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Abstract: External bonding of fiber reinforced composites is currently the most popular method of
strengthening building structures. Debonding performance is critical to the effectiveness of such
strengthening. Many models of bond prediction can be found in the literature. Most of them were
developed based on laboratory research, therefore, their accuracy with less popular strengthening
systems is limited. This manuscript presents the possibility of using a model based on neural
networks to analyze and predict the debonding strength of steel-reinforced polymer (SRP) and
steel-reinforced grout (SRG) composites to concrete. The model is built on the basis of laboratory
testing of 328 samples obtained from the literature. The results are compared with a dozen of the
most popular analytical methods for predicting the load capacity. The prediction accuracy in the
neural network model is by far the best. The total correlation coefficient reaches a value of 0.913 while,
for the best analytical method (Swiss standard SIA 166 model), it is 0.756. The sensitivity analysis
confirmed the importance of the modulus of elasticity and the concrete strength for debonding. It is
also interesting that the width of the element proved to be very important, which is probably related
to the low variability of this parameter in the laboratory tests.

Keywords: steel-reinforced polymer; strengthening of concrete; bonding strength; artificial neural
networks

1. Introduction

High-strength fiber-reinforced composites have been used to strengthen concrete
structures since the 1980s. Over the past four decades, external bonding of composites
has become the most popular method of retrofitting structures, not only concrete, but also
masonry, wood, and even steel. During this time, technology has improved and new types
of fiber have been introduced. Fiber-reinforced polymer (FRP) composites are distinguished
by an excellent strength-to-weight ratio, several times better than that of traditional steel.
The currently perceived disadvantage of fiber composites is their difficult disposal and
reuse. Steel-reinforced polymer (SRP) composites do not have this drawback. Although
they are characterized by a slightly higher weight than carbon fiber composites, other
parameters, especially tensile strength and modulus of elasticity, are comparable.

Present studies demonstrate the effectiveness of SRP composites in strengthening
residential structures. After replacing the polymer matrix with cement, or even lime
grout, they are perfect for repairing historic buildings. The lack of standards and design
handbooks is an obstacle to the popularization of SRP composites. However, some of the
procedures can be directly derived from the manuals developed for FRP composites with
slightly modified mechanical properties. The issue of the bond of SRP composites may raise
the greatest doubt here. SRP composites are reinforced with wire strands with a diameter
of 0.25–0.35 mm. They are fixed in the wet lay-up process, which is why the fiber content in
the laminate is much lower than the carbon fiber strips produced in the pultrusion process.
Therefore, the relationship of the strength of SRP tapes to the cross-sectional area can even
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be reduced by up to three times [1], leading to a greater width and thickness of the plate. It
can be expected that increasing the width would have a positive effect on the bond, but
increasing the thickness would have a negative effect. The study by Mitoldis [2] showed a
clear difference in adhesion and slip compared to carbon-fiber-reinforced polymer (CFRP)
composites. On the other hand, Papakonstantinou [3] has shown that existing design
standards can be successfully used in the design of SRP reinforced beams, but with a
slightly lower safety margin. Furthermore, research [4] shows that most analytical models
and design standards guarantee acceptable accuracy in predicting the bond strength of SRP
composites. The results of debonding tests collected during previous analyses were used to
build a model based on artificial neural networks. The created model and the results are
discussed in this paper.

An artificial neural network is a machine learning technique within the wider family of
artificial intelligence. It is based on the theory of connectionism, which was first proposed
during the 1940s to simulate the processing of the human brain. However, the concept
was not widely used until the development of information technology, which allowed its
reopening and further deployment [5]. Currently, artificial neural networks (ANNs) serve
for classification, i.e., the prediction of a categorical value, or regression, i.e., the prediction
of a numerical value [6]. The basic concept of ANNs is grounded in the learning of patterns
from the presented examples in a supervised or unsupervised manner, in other words,
with or without the target values, respectively. The most used learning algorithm is the
feed-forward backpropagation (BP) algorithm because of its simplicity and applicability.
The BP algorithm is based on the “backpropagation learning rule” which was established in
1985 as a solution for issues occurring in single-layer or bilayer networks [6]. It represents
a generalization of the delta rule and functions as a gradient descent technique of error
minimization by incremental adjustment of the connection weight between the layers of
a multilayer perceptron (MLP) [7]. Solving civil engineering problems conventionally
involves time-consuming empirical methods or the proposal of highly complex analytical
expressions. Even then, the solutions imply some type of simplification due to the lim-
itations of the method or the complex nature of the problem. Soft computing methods
such as MLPs present a time- and cost-friendly alternative to solve any problem at hand
including structural health monitoring [8], structural engineering [9], gas flow [10], seismic
engineering [11], etc. Furthermore, neural network-based parameter sensitivity analysis is
gaining more traction in civil engineering systems due to its remarkable ability to explain
the nonlinear relationships between the explicative and the response variables of a certain
problem [12].

