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Abstract: Our study was devoted to increasing the efficiency of electrical discharge machining of
high-quality parts with a composite electrode tool. We analyzed the chemical composition of the
surface layer of the processed product, microhardness, the parameter of roughness of the treated
surface, residual stresses, and mechanical properties under tension and durability with low-cycle
fatigue of steel 15. Our objective was to study the effect of the process of copy-piercing electrical
discharge machining on the performance of parts using composite electrode tools. The experiments
were carried out on a copy-piercing electrical discharge machining machine Smart CNC using annular
and rectangular electrodes; electrode tool materials included copper, graphite, and composite material
of the copper–graphite system with a graphite content of 20%. The elemental composition of the
surface layer of steel 15 after electrical discharge machining was determined. Measurements of
microhardness (HV) and surface roughness were made. Residual stresses were determined using
the method of X-ray diffractometry. Metallographic analysis was performed for the presence of
microdefects. Tensile tests and low-cycle fatigue tests were carried out. The mechanical properties of
steel 15 before and after electrical discharge machining under low-cycle fatigue were determined.
We established that the use of a composite electrode tool for electrical discharge machining of steel
15 does not have negative consequences.

Keywords: electrical discharge machining; microhardness; roughness; residual stresses; mechanical
properties; chemical composition

1. Introduction

One of the prioritized areas of mechanical engineering is the manufacture of high-
quality products. Their operating conditions are constantly getting tougher. There is
a need to use spatially complex structures in the design. To improve the reliability of
products, modern materials with high mechanical and physical properties are used. The
use of these materials makes it possible to increase the operational characteristics of the
manufactured products.

Despite the advantages of using materials with increased mechanical and physical
properties in mechanical engineering, significant wear of the cutting tools occur during
their traditional blade processing. Additionally, when cutting along the path of a complex
profile, it becomes necessary to purchase additional equipment. One example of a rational
electrophysical method of processing is the method of electrical discharge machining
(EDM) [1].

EDM consists of changing the shape, size, roughness, and properties of the surface of
the workpiece under the influence of electrical discharges as a result of electrical erosion [2].
To carry out the EDM process, it is necessary to create a high concentration of energy in the
discharge zone. A pulse generator is used to achieve this goal. The current pulses generated
by the pulse generator are applied to the work electrode and the electrode tool (ET). The
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EDM process takes place in a working fluid, a dielectric, which fills the interelectrode
space [3]. When the electric field strength in a certain zone of the interelectrode gap exceeds
the critical value, a breakdown of the interelectrode gap will occur. The breakdown of the
interelectrode space is a plasma channel that quickly heats up to ultra-high temperatures
(Figure 1). As a result, the material’s microvolume melts and evaporates. Particles of
molten material are thrown into the interelectrode gap and solidify in the form of sludge
particles, which are washed out by the flow of a dielectric liquid [4].
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Figure 1. Plasma channel.

The allowance removed from the workpiece during EDM is formed as a result of
the superposition of single erosion holes. The post-EDM surface is formed by a set of
overlapping wells.

During the EDM process, significant changes occur in the surface layer of the work-
piece. The post-EDM surface layer can be conditionally divided into several zones (Figure 2):
the zone of saturation with elements of the working fluid, the zone of deposition of ET
material, the white layer formed from molten ET material, the heat affected zone, and the
zone of plastic deformation. The sequence of the formation of zones and their number,
structure, and properties largely depend on the material being processed, the processing
mode used by the working fluid, the ET material, and the conditions of the process. As a
rule, there is no clear difference between the zones, and in most cases, they overlap each
other [5,6].
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The EDM method is widely used in the processing of materials with enhanced physi-
cal and mechanical properties. It allows the derivation of complex-shaped products from
conductive materials of any hardness. However, this method is not without its draw-
backs [7–9]. EDM is characterized by low performance and high ET wear. This increases
the cost of the resulting products. An adequate solution to this problem is the use of ETs
with increased electrical discharge properties. At the moment, a number of composite
materials have been developed that can significantly increase the operational properties of
ETs. According to [10,11], an electrode made of a mixture of copper and colloidal graphite
has the best balance of performance and wear resistance. However, its influence on the
microstructure of the surface layer and the mechanical properties of the processed product
remains unexplored.

