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Abstract: Liquid–vapor molecular dynamics (LVMD) simulations are performed to reinvestigate
the phase transition and solvation force oscillation behavior of a simple argon liquid film confined
between two solid surfaces. Our simulations present a novel scenario in which the n → n − 1
layering transitions are accompanied by the formation, climb, and annihilation of Frank partial dislo-
cations during the squeeze-out process under compression. This is indicated by the splitting of the
repulsive peaks in the solvation force profile. The detailed analysis reveals that the formation–climb–
annihilation mechanism of Frank dislocation occurs during approach and disappears during receding,
which would result in force hysteresis. In combination with our recent works, this study provides
new insights into the physical property of nanoconfined lubricant films in boundary lubrication.

Keywords: lubrication; nanotribology; Frank dislocation; phase transition; molecular dynamics

1. Introduction

Nanometer-thick liquid film confined between two solid surfaces has fundamental
implications for surface and interfacial science [1]. Frictional and lubrication properties of
a film in a confined geometry are affected by the way it reacts to external loading (such as
compression and shear) [2–5]. A long-standing debate in surface force experiments has
been the structure and shear properties of simple nonpolar lubricants confined between
two solid surfaces [6–15]. One critical question is that under normal compression between
two molecularly smooth surfaces, how does a nonpolar lubricant film proceed in a thinning
or squeeze-out process? As a result of this process, what is the molecular packing structure
of the film? This is crucial in the design of preventative strategies against friction and
surface failure during tribological loading.

Recently, we developed and validated a liquid–vapor molecular dynamics (LVMD)
simulation method [16–18] to investigate the phase behaviors and shear properties of spher-
ical molecular liquids. The most important finding is that cyclohexane (C6H12), a widely
used simple model lubricant studied in surface force apparatus/balance (SFA/B) experi-
ments, underwent a sudden liquid-like to solid-like phase transition at n < 6 monolayer
thickness when confined between two molecularly smooth mica surfaces [19]. The simu-
lated force–distance profiles are remarkably consistent with Jacob Klein′s SFB experimental
results [6,7]. LVMD friction simulations showed that shearing of solidified cyclohexane
film at three- or four-monolayer thickness resulted in stick–slip friction. We found that
instead of shear melting of the film during the slip of the surface [4], boundary slips at the
solid–lubricant interface occurred, while the solidified structure of the lubricant film was
well maintained during repeated stick–slip friction cycles.

The nature of nucleation and propagation of partial dislocations play an essential
role in the evolution of microstructure and mechanical properties of crystalline materials
in nanoscales such as twinning reactions, phase transformations, and the formation of
dislocation barriers by intersecting dislocations [20,21]. In face-centered cubic (FCC) metals,
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there are two important types of partial dislocations: Shockley partial dislocations and
Frank partial dislocations. Since Shockley partial dislocations dominate the dislocation
avalanche process when yielding occurs under external loading, the characteristics of
Shockley partial dislocations linked to plastic deformation of FCC metals have been widely
researched [22–25]. Movement-wise, Shockley partials are glissile, whereas Frank partials
are sessile. Shockley partial dislocation is associated with slip on the {111} slip planes since
its Burgers vector lies parallel to the slip plane. On the other hand, Frank partial dislocations
outline a stacking fault formed by inserting or removing a region of closed packed {111}
layer of atoms, which is referred to as extrinsic (positive Frank partial) or intrinsic (negative
Frank partial) stacking fault, respectively. A Frank dislocation is a pure edge dislocation,
and its Burgers vector can be expressed as b → = 1

3 〈111〉, which is perpendicular to the
stacking faults layer. Frank partial dislocations are classified into “sessile dislocations”
since they rarely propagate and therefore are seen as a “signature” reflecting microscopic
processes due to their stability and immobility. Positive Frank dislocations are usually
produced by the precipitation of interstitial atoms as a result of radiation damage. In
contrast, negative Frank dislocations occur when a platelet of vacancies collapses due to
the local supersaturation of vacancies caused by rapid quenching or from the displacement
cascades generated by irradiation with energetic atomic particles [21]. As compared with
Shockley partial dislocation, Frank partial dislocation has been less studied.