Artificial neural networks and other machine learning methods have been used to
predict the behavior of elements reinforced with various FRP composite materials. Notable
works include a study by Koroglu [13], which deals with the prediction of the bonding
strength of FRP rebars in concrete using an ANN. The study shows the efficiency of ma-
chine learning compared to analytical methods. Furthermore, the research by Mansouri
and Kisi [14] brings forward the application of ANNs and adaptive neuro-fuzzy inference
systems for the prediction of debonding strength for masonry elements retrofitted with
FRP composites; the works of Mashrei et al. [15], Cascardi and Micelli [16], and Jahangir
and Eidgahee [17] investigated whether the application of ANNs for the prediction of
bonding strength between FRP strips and concrete can give better results than the exist-
ing analytical models. It has been shown that the ANN approach may present a more
efficient option. Similarly, this paper uses ANNs to predict the bonding strength of SRP
composites externally bonded to concrete structures. It compares the results of ANNs with
the analytical models that are traditionally used and investigates the dependencies of the
ANNs variables, postulated by the learning process of the ANN, which is obtained by the
sensitivity analysis of the working ANN model. The relevant information for building a
comprehensive dataset was obtained from the literature [18–24].
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2. Bond-Slip Models of Externally Bonded Composites

Debonding can be simply defined as the loss of bond of the composite overlay to the
substrate. In practice, several ways of failure are distinguished under this phenomenon.
Debonding may occur along the length of the reinforcement in the area of the highest
tensile force or the anchoring zone. It can refer to the adhesive layer, but often to the
contact layer in the substrate as well, or it can appear as an interlayer in the composite itself.
According to Teng [25], debonding failure models can be classified as plate end interfacial
debonding, concrete cover separation, intermediate flexural crack-induced debonding, and
critical diagonal shear crack-induced debonding. This ordination may be complemented
by debonding initiated as interlaminar failure in the matrix-fiber interface [26]. Debonding
is typically simulated in a simple laboratory shear test. Depending on how the sample is
clamped and how the force is applied, this may be a double or a single, push or pull-shear
test. These tests directly show the bond in the end anchorage zone; however, current
research proves that this testing method can also be used in the simulation of intermediate
debonding [27]. An alternative and less commonly used bond test method is the notched
beam test.

Bond performance is a result of the cooperation of several components with different
geometries and mechanical properties. In addition, it is also influenced by the application
conditions and the environmental conditions of use. Due to the number of factors and the
complexity of the bond process, most mathematical bond models are based directly on the
results of laboratory tests. Usually, they are classified into three categories, as follows:

• fully empirical models, based on the regression of test data, such as Tanaka [28],
Hiroyuki and Wu [29], and Maeda [30],

• fracture mechanics-based models including Taljsten [31], Niedermeier [32], Yuan and
Wu [33], and Lu et al. [34],

• design models, usually based on simple assumptions, such as Dai et al. [35], Brosens
and van Germet [36], Khalifa et al. [37], Yang et al. [38], Adhikary and Mutsuyoshi [39],
Sato et al. [40], Chen and Teng [41], DeLorenzis et al. [42], and Seracino et al. [43].

A detailed description of these models can be found inter alia in Table 1 [4].

Table 1. Predicted experimental bond strength ratios for SRP composites bonded to concrete [4].