An urgent scientific and technical problem is the experimental analysis of the effect of
EDM using composite ETs on the mechanical properties and structure of the surface layer
of the workpiece.

Related Work

Currently, there is a lot of research in the field of EDM. The main directions of research
surrounding the EDM process that were observed in our literary analysis are shown in
Table 1.

Table 1. The main directions of research of the process of EDM.

Topic of Study Sources Key Positions

The morphology and
roughness of the surfaces

after EDM
[1–5,7,8,12–27]

The melting of the treated surface is
accompanied by a change in its structure, the

grain is refined, and zones of plastic
deformation appear.

Surface roughness after EDM is characterized
by a set of mutually intersecting single holes.

The size of the individual wells depends on the
charge energy.

The mechanical properties
of the surfaces after EDM

[6,11,13,15,17,28–
31]

As a result of EDM, there is a difference in the
mechanical properties of the surface layer and
the base material. Different surface conditions

can affect the fatigue characteristics of the
material.

Residual stresses of a tensile nature are formed
in the treated surface.

The chemical composition
of the surfaces after EDM

[4,5,7,8,19,21,22,
24,26,32,33]

During the EDM process, there is a change in
the elemental composition of the surface layer.
TE material has the greatest influence on the

change in the composition of the surface layer.
By dielectric flows, molten particles of ET

material enter the melting zone of the
workpiece material and mix with it.

The white layer formed on
the surfaces after EDM.

[5,6,8,9,13,15,19,
21–23,25,31–33]

The white layer has a fine-grained structure
with high chemical resistance. The white layer

after EDM has a rough surface and contains
many voids, pores, and microcracks. It can

radically differ from the base material not only
in properties, but also in chemical composition.

Based on our analysis of the literature, we concluded that the dynamics of research
have changed (Figure 3). There has been an increase in the amount of research on EDM
in general over the past 15 years. The largest number of studies is devoted to changes
in surface morphology and topography during EDM, and the rate of their development
is greatest. Over the past 5 years, there has been a sharp increase in the number of
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studies that focus on changing the chemical composition of the treated surface. There is
much less research on the mechanical properties and the resulting white layer after EDM.
Nevertheless, their number has also increased several times.
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Leading universities around the world are engaged in EDM research. The chemical
composition and structure of the processed surface in comparison with traditional copper
and graphite electrodes remains unexplored.

2. Materials and Methods
2.1. Materials and Methods

ETs for EDM were manufactured (Figures 4 and 5). The ETs were made in the form
of a ring for the study of mechanical properties after EDM. To conduct the experiment,
an ET with dimensions of 20 × 20 × 5 mm was made from a composite material based
on copper and a preparation of dry colloidal graphite (PNRPU, Perm, Russia). For the
manufacture of an ET blank from a composite material, the method of powder metallurgy
was used. After receiving, the workpiece was processed to the required dimensions
by milling. Composite ET are made on the basis of copper powders and dry colloidal
graphite preparation. For the manufacture of a workpiece from a composite material, the
powder metallurgy method was used: copper powder was mixed with a preparation of dry
colloidal graphite. The effectiveness and relevance of the application of this ET is explained
in [34–36]. In [37], the performance, wear resistance, and accuracy of ETs from various
composite pseudo alloys based on copper were studied: Cu-Cr (copper-chromium); Cu-Mo
(copper-molybdenum); Cu-W (copper-tungsten); Cu-C (copper-colloidal graphite), etc.,
depending on the percentage of components in the EDM alloy steel. It was shown that of all
the studied materials, the best balance of electroerosive properties (productivity, accuracy,
wear resistance) was possessed by ETs from a composite material of the copper-colloidal
graphite system with a graphite content of 20%.
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Figure 5. Ring-shaped electrode tools.

Structural carbon steel 15 was used to study the structure, chemical composition, and
mechanical properties of the treated surface.

The processed samples were a flat body of the plate type with a thickness of 5 mm. On
the samples, grooves were made using the copy-piercing EDM method with various ETs
on a copy-piercing EDM Smart CNC at finishing and rough processing modes (Table 2).
The processing depth was 3 mm. The EDM processing of tensile and low-cycle fatigue test
specimens was performed in an orbital cycle.