Our recent study showed that in stick–slip friction in boundary lubrication with com-
mensurate contact between the confining wall and the solidified film, interlayer or bound-
ary slips are always accompanied by the nucleation–propagation–annihilation process of
Shockley partial dislocations [26]. Because shear-induced Shockley partial dislocations
can be observed, a fascinating question would be whether compression-induced Frank
partial dislocations can also be observed in the same system. The duality of shear-induced
Shockley partial dislocations and compress-induced Frank partial dislocations might play a
crucial role in determining the mechanical properties of confined thin films and thus open
up new research avenues.

Moreover, our previous study [18] showed that the solvation force hysteresis observed
in LVMD simulations between the normal approach and receding curves, as seen frequently
in many SFA/B experiments, is due to two principal effects. The first is connected to the
unstable jumps that occur during the laying transitions of the confined film, where the
force gradient is greater than the driving spring constant. The second effect is related
to the squeeze-out dynamics of the confined film, even if the first effect is absent. In
general, these two dynamic processes are non-equilibrium in nature and involve significant
energy dissipations, resulting in force hysteresis. As discussed in this study, a significant
aspect of the force–distance profiles obtained from the LVMD simulation is related to the
asymmetric oscillations of solvation forces, i.e., the repulsive peaks are always greater
than the adhesion valleys. This interesting phenomenon was observed in many SFA/B
experiments. An explanation of the asymmetric force oscillation behavior can be traced to
the different compressive and tensile properties of the solidified film. A significant feature
of this simulation is that, upon receding, the repulsive forces peaks cannot reach those
experienced in a normal approach, resulting in force hysteresis. The detailed structural
analysis further demonstrates that the solidified structure upon receding fails to return to
its original compressive state during the normal approach, i.e., more atomic defects in the
receding structure than in approach one, which explains the origin of the force hysteresis.

In this study, our simulations present a new scenario in which Frank partial dislo-
cations can nucleate, climb and annihilate during n → n − 1 layering transition under
compression. However, we did not observe such a phenomenon in n→ n + 1 layering
transition during receding. In combination with our recent works, these observations
can add a new physical mechanism to account for the solvation force hysteresis. This
study provides new insights into the physical property of nanoconfined lubricant films in
boundary lubrication.
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2. Computational Models and Simulation Methods

The computational models and simulation methods are the same as the case of com-
mensurate contact discussed in our previous studies [16–18,26,27], which is briefly summa-
rized here. Figure 1 illustrates an argon film, which serves as a nonpolar lubricant, confined
between two rigid face-centered cubic (FCC) solid walls. As stated in the literature [28],
we use a simple Lennard–Jones (LJ) pair potential to model the interaction between argon
molecules, i.e., σ = 0.3405 nm and ε = 0.2381 kcal/mol. The two FCC crystal walls have the
z-direction along {111} direction, while the x- and y-directions are along

{
110

}
and

{
112

}
directions, respectively. Each confining walls consist of a central wall sandwiched by two
side walls. These two regions have different arrangements of wall–fluid interactions. In the
central region, the wall–fluid interaction between argon and the solid wall is the same as
the argon–argon interaction (i.e., εwf = εff = ε, where the subscript w refers to “wall” and f
refers to “fluid” respectively). The wall–fluid interaction strength in the two side regions
is reduced to one-fourth ( 1

4ε) that of the argon–argon interaction strength so that argon
molecules remain in a liquid state. The two solid walls are subjected to periodic boundary
conditions (PBCs) along the x- and y-directions. The dimensions of the solid central walls
in the three dimensions are 10.7 × 3.3 × 0.9 nm3. Including the frictionless LJ walls, the
total length of the simulation box in the x-direction is 76.4 nm. A standard cutoff distance
of 8.5 Å (about 2.5 σ) is used for the LJ interactions, and the time step is 1.0 fs in MD
simulations. All the simulations are performed with the Nosé–Hoover thermostat [29,30] at
a temperature of 85 K, corresponding to a liquid state of argon (between the melting point
(83.8 K) and the boiling point (87.3 K) of argon).
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Figure 1. Schematic of the liquid-vapor molecular dynamics (LVMD) simulation method with a
snapshot of the equilibrium configuration of an argon droplet confined between two solid walls. The
central walls are in yellow, and the side walls are in red. The top wall is pushed by a spring connected
to a stage that moves at constant velocity Vz.