Model Mean R

Tanaka [28] 0.699 0.220
Hiroyuki and Wu [29] 0.746 0.503

Maeda et al. [30] 1.14 0.751
Taljsten [31] 0.761 0.748

Nidermeier [32] 0.763 0.629
Yuan and Wu [33] 0.763 0.747

Lu et al. [34] 0.873 0.676
Dai et al. [35] 1.55 0.734

Brosens and van Germet [36] 0.937 0.408
Khalifa et al. [37] 0.754 0.729

Yang et al. [38] 0.528 0.657
Adhikary and Mutsuyoshi [39] 2.00 0.476

Sato et al. [40] 1.81 0.573
Chen and Teng [41] 0.882 0.726

DeLorenzis et al. [42] 1.63 0.728
Seracino et al. [43] 0.752 0.716

JCI 2003 [44] 0.941 0.738
SIA 166/2004 [45] 0.911 0.756

CNR-DT200R1/13 [46] 0.928 0.718
Fib Bulletin 90/2019 [47] 0.962 0.755

Evaluation of the above-mentioned bond models for SRP strengthening (carried out
by this author) showed that most of them are in relatively good agreement with the test



Materials 2022, 15, 1314 4 of 17

results [4]. As can be seen in Table 1, the best prediction accuracy is given by Lu et al. [34],
Chen and Teng [41], and most of the design standards.

When analyzing the predicted experimental ratio, most models can be considered
rather conservative. Some models significantly increase the load capacity (including
Dai et al. [35], Brosens and Germet [36], and Adhikary and Mitsuyoshi [39]). The largest
scatter in the results concerns the proposals by Dai et al. [35], Adhikary and Mitsuyoshi [39],
and DeLorenzis et al. [42]. The common feature of these models is the independence of the
effective anchorage length.

3. Artificial Neural Networks

Artificial neural network (ANN) models have been developed to predict the bonding
strength of the externally bonded SRP composite to the concrete element. All models are
feed-forward backpropagation networks with a sigmoid activation function and a linear
transfer function. Data were collected from the works of Figeys et al. [18], Matana et al. [19],
Mitoldis et al. [20], Napoli et al. [21], and Ascione et al. [22–24]. Table 2 briefly summarizes
the most relevant information from these studies, which are also incorporated in the dataset.
The comprehensive dataset was halved, so that the first half could be used for training and
the other half is used for testing the ANN model. The dividing of the dataset represented
the realistic behavior of the established model, i.e., the level of fitting with the unseen data
by the network. Finally, the working model was established and trained using the entire
dataset.

Table 2. List of geometry and material properties collected from the available experimental data.

Reference Number of
Specimens

b
[mm]

fc
[MPa]

bf
[mm]

tf
[mm]

L
[mm]

Ef
[GPa]

Figeys [18] 1 7 100 35 95 0.601 150–200 177.6
Mantana [19] 1 12 191 14.8 51 0.483 102–305 179.1
Mitoldis [20] 1 8 100 22.4 50–80 0.562 150–300 221.4
Napoli [21] 1 19 200 15.2–39.7 100 0.084–0.381 150–300 206.6
Ascione [22] 1 129 200 13–45 20–100 0.084–0.381 100–350 190
Ascione [23] 1 62 200 19.3–25.6 100 0.084–0.381 100–350 182.1–183.4
Ascione [24] 2 83 200 13–40 50–100 0.084–0.254 100–350 182.1–183.4

1 epoxy adhesive; 2 grout adhesive; b—sample width; bf—width of SRP tape; fc—concrete strength; tf—effective
SRP thickness; L—bond length; Ef—modulus of elasticity of SRP.

The entire dataset was randomly divided while ensuring that each half included data
from every referenced source. Both the training and the testing sets consisted of 171 data
tuples. Input data included information on the following: sample width, sample thickness,
concrete compressive strength, concrete tensile strength, concrete modulus of elasticity,
tape width, tape thickness, anchorage length of the tape, modulus of elasticity of SRP, the
tensile strength of SRP, and the type of adhesive between the concrete element and the SRP
tape. The target was the debonding force of the SRP tape from the concrete element. All
input data, except the type of adhesive, were numerical. The numerical values of the input
and target data were processed with min/max normalization within the [0, 1] range and,
as such, were presented to the network. The types of adhesives between the SRP tape and
the concrete element were epoxy and grout, presented to the network as the values 0 and 1,
respectively. Figure 1 shows the distribution of values of the numerical input parameters
throughout the entire dataset.
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(j) SRP strength—ff.

