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Abstract: Ytterbium zirconate (Yb2Zr2O7) is one of the most promising materials for yttria-stabilized
zirconia (YSZ) replacement as a thermal barrier coating (TBCs) application. In the presented report,
the experimental synthesis of Yb2Zr2O7 coating using novel Reactive Plasma Spray Physical Vapor
Deposition (Reactive PS-PVD) is described. The obtained coating, irrespective of the power current
(1800, 2000 and 2200 A), was characterized by a hybrid structure and a thickness of about 80–110 µm.
The results of XRD phase analysis showed the formation of ytterbium zirconate in the coating but
the presence of ytterbium and zirconium oxides was also detected. The oxides were not observed in
calcinated powder. The decrease in thermal conductivity with power current increase was observed.
It was the result of higher thickness and better columnar structure of the coating obtained using
higher power current of the plasma torch.

Keywords: reactive PS-PVD; PS-PVD; ytterbium zirconate; TBC; plasma spray

1. Introduction

From many years, thermal barrier coatings (TBCs) have been widely used for pro-
tection of gas turbine hot section parts against high temperature [1]. For increasing tem-
perature, different types of ceramic materials have been considered as an alternative to
yttria-stabilized zirconia oxide: mulite, rare-earth oxides, alumina oxide and silicates [2].
Pyrochlores are one of the most promising materials used for TBC application [3]. The
different method of thermal spray processes [4] as well as EB-PVD might be used for their
formation [5]. They are characterized by lower thermal conductivity in comparison with
conventional YSZ (yttria-stabilized zirconia) [6]. Moskal et al. [7] investigated the gadolin-
ium zirconate. Sun et al. [8] developed the technology of Sm2Zr2O7 ceramic coating pro-
duction using the plasma-spraying process. Moskal et al. [9] proposed the two concepts of
ceramic coatings formation: single-layer Nd2Zr2O7 as well as a double layer coating (DLC)
with a YSZ and Nd2Zr2O7 outer layer. This same concept of Gadolinum Zirconate double-
layer coating was proposed by Mahade et al. [10] to increase the thermal fatigue of TBCs.
Wang et al. [11] incorporated the new suspension plasma spraying (SPS) process for pro-
duction of lanthanum zirconate. This process was also developed for gadolinium zirconate
production [12]. Multicomponent pyrochlores such as (Sm0.2La0.8)2(Zr0.7Ce0.3)2O7 [13] and
La2(Zr0.75Ce0.25)2O7 [14] for use for TBC production were also investigated. The other
concept is co-doping of gadolinium zirconate by Yb2O3 and Sc2O3 [15]. The other type of
pyrochlore developed is europium zirconate [16]. Recently, the new concepts of pyrochlores
have been considered: cerate and hafnate of europium [17] and samarium [18]. The other
idea is to develop high-entropy zirconates [19,20]. The selected properties of pyrochlores,
for example resistance to hot corrosion, were investigated by Moskal et al. [21,22]. There
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are not many references regarding ytterbium zirconate. The hot corrosion in the presence
of V2O5 was investigated by Li [23]. An investigation conducted by He et al. [24] showed
that Yb2Zr2O7 might by synthetized from pure ZrO2 and Yb2O3 powders using the laser
excitation process. The obtained results showed the presence of pure oxides in the obtained
coating. Ytterbia-stabilized zirconia might be also used for doping of gadolinium zirconate
used for TBCs [25]. Ren et al. [26,27] investigated the multicomponent LaYbZr2O7 as a
plasma sprayed coating as a TBC application. One of promising technologies for production
of advanced ceramic coatings is the Plasma Spray Physical Vapor Deposition (PS-PVD)
process [28,29]. The Gd2Zr2O7 is the only type of pyrochlore used for production of ceramic
coatings by the PS-PVD method [30]. The different types of powder preparation methods
and their influence on the columnar structure of the coating was investigated. Comparative
study of the properties of double-layer TBCs containing gadolinium zirconate and yttria-
stabilized zirconia (YSZ) with a single-layer Gd2Zr2O7 coating was also performed [31]. In
our previous research, we proposed a new Reactive PS-PVD method and the formation of
well-investigated gadolinium zirconate during reaction of gadolinia and zirconia oxides in
a plasma plume [32]. In present article, we synthetized Ytterbia Zirconate using a novel
reactive PS-PVD process.