As shown in Figure 1, a liquid–vapor molecular dynamics (LVMD) ensemble was
applied to the condensed liquid film during compression in order to allow it to squeeze out.
This is achieved by extending the side walls in the squeeze-out direction. It is estimated that
the vapor pressure is around a few atm [16,26], which is vanishingly low in comparison
to the normal repulsive pressure on the solid phase. This method is particularly useful
for the simulation of solvation force under normal compression, as well as for the sliding
friction simulation of confined liquid systems where particle exchanges can occur between
confined and bulk liquid phases. The LVMD method was applied successfully in our
previous studies to investigate the mechanical properties of confined liquid films both in
SFA/B [16–19,26] and AFM (atomic force microscopy) [31–33]. As the normal force in the
surface force balance is measured through the compression of a normal spring, a driving
spring-block system with force constants (kx, ky, kz) was used in simulations. Here, we
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selected kx = 300 N/m, ky = 300 N/m, and kz = 150 N/m, which are consistent with SFA/B
experiments [6,7] and our previous studies. The compression and receding rate in the
LVMD simulation were at 0.05 m/s, which is the same as our previous studies.

The OVITO visualization package [34] facilitates the visual analysis of the local struc-
tural environment of atoms using the Polyhedral Template Matching (PTM) method [35]
and the monitoring of dislocation movement using the Dislocation Extraction Algorithm
(DXA) [36,37]. The PTM method is capable of identifying local crystalline structures of
simple condensed phases formed by atoms ranging from some types of FCCs (face-centered
cubic), HCPs (hexagonal close-packed), BCCs (body-centered cubics), SCs (simple cubics),
and ICOs (icosahedrals) to others (unknown coordination structures). Even in the presence
of strong thermal fluctuations and strains, it still performs effectively. The DXA can detect
and analyze dislocations (including partial dislocations) in crystals, determine their Burgers
vectors, and display a line-based representation of the dislocation network.

3. Results and Discussions

Figure 2a depicts the normal approach and receding force–distance profiles at a normal
driving speed of v = 0.05 m/s. In this commensurate contact, the critical layer number at
which the liquid-like to solid-like phase transition happens is nc = 7, which is associated
with significant repulsive solvation force. In contrast with previous studies [16,18], a double
peak (or peak splitting) was observed in the 6→ 5 and 5→ 4 layering transitions in the ap-
proach simulations, indicating the presence of a new phenomenon. Such behavior is absent
in the receding runs. It should be noted that in previous SFA/B experiments [6,7,10,12,38],
instead of double peaks (or peak splitting), oscillatory profiles with single peaks were often
observed in the measured solvation force.
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Figure 2. (a) Normal forces vs. surface separation between two solid surfaces across argon during
approach (the solid black line) and receding (the solid red line). (b) The total length of Frank partial
dislocation lines vs. surface separation during the normal squeeze-out process. The approach force
profile is also shown to highlight the coincidence between the drop in force and the formation of
Frank partial dislocations.