3.1. Establishing the Working ANN Model

Neural network models were developed using Matlab R2020b. The supervised training
of the models was carried out with the following learning parameters: unipolar sigmoid
activation function, linear transfer function, Levenberg–Marquardt algorithm, one hidden
layer, 1000 epoch limit, 109 momentum, 10−6 learning rate, and six-fold cross-validation.
Training was set to stop when the network did not improve after six consecutive validation
checks. The procedure for establishing a working ANN model for the prediction of bonding
strength was set as follows. Firstly, the training was performed on the initial model. The
optimization of the initial model was then provided and the training repeated for the
optimized model. The testing was performed on the optimized model to establish the
quality of generalization. Since the optimized model was tested on new unseen data, it
may be assumed that the results would show the realistic behavior of the network. Finally,
the final working ANN model was established and trained on the full dataset.
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3.1.1. Initial Model

The initial model included the simplest network architecture, having the input layer
with eleven neurons, one hidden layer with an equal number of neurons as the input layer,
and the output layer with one neuron. The training set was pre-processed using min/max
normalization with the [0, 1] range for the numerical values, and zero or one values for the
descriptive input. During the training process, 15% of the set was used for validation to
ensure that the training process stopped when the six consecutive validation checkpoints
showed no improvement in the training.

3.1.2. Optimization of the Initial Model

Optimization of the initial model served to establish the optimal number of neurons
in the hidden layer. An improved topology of the network implied a better generalization
and contributed to the stability of the network. Optimization was indicated by the level
and change of the mean squared error for the varying number of neurons in the hidden
layer. To this end, consecutive training was performed for models with an iterated number
of neurons from one to fifty in the hidden layer.

The literature gives general recommendations on the number of neurons in the hidden
layer. It is considered that for the network of this size in terms of the input neurons and
the batch size, a very high number of neurons in the hidden layer would surely cause an
overfitting of the network. The overfitting leaves the network unable to generalize and
perform the prediction when presented with the new data. Hence, it is considered that the
highest number of neurons in the hidden layer should not exceed fifty. After the iterations
finished, the change in the mean squared error (MSE) was observed for all iterations and
compared to establish which number of neurons in the hidden layer gave the satisfactory
results and exhibited stability. On the other hand, it is important to secure the network
from the occurrence of underfitting as well. Practically, the lowest number of neurons in
the hidden layer may not be less than the number of the input neurons. Furthermore, the
literature often gave the recommendation that the number of neurons in the hidden layer
should not be under Ni+2, where Ni is the number of input neurons. Underfitting may be
spotted as the occurrence of extremely low MSE, giving an overly positive result of the
network’s behavior.

3.1.3. Training and Testing of the Optimized Model

When the optimization process was concluded and the optimal network topology set,
the new model was then independently trained with the previously described training set.
The training was performed with the same learning parameters as the initial ANN model.
The testing of the optimized model followed the training process. It was performed using
the second half of the dataset, which presents entirely new data for the neural network.
Hence, the testing process can show the real behavior of the network, i.e., the capability
of generalization when the network is presented with unknown data. It is expected that
proper generalization implies good prediction and similar results, after training and testing,
may confirm the stability of the network.

3.1.4. Working ANN Model

The final ANN model presents the working model which can be further used for
predictions of the bonding strength of the externally bonded SRP composite to the concrete
element. This model used the previously established and tested topology of the optimized
ANN model; however, it was trained using the entire dataset. After the successful training
process, the weights and bias were fixed, and the network presented a ready-to-use model.

3.2. Sensitivity Analysis

The sensitivity analysis served to show the absolute or relative contribution of each
input parameter to the output value. It was necessary to understand the relationship
and influence of the input parameters on the problem that the ANN learns to solve [7].
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Except for showing the contribution of each input parameter, the sensitivity analysis may
also influence the topology of the final working model, because it may show that some
parameters could hinder or slow down the learning process. On the other hand, it shows
which parameters are crucial for the learning process, as well as the dependence of the
output value on each input parameter. This analysis was provided using the weights
method, otherwise known as the Garson’s algorithm [48]. The algorithm was created for
supervised neural networks with a single output, to describe the relative importance of the
input parameters by deconstructing the model weights. The mathematical description of
the algorithm for a network with a single hidden layer is as follows:

Dij =

∣∣Wij
∣∣

∑ni
i=1

∣∣Wij
∣∣ (1)

RCi =
∑

nj
j=1 Dij

∑
nj
j=1 ∑ni

i=1 Dij
(2)

where ni and nj are the numbers of input and hidden neurons, respectively, Wij is the
weight corresponding to the i-th input and the j-th hidden neuron, and RCi is the relative
importance of the i-th input.