Table 2. EDM modes.

Mode I, A Ton, µs U, B

Finishing 2 40 50
Rough 8 150 100

2.2. Study of the Machined Surface

To study the change in the elemental composition of the surface layer of steel 15 in the
process of EDM, the method of X-ray spectral analysis was used. The measurements were
carried out on an REM-100U scanning electron microscope (Electron, Sumi, Russia).
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Microsections were made to study the microstructure. Sections were made in two
stages. At the first stage, the samples were pressed into the Top Tech Presidon (Top tech
machines Co., LTD., Taichung, Taiwan) automatic assembly press. At the second stage,
sanding was carried out on emery paper with grit sizes from p240 to p1500 on a Top Tech
Plato grinding machine (Top tech machines Co., LTD., Taichung, Taiwan). To reveal the
structure, the microsection was etched with a 4% solution of nitric acid in ethyl alcohol.

The microstructure on the microsections and treated surface were examined using an
OLYMPUS GX 51 light microscope (Olympus corporation, Tokyo, Japan) at magnifications
up to 1000. Image processing was performed using the OLYMPUS Stream Motion software
(Olympus corporation, Tokyo, Japan).

Microdurometric tests were carried out on a PMT-3 microhardness meter (Lomo,
Saint Petersburg, Russia) in accordance with the requirements. The hardness on a PMT-
3 microhardness tester was determined by the method of the restored indentation by
indentation of a four-sided diamond pyramid with a square base. The applied load was
50 g. The shutter speed was 6 s. The measurements were carried out in accordance with
the requirements. The calculated value of microhardness is translated by the formula:

HV =
0.102 × 2F × sin α

2
d2 = 0.189

F
d2 (1)

where F is the force, N.

HV =
2P × sin α

2
d2 = 1.854

F
d2 (2)

where P is the weight, kgs; α is the angle between opposite faces at the vertex, equal to
136◦; and d is the arithmetic mean of the lengths of both diagonals of the imprint; after
removing the load, mm.

The roughness of the processed surface was measured using a Mahr Perthometer S2
profilometer (Carl Mahr Holding GmbH, Esslingen, Germany) in accordance. The base
length was 0.8 mm.

The following parameters were measured: average roughness height (Ra), maximum
roughness height (Rmax), and average roughness step (Sm).

2.3. Measurement of Residual Stresses in the Surface Layer

The measurements were carried out in accordance with the technique described
in [38]. Determination of the magnitude of residual stresses of the 1st kind according to the
classification of N.N. Davidenkov (RS1) was carried out by the X-ray diffractometry method
using the Xstress 3000 robotic complex (Stresstech Oy, Jyväskylä, Finland) considering the
parameters of the material given in Table 3.

Table 3. Material parameters.

Parametr Value

Young’s modulus 2 × 105 MPa
Poisson’s ratio 0.28

Modes of OH measurement by X-ray diffractometry are presented in Table 4.
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Table 4. OH measurement modes.

Parametr Value

Method of measurement modified “χ-method”
Collimator ∅ 5 mm

Directions ϕ to the point of analysis (Figure 6) 0◦ and −90◦

X-ray tube anode Cr
Vanadium filters Not

Diffraction line (hkl) (220)
Diffraction angle 2θ 156.7◦

The penetration depth of X-ray radiation at
χ = 0◦ 6.3 µm

Exposure time in one position of the
goniometer 20 s

Tilt angles χ

in the range [−30◦; 30◦], symmetrical in
absolute values in both directions, where

positive tilt angles χ in the range [0◦; 40◦] and
negative tilt angles −χ in the range [−40◦; 0◦]

Number of tilt angles ±χ
13, where N+χ = N−χ= 7 (including χ = 0◦ and
assuming that the measurement at the position

χ = 0◦ is carried out once)
X-ray beam oscillation (oscillation) 3◦
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Figure 6. Direction diagram ϕ to the point of analysis.

Mathematical processing of the RS measurement results was carried out in the Xtronic
diffractometer control program. Mathematical processing parameters are given in Table 5.