2. Materials and Methods

The Inconel 713C-type nickel superalloy was used as a base material. The NiC◦CrAlY bond
coat was formed by a low pressure plasma spraying method (LPPS) using Amdry 386 powder
(Oerlikon-Metco, Switzerland) containing (wt.%): Co–23%; Cr–17%; Al–12%; Y–0.45%; Ni–bal.
The used process parameters were based on our previous research [33]: power current 1600 A,
plasma gasses flow Ar: 35 NLPM (normal liters per minute), He: 60 NLPM, powder feed rate:
1 g/min, process chamber pressure: 40 mbar, spray distance 0.95 m.

The pure zirconium (ZrO2) and ytterbium (Yb2O3) oxides were used as a feedstock
material for powder production. They were mixed in the following proportion (ratio: Yb2O3
65.6 wt.%., ZrO2 34.4% wt.%) for synthesis of ytterbium zirconate. For comparison, the
prepared powder mixture was calcinated at 1500 ◦C. Powders were mixed with polyvinyl
alcohol additive (about 2 wt.%) and spray dried. For synthesis of ytterbium zirconate during
reactive PS-PVD process, the methodology of coating formation proposed by He [24] was
used. The ytterbium zirconate coating was formed in the reactive PS-PVD process during
the following reaction:

Yb2O3 + 2ZrO2 → Yb2Zr2O7 (1)

Both the bond-coat and ceramic topcoat were produced using the LPPS-Hybrid system
(Oerlikon-Metco, Switzerland) in the Research and Development Laboratory for Aerospace
Materials at Rzeszow University of Technology, Poland. The basic process parameters of the
topcoat production were selected based on our previous research [32–36]. The experimental
process parameters are presented in Table 1.

Table 1. Parameters used for production of ytterbium zirconate coatings.

Process Name Power Current, A Argon Flow,
NLPM

Helium Flow,
NLPM

Powder Feed
Rate, g/min

YZO-1800A 1800 35 60 2
YZO-2000A 2000 35 60 2
YZO-2200A 2200 35 60 2

The microstructure of the obtained samples and the thickness were examined using
a scanning electron microscope (S-3400N, Hitachi, Japan). Phase composition analysis
was conducted for all obtained ceramic coatings as well as for those calcinated at 1500 ◦C
powder for comparison. It was conducted using an X-ray diffractometer ARL X’TRA
(CuKα radiation Bragg–Brentano geometry value of the angle 20–90, Thermo Scientific
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Corporation, Waltham, MA, USA). For identification of the phase components, the ICDD-
PDF4-2019 crystallographic database was used.

Specific heat measurement of the ytterbium zirconate powder was conducted using the
STA 449 F3 Jupiter cpDSC device (Netzsch, Serb, Germany) by the differential calorimetry
method according to ASTM E 1269 and DIN 51 007 standards. The specific heat value was
measured in the temperature range 700 to 1100 ◦C. The used heating speed was 10 ◦C/min.
The powder for specific heat measurement was prepared by firing graphite with ytterbium
zirconate coating deposited using 2200 A power current at 1000 ◦C for 12 h and ground in
a ball mill.

The thermal diffusivity measurement was performed using a LFA 427 device (Netzsch,
Germany) in the temperature 700 to 1100 ◦C (Ar flow 50 mL/min). Before thermal diffusiv-
ity measurement, samples were covered by a graphite layer. The Cape–Lehman method
and the two-layer model of the coating and were applied for analysis. The substrate with a
metallic bond coat was adopted as the 1st layer, while the 2nd layer (top coat) was Yb2Zr2O7
formed during the reactive PS-PVD processes.