4. Results

The performance of the ANN model is described by the mean squared error MSE, root
mean squared error RMSE, and the regression coefficient R. The MSE and RMSE represent
the average squared and average root squared difference between the output and the target
value, respectively, which tends to zero as the prediction becomes more accurate. The R
value is the primary parameter that shows the correlation of the output compared to the
target value, which tends to a value of one, as the prediction becomes more accurate. The
regression coefficient is usually expressed as the total of R values for training, testing, and
validation. Additionally, the error distribution shows the general behavior of the network
and the relationship between the error during the training, testing, and validation.

4.1. Training and Optimization of the Initial ANN Model

As mentioned previously, the initial model was trained with the architecture including
eleven neurons in the input and the hidden layer and a single neuron in the output layer.
The results of the initial training show that there is room for improvement. Table 3 shows
that, although the RMSE value is quite low, the regression coefficient of 0.85 for training
implies that the learning process should be improved. Figure 2 shows the relationship
between the target and the output values after training the initial model.
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Table 3. Comparison between the initial and the optimized ANN model.

Model R Training R Validation R Total MSE RMSE

Initial 0.84959 0.60249 0.82339 0.0106 0.00991
Optimized 0.88602 0.75031 0.8675 0.0099 0.0076

Optimization of the initial model has been performed by simply iterating the number
of neurons in the hidden layer and observing the MSE for training and validation. To
establish the optimal number of neurons in the hidden layer, fifty iterations were carried
out. The results of the optimization process are presented in Figure 3. It shows that
overfitting occurs with 49 neurons in the hidden layer. Vis-à-vis, underfitting may have
occurred with 5, 8, 9, 12, and 13 neurons in the hidden layer. The literature recommends
the highest number to be equal to 2Ni + 1, where Ni is the number of input neurons. Thus,
the preferred number of hidden neurons should be between fifteen and thirty, which is
supported by the results of the optimization of the network. A sudden drop or increase in
the error for consecutive iterations may imply instability; hence, the error should show a
relatively minimal change for several consecutive iterations. The behavior is somewhat
steady within the range of 18 to 23 neurons, especially when the training MSE values are
observed. Furthermore, within this range, the closest result between the training and the
validation MSE occurs when the number of hidden neurons is 21, and thus it is considered
to be an optimal value.
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4.2. Training the Optimized ANN Model

The optimized ANN model has been trained in exactly the same manner as the initial
model, so that a realistic comparison between the two models can be achieved. The only
difference is the number of neurons in the hidden layer, which is equal to 21 for the
optimized model. Table 3 shows the comparison of the regression coefficients and the mean
squared error between the initial and optimized models. The improvement is visible; the
error of the optimized model shows a value closer to zero and regression coefficients show
an improvement in the learning process and the prediction accuracy. Figure 4 compares the
error distributions for both models. It may be observed that the error distribution of the
optimized model exhibits a more uniform decrease in the error with less outliers and more
symmetrical distribution around zero error.
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Figure 5 compares the relationship between the target and the output values for
the initial and the optimized model after training. The improvement is reflected in the
significant increase in the training regression coefficient after optimization. Moreover, the
validation R value shows a much higher increase which, in turn, gives the overall R value
of the optimized model equal to almost 0.87. This implies a better prediction accuracy of
the optimized model in comparison to the initial prediction. It may be assumed that the
final model will show even better results because the training will be provided with twice
as many data tuples.
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4.3. Testing the Optimized ANN Model

After it had been concluded that the optimization of the initial model was successful,
testing by introducing the data which the network had never seen presented the final
verification for the optimized ANN model. This consists of introducing the second half
of the dataset, data that were randomly selected during the division of the set, to the
network. The testing of the trained network was performed by introducing the new set
and calling a simulation function to the trained network. The results are presented by
relating the target and the output values, as shown in Figure 6. The total R value after
testing exceeds 0.91, which implies great success in the network generalization capability.
Figure 7 shows the comparison of the results after training and after testing the optimized
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network. The network exhibits very similar behavior after training and testing, indicating
that the architecture is suitable and that the network is stable with good generalization.
The prediction accuracy is at a satisfactory level, given that the data were obtained through
different sources, and the input data were somewhat repetitive.
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4.4. Training of the Working ANN Model