In Figure 2b, we plot the variation of a total length of Frank partial dislocations, as well
as the compression force as a function of the wall separation during the normal approach.
We can see that during the 6→ 5 and 5→ 4 layering transitions, the second rise in normal
force is associated with the formation of Frank partial dislocations right after the first force
drop. They can maintain their stability until the second force drop, which annihilates upon
the completion of the 6→ 5 and 5→ 4 layering transitions. It can still be observed that a
formation–propagation–annihilation process of Frank dislocation occurs during the 4→ 3
layering transition, even if there is only one peak in normal force.
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In our previous studies [16,18], the outward spreading of the solid phase during the
liquid-to-solid phase transition and the inward shrinking of the solid phase during the solid-
to-liquid phase transition are two universal phenomena observed in the LVMD simulations.
However, those studies have a limited scope because the translational order parameter ρ(k)
was used to characterize the crystalline structure. For a perfect lattice, ρ(k) is of order unity,
whereas for liquid or disordered phase, it decays close to zero. Thus, it can differentiate
solids from liquids, but not between HCP and FCC solid phases. In the following, we
detect the detailed structural evolution of layering transitions under the squeezing process,
starting with the highly ordered 7-layer solid phase, which is shown in Figure 3a. The
ordered seven-monolayer structure has a mixed structure with three FCC and four HCP
layers. The force decay corresponds to an inward shrinking of the solid phase, as shown in
Figure 3b. This inward squeeze-out, initiated from the solid–liquid phase boundary, leads
to complete melting of solid phase, followed by the recrystallization of a six-layer solid
structure as shown in Figure 3c, which is the same as previous observations.
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Figure 3. The dynamic progression of the 7 → 6 squeeze-out process of argon atoms confined
between two solid walls. The packing structures are shown in (a) highly ordered 7-layer solid phase,
(b) inward shrinking of the 7-layer solid phase, and (c) highly ordered 6-layer solid phase. Only
atoms in the central confinement regime are shown. Atoms in face-centered cubic (FCC), hexagonal
close-packed (HCP), body-centered cubic (BCC), and other mixed crystalline structures are in green,
red, purple, and white, respectively. The color scheme is consistent throughout this work.

At n = 6, as the gap distance decreases with increasing compression force, more atoms
at both solid–liquid interfaces melt, corresponding to the first force decay (Figure 4b).
Rather than continual shrinkage of the solid phase due to melting, previous melt atoms
would recrystallize instead to create a sTable 5layer–6layer–5layer structure, as shown in
Figure 4c. At the boundary of the five-layers and six-layers, two Frank partial dislocations
are identified, as shown in Figure 4c,e. Geometrically, the current configuration of the
confined film is equivalent to the insertion of one close-packed layer of atoms, which
produces the extrinsic stacking fault. Generally speaking, inserting or removing one close-
packed {111} layer of atoms can form a Frank partial dislocation by marking the boundary
line of a fault. Its Burg’s vector is perpendicular to the dislocation line. An additional
compression force (the normal force arises again) is needed to make these two Frank partial
dislocations move inward to eliminate the extra {111} layer. This process is called “the
climb” of Frank partials. The entire process takes approximately 2.4 ns.

Regarding the 5→ 4 layering transitions, the entire process follows the same pattern
as the 6→ 5 layering transitions, as shown in Figure 5. The values of both peaks and the
valley in between are larger than those during the 6→ 5 layering transitions (see Figure 2),
indicating that it needs a larger force to drive the climbing process of Frank partials. It
should be noted that the gap between two peaks and the peak-to-valley amplitudes are
both diminished, compared with the 6→ 5 layering transitions. The entire process takes
about 1.6 ns.

As shown in Figure 6, the entire process of the 4→ 3 layering transitions still follows
the same procedure as the 6→ 5 and 5→ 4 layering transitions. However, a single peak in
normal force is observed instead. In this case, it is expected that as the monolayer thickness
decreases and the solvation force increases (the squeeze-out process becomes harder), the
gap between two peaks and peak-to-valley amplitudes will shrink, and the two peaks
will merge to form a single peak. Such a degeneracy of two peaks also indicates that the
nucleation and climb of Frank partial dislocations do not need extra force to trigger, and the
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lifetime of the 3layer-4layer–3layer configuration (which is about 0.6 ns) is much shorter
than that of the 5layer–6layer–5layer (2.4 ns) and 4layer–5layer–5layer (1.6 ns) ones in the
6→ 5 and 5→ 4 layering transitions.
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Figure 4. The dynamic progression of the 6 → 5 squeeze-out process of argon atoms confined
between two solid walls. The packing structures are shown in (a) highly ordered 6-layer solid
phase, (b) inward shrinking of the 6-layer solid phase, (c) 5layer–6layer–5layer solid phase, and
(d) highly ordered 5-layer solid phase. Only atoms in the central confinement regime are shown.
The two cyan dots in (c) and two cyan lines in the top-view configurations in (e) represent Frank
partial dislocations.
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Figure 5. The dynamic progression of the 5 → 4 squeeze-out process of argon atoms confined
between two solid walls. The packing structures are shown in (a) highly ordered 5-layer solid
phase, (b) inward shrinking of the 5-layer solid phase, (c) 4layer–5layer–4layer solid phase, and
(d) highly ordered 4-layer solid phase. Only atoms in the central confinement regime are shown.
The two cyan dots in (c) and two cyan lines in the top-view configurations in (e) represent Frank
partial dislocations.