Table 5. Parameters of mathematical processing of OH measurement results.

Parametr Value

Peak calculation Peak Fit Method
Peak level used for calculation 75

Subtracting background radiation values Linear
Setting 2θ angles Calibrated

Calculation of principal stresses Three-way method 0◦, −90◦

Stress tensor Three-way method 0◦, −90◦

Measurements were made on EDM surfaces as well as untreated areas.
In our study, measurements were taken on the outer surface of the sample. The RS

level was determined at three points for each machined groove.

2.4. Tensile Testing and Low-Cycle Fatigue

Tensile and low-cycle fatigue test methods were developed in accordance. To deter-
mine the main physical and mechanical characteristics of the material, solid samples with a
circular cross section were used. The fixation of the samples in the testing machine was
carried out using hydraulic wedge grips. In Figure 7, photographs of the appearance and a
sketch of the samples subjected to static and cyclic tests are presented.
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Figure 7. Sketch (a) and photographs of samples, the working parts of which were processed by
turning (b) and EDM (c) methods.

For these tests, four samples were made by the methods of EDM and turning. This
allowed for the comparison of the effects of the processing method on the mechanical
properties of the resulting product. Three samples were fabricated with EDM using copper,
graphite, and composite ETs to study the effect of the ET material on the properties of the
machined part. EDM was carried out in draft mode.

All experiments were carried out at normal temperature on an Instron 8850 biaxial
servohydraulic test system (Norwood, MA, USA) focused on dynamic and static tests,
a general view of which is shown in Figure 8. The testing machine is equipped with a
Dynacell two-axis electronic load cell with a load range of ±160 kN for axial loading,
±1 kN/m for torsion, and a measuring accuracy of 0.4%. A dynamic axial displacement
transducer with a strain measurement range of ±40% and an accuracy of 0.5% was used to
measure deformations during tensile testing.

Cyclic tests were carried out without a strain gauge with stress control (stress range—
σP = 500 MPa, asymmetry coefficient—Rσ = 0) and a given frequency of 0.5 Hz. Low-cycle
fatigue experiments were carried out until the samples broke into two parts.
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Figure 8. Instron 8850 servohydraulic test system.

3. Results
3.1. Elemental Composition of the Processed Material

The results of studying the elemental composition of samples before and after EDM
with various ETs in rough and finishing modes are presented in Table 6. Based on the data
obtained, histograms were built (Figure 9).

Table 6. Chemical composition of samples before and after EDM.

Mode Electrode Fe Mn Si Cu

Original The foundation 0.6% 0.2% -

Finishing
Cu The foundation 0.4% 0.2% 0.5%
C The foundation 0.3% - -

Cu-C The foundation 0.2% - -

Rough
Cu The foundation 0.6% 0.1% 2.8%
C The foundation 0.4% - -

Cu-C The foundation 0.3% - 0.9%

Analysis of the diagrams showed that during the EDM process, the manganese content
in the surface layer decreases, regardless of the ET material. Moreover, at a weaker finishing
mode, these changes are more pronounced. In EDM with a graphite ET, silicon is completely
removed from the surface layer. When processing with a copper ET in the finishing mode,
its content does not change. In draft mode, it is halved.

Particular attention should be paid to the copper content in the surface layer. In the
case of a copper ET, the amount of copper particles increased significantly. This was due to
the saturation of the surface layer of the part with ET material. By dielectric flows, molten
particles of ET material enter the melting zone of the workpiece material and mix with it.

In the case of a composite electrode, also containing copper, the change in its content
during the EDM process was less significant. In the finishing mode, saturation of the
surface layer with copper was not observed. In the rough mode, during processing, it was
transferred to the workpiece material. However, its content was almost three times less
than after treatment with a copper ET. No increase in graphite content was observed.

Thus, the use of composite ETs does not increase the variation in the surface layer
chemistry of the workpiece material. In contrast, there is less transfer of copper from the
ET to the melting zone of the workpiece material.
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Figure 9. Elemental composition of samples before and after EDM: (a) in finishing mode; (b) in
draft mode.