The final ANN model was established, tested, and confirmed to be successful in
predicting the bond strength of the externally bonded SRP composite to the concrete
element. In order to obtain the working model, the neural network was trained once more,
using the entire dataset. Then, the weights and bias were set and fixed, and the neural
network used for prediction. The learning parameters were kept from the previous models,
the number of neurons in the hidden layer was 21, and the subset ratio was 80/15/5 for
training/testing/validation. Figure 8 shows the error distribution and the relationship
between the target and the output values, while Table 4 shows the values of the regression
coefficients and the mean squared error for the working ANN model. The improvement
is best seen when observing the error distribution which takes a Gaussian zero-centered
shape. The lack of outliers is visible in both Figure 8a,b and, lastly, the regression coefficients
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experience a significant increase. It may be observed that the prediction accuracy of the
working model exceeds 90%, which indicates a very reliable neural network.
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Table 4. Results of the working ANN model.

Model R Training R Validation R Testing R Total MSE RMSE

Working 0.92367 0.90783 0.87864 0.91338 0.0073 0.00023

4.5. Sensitivity Analysis

The sensitivity analysis of the working ANN model has been provided using Garson’s
algorithm, i.e., the weights method, according to Equations (1) and (2). Table 5 shows the
values of the weights connecting the neurons in the input and the hidden layer. These
values are used to calculate and determine the relative contribution of each input parameter
regarding the output. Figures 9 and 10 show the contribution of the input parameters. The
results of the analysis show that all input parameters have a very close level of importance
to the output. Relatively speaking, the modulus of elasticity of the SRP composite and
the width of the concrete element have the highest importance to the output. Analysis
shows that the anchorage length of the SRP composite is the least important to the bonding
strength. Additionally, the thickness of the concrete element and the compressive strength
of the concrete show low importance regarding the bonding strength for externally bonded
SRP composites to the concrete element. However, none of the input parameters show less
than a 50% contribution to the output value, meaning that none of them may be excluded
from the dataset.
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Table 5. Connection weights between the neurons in the input and the hidden layer.

Hidden/Input 1 2 3 4 5 6 7 8 9 10 11

1 −0.636 0.707 −0.534 −0.392 0.487 −0.315 −0.667 −0.350 0.735 −0.294 0.151

2 0.220 −0.179 −0.942 0.458 −0.140 0.648 −0.123 0.243 1.164 0.768 −0.725

3 0.869 −0.322 0.604 0.374 −0.508 −0.695 0.225 −0.248 0.683 0.792 0.612

4 0.808 −0.866 −0.555 −0.363 −0.298 −0.214 0.564 0.361 −0.586 0.244 −0.321

5 0.937 0.329 0.305 0.125 0.641 0.328 −0.399 −1.250 0.453 0.501 −0.474

6 −0.612 −0.658 0.017 0.398 0.309 −0.303 −0.459 −0.706 −0.617 0.799 0.622

7 0.026 −0.190 −0.592 0.073 −0.202 −0.638 −0.662 −0.539 −0.247 −0.402 −0.796

8 −0.745 0.763 0.816 0.029 −0.570 −0.670 0.096 0.240 −0.762 −0.548 0.257

9 0.374 0.309 0.272 −0.685 0.694 −0.344 −0.631 0.571 0.739 −0.310 0.234

10 −0.789 −0.136 0.101 0.353 −0.799 0.067 −0.632 −0.826 −0.024 0.026 −0.464

11 0.297 −0.317 −0.279 0.447 −0.384 0.813 −0.200 −0.520 0.846 −0.641 0.443

12 −0.195 −0.258 −0.439 0.809 0.615 0.047 0.045 −0.139 1.389 −1.057 1.407

13 −0.969 −0.416 0.948 −0.283 0.186 −0.755 0.097 −0.434 0.055 −0.269 −0.401

14 0.738 0.347 0.001 −0.245 −0.101 0.154 0.046 −0.110 −0.466 1.051 0.266

15 0.584 −0.654 −0.688 −0.625 0.424 0.229 0.231 0.091 0.573 0.209 −0.645

16 −0.701 0.048 0.123 0.455 −0.953 0.754 −0.150 0.071 −0.883 0.602 −0.331

17 0.909 −0.300 −0.557 −0.173 −0.024 −0.199 1.039 0.753 0.426 −0.065 0.451

18 −0.500 −0.339 −1.039 −0.644 −0.327 0.003 −0.076 −1.405 0.507 −0.472 0.472

19 0.321 −0.838 −0.861 0.110 0.399 0.605 −0.564 0.524 0.567 −0.955 0.532

20 0.206 0.258 −0.391 −0.450 0.749 −0.818 0.283 0.408 0.222 0.225 −0.370

21 0.901 0.192 0.369 −0.427 0.743 0.360 0.161 0.392 −1.031 −0.399 −0.945
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5. Discussion of Results

