform to those obtained by testing on
RC eccentrically loaded columns.

5. The analytical solution was developed for the resistance of RC rectangle subjected
to bending without axial forces to determine ultimate bending moment MHRm of the
composite steel and concrete beams.

6. The comparisons made between the computational and test results of BH beams
showed good agreements in ultimate bending moments.

7. The above-developed models enabled the analysis of the behavior of RC members in
the postcritical phase.

8. They have been implemented in Excel to provide a useful tool for the dimensioning
optimization of RC-designed members and structures that may result in a reduction
in material consumption and a lesser impact on the environment.

9. Further experimental work is needed concerning the postcritical behavior of RC members.
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Nomenclature

fcd = fck/γc design strength of concrete in compression
fck characteristic strength of concrete in compression
γc partial safety factor for concrete
fcm mean compressive strength of concrete
fyk yield stress of reinforcing steel
fyd = fyk/γs design yield stress of reinforcing steel
γs partial safety factor for steel
fHyk yield stress of profile steel
Ecm secant modulus of elasticity of concrete
Es modulus of elasticity of steel (profile steel)
εc1 strain at peak stress on the σc-εc diagram
εcu1, εcu ultimate strain for concrete
ε1, ε2 maximum and minimum compressive strains, respectively
εsu ultimate strain for reinforcing steel
εHf strain in the lower flange of profile steel
e eccentricity
σc, εc stress, strain in concrete
σs, εs stress, strain in reinforcing steel
N axial force
M bending moment
Nu, Mu ultimate axial force and ultimate bending moment, respectively
nRm, nu normalized ultimate axial force
mRm, mu normalized ultimate bending moment
b, t dimensions of the rectangular cross-section
t1, t2 coordinates describing the locations of rebars
x coordinate describing the location of the neutral axis
σs1 compressive stress of steel
σs2 tensile stress of steel
µ1, µ2 reinforcement ratios of steels in compression and in tension (rectangle)
µ reinforcement ratio (ring)
R outer radius
r inner radius
t = R − r thickness of ring
rm mean radius
rs radius describing the locations of reinforcing steel on the

reference circumference
dm mean diameter
α angle describing the location of the neutral axis, rad
ρ coefficient ρ = rs/rm
ρR coefficient ρR = R/rm
ε′ maximum compressive strain in concrete, ‰
ε′α = ε′/(ρR − cos α);
φ angular coordinate, rad
dAs, dAc element of the steel area As and of the concrete area Ac, respectively
Fa1, Fa2 areas of reinforcing steels in compression and in tension, respectively
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