3.2. Microstructure and Surface of Samples after EDM

The results of examining the surface of steel 15 for the presence of microcracks after
EDM in the finishing mode are presented in Figure 10.
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Figure 10. Surface of steel 15 at 200× magnification after EDM in ET finishing mode from: (a) copper;
(b) graphite; (c) composite.
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The results of examining the surface of steel 15 for the presence of microcracks after
EDM in the rough mode are presented in Figure 11.
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The analysis of the results obtained showed that the surfaces obtained by EDM using
an ET from a copper-colloidal graphite composite material are closely similar to the surfaces
obtained by processing ETs from copper; there is no fundamental difference in the number
of microcracks.

The results of studying the surface structure of steel 15 after EDM in finishing mode
are presented in Figure 12.
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It was found that in all cases, regardless of the ET material, the regularity of the
formation of the thickness and structure of the white layer was preserved. In the finishing
mode of processing, a uniform white layer with a thickness of 1–3 microns was formed
along the entire length of the surface. In the rough mode of processing, the white layer is
intermittent (there is a large number of material breaks); the thickness of the white layer
itself can vary from 0 to 6 microns.

This phenomenon can be explained by the fact that the physical essence of the EDM
process, the change in the structure of the treated surface, and the formation of a white
layer depend on the energy processes in the breakdown channel. From a physical point
of view, the transfer of discharge energy to electrodes is determined by the movements of
particles and molecules, which can be divided into two types: the movement of charged
particles under the action of an external electric field and thermal movement. The flare
component is of the greatest importance for the formation of the structure and the presence
of a white layer. Under the action of the discharge, the surface of the ET instantly heats up
to the boiling point and above, which leads to the ejection of torch vapors at speeds that
are much higher than the speed of sound. Reaching the opposite electrode, the torch jet
transfers thermal energy to the surface. In the presence of a temperature difference between
the two electrodes, the material of one of the electrodes is transferred, in a vapor state, to
the surface of the other electrode.

3.3. Microhardness of the Surface Layer

Based on the obtained data on the microhardness of the surface layer of the material
being processed, diagrams of microhardness according to Vickers (HV) were plotted
depending on the depth of measurement.

The results of the study of the microhardness of the surface of steel 15 after EDM in
the finishing mode are presented in Figure 14.
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Figure 14. The results of measuring the microhardness of the surface of steel 15 after EDM in the
finishing mode using ETs from: (a) copper; (b) graphite; (c) composite.

The results of the study of the microhardness of the surface of steel 15 after EDM in
the rough mode are presented in Figure 15.
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Figure 15. The results of measuring the microhardness of the surface of steel 15 after EDM in the
rough mode using ETs from: (a) copper; (b) graphite; (c) composite.

During the EDM of steel 15 in the zone of the white layer at a depth of up to 150 microns,
a 25–35% increase in the surface microhardness was observed. At a depth of 150 to 1000 microns,
the microhardness decreased by 25–35%, which was associated with tempering from
thermal influence. At a depth of more than 1000 microns, the hardness of the material
is stabilized.

It has been established that a drop in the level of microhardness can be seen on the
surface of the samples. This phenomenon may be caused by the heating of the surface
of the part during EDM. This occurs as a result of additional tempering under noticeable
heating during the action of the ET. The minimum value of the thermal observation zone
was observed when processing in the strong range. This can be explained by the short time
of exposure to the surface of the electrolyte part due to the high productivity of processing.

No significant influence of ET material on the process of microhardness alteration
during EDM has been established.

3.4. Surface Roughness

Surface roughness parameters processed by EDM copper graphite and composite ET
are presented in Table 7.
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Table 7. Surface roughness after EDM.

Mode Electrode Tool
Roughness Parameters, µm

Ra Rmax Sm

Finishing
Cu 4.06 25.93 275.77
C 3.95 27.85 228.18

Cu-C 4.16 26.23 221.76

Draft
Cu 6.99 44.69 321.09
C 6.77 34.51 307.29

Cu-C 6.84 42.46 279.92

Surface profiles after EDM in finishing mode are shown in Figure 16.
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Figure 17. Profilograms of the surface of steel 15 after EDM in rough mode using ETs from: (a) 
copper; (b) graphite; (c) composite. 