Materials 2022, 15, 997 7 of 10Materials 2022, 15, x FOR PEER REVIEW 8 of 10 
 

 

 

Figure 6. The dynamic progression of the 4 → 3 squeeze-out process of argon atoms confined 

between two solid walls. The packing structures are shown in (a) highly ordered 4-layer solid 

phase, (b) inward shrinking of the 4-layer solid phase, (c) 3layer–4layer–3layer solid phase, (d) 

inward shrinking of the 4-layer solid phase with inward growth of the 3-layer solid phase, and (g) 

highly ordered 3-layer solid phase. Only atoms in the central confinement regime are shown. The 

two cyan dots in (c) and (d) and two cyan lines in the top-view configurations in (e) and (f) 

represent Frank partial dislocations. 

4. Conclusions  

In summary, our MD simulations of a simple argon liquid film confined between 

two solid surfaces reveal a previously unknown scenario, in which the n → n − 1 layering 

transitions are accompanied by the formation–propagation–annihilation process of Frank 

partial dislocations during the squeeze-out process under compression. In contrast, such 

a phenomenon was not observed in n → n + 1 layering transitions during receding. Ac-

cording to these observations, the solvation force hysteresis can be ascribed to this new 

physical mechanism.  

A major finding of this study is that the force–distance profile’s double peaks (or 

peak splitting) in the 6 → 5 and 5 → 4 layering transitions are emblematic of the nuclea-

tion of Frank partial dislocations. However, in previous SFA/B experiments [6,7,10,12,38], 

instead of double peaks (or peak splitting), oscillatory force profiles with single peaks 

were often observed. As it is well-known, there has been a long-term controversial debate 

on the layering transition (i.e., liquid-like to solid-like phase transition versus amorphous 

glass-like transition) of lubricants during a squeeze-out process under compression. The 

oscillatory force profile alone cannot indicate the nature of the layering transitions. Nev-

ertheless, if a future SFA/B experiment can capture the peak splitting in repulsive force 

peaks in confined thin films, strong evidence of a first-order solidification accompanied 

by the nucleation of Frank partial dislocations could be confirmed. This mechanism 

cannot be excluded, however, even if only single peaks in solvation forces are observed, 

as in the case of the 4 → 3 layering transitions in this study. 

Because the nature of solidification is stochastic, the crystalline structure during the 

confinement-induced liquid-to-solid phase transition can adopt different crystalline 

structures, i.e., different amounts of a mixture of FCC and HCP crystalline structures. As 

such, different oscillatory force profiles with single peaks or double peaks can be ob-

served, depending on the nature of the dynamical evolution of crystalline configuration. 

Once the contact area becomes very large (about one order magnitude larger than the one 

Figure 6. The dynamic progression of the 4→ 3 squeeze-out process of argon atoms confined between
two solid walls. The packing structures are shown in (a) highly ordered 4-layer solid phase, (b) inward
shrinking of the 4-layer solid phase, (c) 3layer–4layer–3layer solid phase, (d) inward shrinking of
the 4-layer solid phase with inward growth of the 3-layer solid phase, and (g) highly ordered 3-layer
solid phase. Only atoms in the central confinement regime are shown. The two cyan dots in (c,d) and
two cyan lines in the top-view configurations in (e,f) represent Frank partial dislocations.