The comparison of Tables 1 and 4 clearly shows that the ANN method guarantees
a much better quality of results than any of the analytical methods evaluated. The total
correlation coefficient Rtotal was equal to 0.91338, which is more than satisfactory and only
slightly lower than the one obtained by the authors of a similar analysis of the adhesion of
CFRP composites [15,17]. However, it should be noted that, in the case of CFRP composites,
due to their popularity, much larger datasets of research results are disposable, which
directly affects the behavior of the ANN model.

Mukhopadhyaya and Swamy [49] pointed out that increasing the elastic modulus
of the bonded fiber composite results in a higher value of interfacial stresses. Teng [25],
who also noted that the elastic modulus does not affect the location of the peak value,
found similar conclusions. The authors cited also indicate similar findings regarding the
thickness of the composite. Similarly, an additional layer of laminates increase stress
(Shahawy et al. [50]). It is proof of the key role of laminate stiffness in interfacial stress
values and, thus, the probability of premature debonding. The described effect has been
proven by the sensitivity analysis in this work. The modulus of elasticity Ef and the
thickness of the laminate tf are the most important input parameters (Figure 10).

In most cases, delamination occurs in the contact layer between the adhesive and
the concrete or the cover layer; therefore, it is commonly considered that the bond is
significantly affected by the strength of the concrete and the preparation of the concrete
surface [51]. The concrete tensile strength fct is the fourth most important parameter
indicated by the sensitivity analysis. A similar meaning can be assigned to the Ad parameter,
which represents the type of adhesive. Admittedly, the mechanical properties of the
adhesive were not entered into the model. Only the division into epoxy resin and grout
was parameterized. Epoxy adhesives are characterized by much better strength and bond
properties, which were rightly indicated in the analysis.

Surprisingly, the lowest impact of the bond length L may be caused by the specificity
of the test data. Most analytical methods define the effective bond length along which
most of the interfacial load is transferred. For the bond length, which exceeds the Le, the
bond strength does not increase significantly. The effective bond length depends mainly
on the stiffness of the composite plate. There is no consensus as to what this length is; for
example, Sato [40] gives values of around 45 mm, while Brosens and Germet [36] suggest
over 275 mm. The effective bond length for a single layer of SRP, calculated according to
the above-mentioned analytical methods [30,32,41,45,47], is in the range of 50–160 mm and
for most cases does not exceed the anchorage length provided in the test samples (Table 2
and Figure 1). Therefore, the slight influence of the anchorage length observed confirms a
limited transfer of the interfacial force over the effective bond length.
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The second result that requires comment is the significant effect of the sample width b.
This problem may be related to the ratio of the composite width bf to the sample width b, as
this influences the stress distribution in the concrete. For the tested models, this proportion
is usually equal to 0.5; therefore, slight changes in the width b could significantly affect the
distribution of stresses and, thus, the debonding strength.

6. Conclusions

This paper describes an innovative approach for estimating the bond strength of SRP
to concrete, based on the artificial neural network model. The developed model is trained
on the basis of the experimental data gathered from published literature. The model is used
to predict the bonding strength and further compared to some of the analytical bond-slip
models from the literature. The results obtained show good agreement with the laboratory
data collected. The working ANN model performs significantly better than other models
in estimating the bonding strength. The sensitivity analysis concludes that the architecture
of the working model is also optimal in terms of the number of input neurons. None of the
input parameters can be excluded from the network, as all of them carry a high level of
importance to the output value.

Undoubtedly, the study shows the potential of neural networks as a supporting tool
for structural engineers; however, the main disadvantage of this method is that it is a ‘black
box’ that cannot derive any universal equation and cannot function without a training base.
On the other hand, it is only a matter of time before such datasets will be automatically
created by the internet bots.
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