Based on the analysis of profilograms, histograms were constructed (Figure 18). 
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Figure 17. Profilograms of the surface of steel 15 after EDM in rough mode using ETs from: (a) copper;
(b) graphite; (c) composite.

Based on the analysis of profilograms, histograms were constructed (Figure 18).
It was found that regardless of the ET material, the average (Ra) and maximum

microroughness heights (Rmax) and the average roughness pitch were within the same
range. The difference between the maximum and minimum indicators was less than 20%.

The presence of the roughness parameter in EDM from a physical point of view can
be explained by the uneven transfer of energy from the spark discharge to the ET material
of the part. It is possible to observe an uneven distribution of the electric field in the
breakdown channel and, as a consequence, an uneven generation of thermal energy. The
energy that is on ETs is total and consists of several components. These are electronic, ionic,
torch, gas-kinetic, radiant, and volumetric. The torch, electronic, and ionic components
have the greatest influence on the formation of the value of the roughness parameter. Flare
transfer of the processed material occurs in the vapor state and is caused by the temperature
difference between the ET and the workpiece. The uneven formation of the total energy
components occurs during the EDM of materials with different thermophysical properties.
These properties directly affect the electrical erosion resistance of these materials and, as a
result, the formation of a macrorelief. Thus, the finding of the roughness parameters in the
same range can be explained.
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Figure 18. Histograms of surface roughness parameters after EDM with different ETs: (a) average 
roughness height (Ra); (b) maximum roughness height (Rmax); (c) average roughness pitch (Sm). 
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Figure 18. Histograms of surface roughness parameters after EDM with different ETs: (a) average
roughness height (Ra); (b) maximum roughness height (Rmax); (c) average roughness pitch (Sm).

It is shown that the use of a composite material of the copper-graphite system as an
ET material leads to a critical decrease in the roughness parameters.

3.5. Residual Stresses

The results of measuring the residual stresses before and after EDM with copper,
graphite, and composite ETs are presented in Figure 19.
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In the diagrams, the change in the sign of the residual stresses after the EDM can be 
seem, regardless of the direction of measurement and the material of the ET. This is due 
to a change in the direction of residual stresses in the surface layer of the material being 
processed. It is shown that residual stresses in the EDM process acquire a tensile character. 
This, in addition to some other factors such as surface pits, can cause cracking. 

Figure 19. Histograms of changes in the residual stresses of the samples in the EDM process: (a) in
the finishing mode; (b) in draft mode.

In the diagrams, the change in the sign of the residual stresses after the EDM can be
seem, regardless of the direction of measurement and the material of the ET. This is due
to a change in the direction of residual stresses in the surface layer of the material being
processed. It is shown that residual stresses in the EDM process acquire a tensile character.
This, in addition to some other factors such as surface pits, can cause cracking.

ET material has a negligible effect on the residual stress value. The residual stresses
generated by composite ET EDM are comparable to the residual stresses generated by EDM
using ETs made from traditional materials.

3.6. Tensile Properties

The results of our study of the effect of turning and EDM using various ETs on the
mechanical properties of steel 15 are presented in Table 8.
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Table 8. Tensile mechanical properties of steel 15 depending on the processing method.

Processing Method E, GPa σB, MPa σ0.2, MPa

Turning 233 742 369
EDM (Cu) 214 716 341
EDM (C) 210 725 345

EDM (Cu-C) 247 723 355

Based on the results obtained, a histogram of the effect of the treatment method on the
mechanical properties in tension was constructed (Figure 20).
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Figure 20. Bar graph of the change in the mechanical properties of steel 15 under tension.

Based on the results obtained, a histogram of the effect of the processing method on
the mechanical properties under tension was constructed.

Analysis of the histogram showed a slight change in the mechanical properties of the
samples machined on a lathe and EDM, regardless of the ET material. The difference in
the results obtained does not exceed 10%. Figure 21 shows photographs of tensile fracture
surfaces of processed specimens.
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of the samples took place under the influence of a cyclic load. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 22. Photos of tensile fractured specimens made by: (a) EDM (copper ET); (b) EDM (composite 
ET); (c) EDM (graphite ET); (d) turning. 