3. Results and Discussion
3.1. The Microstructure

The deposited coatings were characterized by a mixed columnar and dense structure
according to the PS-PVD coatings model growth proposed by Zhang [36]. The thickness
of the obtained coatings was in the range 80–100 µm (Figure 1). The discontinuous zone
with a columnar structure was formed when the lower power current (1800, 2000 A) was
used (Figure 2a,b). This model structure might be described as a hybrid—columns and
spheroidal grains were observed [37]. When the power current was increased to 2200 A,
the continuous quasi-columnar structure was formed [38] but small spheroidal particles
were still observed (Figure 2c). They formed as a result of secondary crystallization of
material observed when longer spray distance of PS-PVD processes was used [39]. The
obtained results of microstructure analysis showed that structure of YZO coating are similar
to previously synthetized gadolinium zirconate coating [32].
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Figure 2. Microstructures of Yb2Zr2O7 (GZO) layers made with different power current values:
(a) YZO-1800 A, (b) YZO-2000 A, (c) YZO-2200 A.
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3.2. Phase Composition

The XRD phase analysis showed, in the synthetized coating, the presence of three
phases: ytterbium zirconate (YZO, ICDD card no. 04-002-3455), monoclinic zirconia ox-
ide (MZO ICDD card no. 01-070-8739) and cubic ytterbium oxide (CYO, ICDD card
no. 04-004-1607) (Figure 2, YZO-1800, YZO-2000, YZO-2200). There were not differences
of phase composition in the coating formed using different power currents. The obtained
results suggest that ytterbium zirconate was the main component of the obtained coating.
On the other hand, the presence of ytterbium and zirconium oxides indicated that not all
mixed particles formed Yb2Zr2O7. The both oxides were not detected in powder calcinated
at 1500 ◦C (YZO-calcinated, Figure 3).
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Figure 3. XRD patterns of the Yb2Zr2O7 coating deposited in the reactive PS-PVD process using
different power currents I = 1800, 2000, and 2200 A) and calcinated at 1500 ◦C mixture of ZrO2 and
Yb2O3 powders (YZO-calcinated).

3.3. Thermal Properties

Results of the specific heat (Figure 4) and thermal diffusivity (Figure 5) measurement
were used for thermal conductivity calculation (Figure 6), while keeping the material
density constant. However, in the conductivity calculations, the presence of pores was not
taken into account due to the difficulty of determining their geometry and type.
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Figure 6. Thermal conductivity of synthetized Yb2Zr2O7 in the reactive PS-PVD process using
different power currents in the temperature range 700–1100 ◦C.

The thermal diffusivity of the ytterbium zirconate coating rises with increasing tem-
perature from 0.11–0.14 mm2/s at 700 ◦C to 0.14–0.2 at 1100 ◦C (Figure 5). The highest
thermal diffusivity was measured for the coating obtained using the power current 2200 A.

The results of thermal conductivity of the synthetized coating (Figure 6) were much
lower in comparison with yttria-stabilized zirconia oxide obtained using the PS-PVD
process [40]. A similar value was measured for previously developed Gd2Zr2O7 coat-
ings [34,40]. The thermal conductivity rises with temperature (700–1100 ◦C) from about
0.4 to almost 0.8 W/(m◦C). The highest thermal conductivity value was measured for the
coating, which was produced using the lowest power current (YZO-1800 A), probably
according to its dense structure. When the power current was increased up to 2000 or 2200,
the thermal conductivity decreased. The observed trends in thermal conductivity changes
with temperature are almost opposite the thermal conductivity of the Yb2Zr2O7 coating
synthetized using the laser excitation method [24]. On the other hand, the Reactive PS-PVD
forms an YZO coating characterized by other structure (hybrid or quasi-columnar), which
has different thermal properties.

4. Conclusions

1. Ytterbium zirconate (Yb2Zr2O7) was successfully formed during a reactive PS-PVD
process using only a mixture of pure Yb2O3 and ZrO2 powder.

2. When the lower power current was used (1800 and 2000 A) a hybrid structure for
the coating was obtained. The increase in power current to 2200 A caused the quasi-
columnar structure to form during the reactive PS-PVD process.

3. The XRD phase analysis showed non-significant differences in the coating using dif-
ferent power current values. The Yb2Zr2O7 was the main component of the obtained
coating. On the other hand, the presence of ytterbium and zirconium oxides indicates
incomplete transformation of the entire mixture of oxides. The complete reaction was
only observed in the mixture of powders calcined at 1500 ◦C.

4. Higher thermal conductivity was calculated for the Yb2Zr2O7 coating formed using
a higher power current (2200 A). It was a result the of quasi-columnar structure of
coating characterized by higher thermal conductivity in comparison with the hybrid
structure formed using the 1800 A power current.
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