It should be noted that in Figure 2b, Frank dislocation lines can have a total length
greater than 2 Ly (Ly with 3.3 nm width is the size of the simulation cell in y-dimension),
which indicates that the Frank dislocation lines identified by the DXA algorithm are not
straight as shown in Figures 4e, 5e and 6e,f. We found that the output length of dislocations
depends heavily on the selection of two key parameters in the DXA process: the trial circuit
length and the circuit stretchability, i.e., varying these parameters will affect the length of
dislocations quantitatively, which, however, does not affect the conclusion of this study.

In the case of retraction loading, all the observations are consistent with previous
studies [16,18], and no Frank dislocation is detected during the n→ n + 1 layering tran-
sitions. Our previous study [18] revealed that the solvation force hysteresis commonly
observed in SFA/B experiments and LVMD simulations between the normal approach and
retraction loading is due to two principal effects: (1) the unstable jumps that occur during
the layering transitions of the confined film, where the force gradient is greater than the
driving spring constant. (2) the squeeze-out dynamics of the confined film. In general,
these two dynamic processes are non-equilibrium in nature and involve significant energy
dissipations, resulting in force hysteresis. The current work moves a further step forward
and provides a more detailed picture of the structural evolution of confined film in the
unstable jumps and the squeeze-out dynamics during the layering transitions.

4. Conclusions

In summary, our MD simulations of a simple argon liquid film confined between two
solid surfaces reveal a previously unknown scenario, in which the n → n − 1 layering
transitions are accompanied by the formation–propagation–annihilation process of Frank
partial dislocations during the squeeze-out process under compression. In contrast, such
a phenomenon was not observed in n→ n + 1 layering transitions during receding. Ac-
cording to these observations, the solvation force hysteresis can be ascribed to this new
physical mechanism.
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A major finding of this study is that the force–distance profile’s double peaks (or peak
splitting) in the 6→ 5 and 5→ 4 layering transitions are emblematic of the nucleation of
Frank partial dislocations. However, in previous SFA/B experiments [6,7,10,12,38], instead
of double peaks (or peak splitting), oscillatory force profiles with single peaks were often
observed. As it is well-known, there has been a long-term controversial debate on the layer-
ing transition (i.e., liquid-like to solid-like phase transition versus amorphous glass-like
transition) of lubricants during a squeeze-out process under compression. The oscillatory
force profile alone cannot indicate the nature of the layering transitions. Nevertheless, if a
future SFA/B experiment can capture the peak splitting in repulsive force peaks in confined
thin films, strong evidence of a first-order solidification accompanied by the nucleation
of Frank partial dislocations could be confirmed. This mechanism cannot be excluded,
however, even if only single peaks in solvation forces are observed, as in the case of the
4→ 3 layering transitions in this study.

Because the nature of solidification is stochastic, the crystalline structure during
the confinement-induced liquid-to-solid phase transition can adopt different crystalline
structures, i.e., different amounts of a mixture of FCC and HCP crystalline structures. As
such, different oscillatory force profiles with single peaks or double peaks can be observed,
depending on the nature of the dynamical evolution of crystalline configuration. Once the
contact area becomes very large (about one order magnitude larger than the one in this
study (10.7 × 3.3 nm)), the configuration of a solidified film can be very complicated, and
the polycrystalline structures would form [26]. Furthermore, a variety of other factors can
also affect the phase behavior of the confinement-induced phase transition: (1) the stacking
sequences of two confining surfaces, (2) the relative crystallographic configurations or the
misfit angle between two confining surfaces, (3) the roughness of the confining surfaces,
and (4) the driving speed of the normal spring. The relevant physical and mechanical
properties such as solvation force, nucleation rate of the liquid-to-solid phase transition, the
phase behavior during the phase transition, and dynamics of the partial dislocations in the
confined solids are all rate-dependent, i.e., they heavily depend on the driving speed of the
normal spring. The effect of these factors will be under investigation in our future studies,
which would significantly enhance our fundamental understanding of the mechanical
properties of nanoconfined liquid films, especially the mechanisms of phase transition and
interlayer/boundary slips of simple model fluids.
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