Figure 21. Photographs of the fracture surface of tensile specimens manufactured by: (a) EDM
(copper ET); (b) EDM (composite ET); (c) EDM (graphite ET); and (d) turning.



Materials 2022, 15, 1566 21 of 24

It was shown that the destruction of experimental specimens under tension occurred
mainly in the center of the workpiece, regardless of the technology of their manufacture
(Figure 22).
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Figure 22. Photos of tensile fractured specimens made by: (a) EDM (copper ET); (b) EDM (composite
ET); (c) EDM (graphite ET); (d) turning.

Figure 21 shows the view of the destroyed samples obtained by different operations. It
can be seen that after EDM, there is a characteristic surface on the surface of the workpiece,
characterized by a large number of single holes superimposed on each other. However, it
should be noted that the overall pattern of destruction is the same. The destruction of the
samples took place under the influence of a cyclic load.

It is worth noting the conventional yield stress. The performance of sample processed
by EDM using a composite ET exceeds that of one using a copper or graphite ET. This
indicator determines at what ultimate loads the product material passes from an elastic
state to a plastic one. The higher this indicator, the larger chance that the product will be
able to return to its original state after removing the load. Accordingly, the likelihood of
occurrence and development of cracks in the surface layer and the base material as a whole
is reduced.

3.7. Durability of Samples under Low-Cycle Fatigue

Table 9 presents the results of our study of the durability of the clouds obtained by
different methods for low-cycle fatigue.

Table 9. Study of the durability of specimens from steel 15 at low-cycle fatigue.

Processing Method Durability, Cycles

Turning 27,600

EDM (copper ET) 18,938
EDM (graphite ET) 21,673

EDM (composite ET) 19,044
EDM (medium) 19,885

Based on the analysis of the data obtained, it was found that the durability of steel
15 samples obtained by the EDM method with low-cycle fatigue was 30% less in comparison
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to the samples obtained on a lathe. The sample treated with the composite electrode showed
low-cycle fatigue life close to the EDM average.

Figure 23 shows photographs of the sample fracture surface under cyclic loading after
turning and EDM.
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The areas of destruction of specimens during turning and EDM found during testing
for low-cycle fatigue are the same and are located in the areas of the meeting of straight
and radius surfaces. Thus, it is not the ET material, but the physics of the EDM process
itself that has the greatest impact on the fracture of EDM samples.

4. Conclusions

1. Possible negative uses of an ET from a composite material such as a pseudo-alloy of
the copper and colloidal graphite system at EDM of steel 15 were investigated.

2. The influence of composite ETs on the chemical composition, microstructure, and
mechanical properties of steel 15 in comparison with traditional copper and graphite
ETs was studied. Comparison of samples was processed by traditional blade methods.

3. The analysis of the treated surface of the EDM showed an uneven distribution of
the heat-affected zone. An uneven distribution of microhardness in the depth of
processing was observed, depending on the processing modes. A decrease in the
value of microhardness near the treated surface was noted. This phenomenon is
explained by excessive overheating of the treated surface. It should be noted that at
maximum processing conditions, microhardness decreased. This phenomenon may
be associated with the peculiarity of the material being processed, as well as with the
intensive productivity of the processing process, as a result of which the modified
surface layer was removed from the processing zone.

4. The formation of the roughness of the treated surface after EDM is formed by super-
imposing single holes onto each other. The size and shape of a single well depends on
the energy of the pulse, as well as on the material of the instrument electrode and the
material being processed. The unevenness of the formation of the roughness of the
machined surface depends on the uneven distribution of the pulse energy. It has been
established that the torch component of a single discharge has the greatest influence
on the process of roughness formation. Under the action of high temperatures in
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the breakdown channel, heating, evaporation, and torch transfer of the processed
material occur.

The uneven distribution of energy depends on many factors. One of the main fac-
tors affecting the nonuniformity is the difference in the thermophysical properties of the
materials of the ET and the part.

5. It was found that the use of composite ETs does not have negative consequences. On
the contrary, in a number of parameters, composite ETs are superior to traditional
copper and graphite. The possibility of using composite ETs for EDM steel 15 was
demonstrated.
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