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Abstract: In this contribution, a computational thermo-electro-mechanical framework is considered,
to simulate coupling between the mechanical, electrical and thermal fields, in nonhomogeneous
electro-active materials. A thermo-electro-mechanical material model and a mixed Q1P0 finite
element framework are described and used for the simulations. Finite element simulations of the
response of heterogeneous structures consisting of a soft matrix and a stiff incluison are considered.
The behavior of the composite material is studied for varying initial temperatures, different volume
fractions and various aspect ratios of the inclusion. For some of the examples, the response of the
structure beyond a limit point of electro-mechanical instability is traced. Regarding the soft matrix
of the composite, thermal properties of silicone rubber at normal conditions have been obtained by
molecular dynamics (MD) simulations. The material parameters obtained by MD simulations are
used within the finite element simulations.

Keywords: finite element method; thermo-electro-mechanics; electro-active polymers; composite
materials; molecular dynamics simulations; silicone rubber

1. Introduction

Electro-active polymers (EAP) are smart materials that can be favorably used in
artificial muscles and soft robotics. That is due to EAP’s relatively quasi-instantaneous
mechanical actuation in response to an applied electric field [1]. Furthermore, EAP have
demonstrated a capability of exhibiting relatively large strains, where in specific types of
EAP, strains up to more than 300% are recorded [2]. Many prototypes of soft robotics have
been mainly based on EAP, see for instance [3–5]. Dielectric elastomer actuator (DEA) is a
class of EAP, which demonstrates electrostrictive behavior [6]. Several researchers have
investigated the influence of filling DEA’s soft matrices with stiff particles that possess
relatively large electric permittivity [7–10]. It has been demonstrated that the intensity of
electro-mechanical coupling in particle-filled DEA is enhanced as the volume fraction of
embedded particles increases [8,9]. The influence of embedding stiff fillers within soft DEA
has been numerically investigated in [10–13].

During the last century, several contributions have been devoted to the mathematical
description of polarization and electro-elastic coupling [14–17]. Thereafter, more recent
works are proposed to derive mathematical expressions describing different forms of
electro-elastic interactions [18–22].

Computational modeling of electro-mechanical interactions in EAP relies either on a
purely energy-based approach or, alternatively, on the relatively computationally efficient
mixed energy-enthalpy-based approach [12]. In the context of the finite element method, the
energy-based approach requires setting a vector electric potential (three degrees of freedom)
to describe the electrical part of the problem. The mixed energy-enthalpy approach depends
on a scalar electric potential (one degree of freedom) to express the electrical sub-problem.
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As an example of numerical solutions of the associated problem, a finite element implemen-
tation of electro-elasticity at large deformations has been implemented in [23]. Numerical
investigations of composites composed of dielectric soft matrix and stiff inclusions have
been performed in [12,24]. It has been shown that through driving the simulation using sur-
face charges, the response of EAP beyond the occurrence of electro-mechanical instability
can be simulated using the more convenient mixed energy-enthalpy-based approach [12].
A mixed finite element formulation for composites consisting of quasi-incompressible soft
matrix and stiff fibers has been proposed in [25,26].

The actuation behavior of EAP is mainly based on coupling between the electrical field
and the mechanical field. Nevertheless, temperature changes resulting due to self-induced
heating or cooling, and varying ambient conditions can influence EAP’s properties and its
actuation response. Therefore, the simulation of interactions between thermal, electrical and
mechanical fields have been previously considered, through proposing a thermo-electro-
mechanical model [27] and a thermo-electro-mechanical finite element framework [28,29].
The finite element formulation developed in [28] is a standard displacement-based formu-
lation, and it relies on a partially-staggered solution approach.

In this work, finite element modeling of thermo-electro-mechanical interactions in
nonhomogeneous electro-active materials is considered. Regarding the constitutive model
used in the present work, a material description that takes into account a quasi-linear
dielectric response [25] and an entropic thermo-elastic coupling [30] is adopted. A mixed
Q1P0 thermo-electro-mechanical framework is implemented and used for the simulations.
Regarding the estimation of thermal properties, thermal conductivity, heat capacity and
coefficient of thermal expansion of silicone rubber at normal conditions, are estimated using
molecular dynamics (MD) simulations, which is an alternative approach to experimental
investigations for the prediction of material properties. In this work, the reason of using
MD simulations is to avoid conducting time consuming experiments and to demonstrate
an efficient coupling of various numerical approaches, where both MD and finite element
simulations are performed to carry out the associated study. Numerical simulations of
heterogeneous structures with spherical inclusions under varying initial temperature is
performed. The effect of varying volume fraction and changing aspect ratio of a stiff
inclusion on the overall composite’s response are numerically investigated. Both polariza-
tion behavior and intensity of electro-mechanical coupling are evaluated. All simulation
examples are driven by applying surface charges. For some of the performed analyses, the
structural response beyond the point of electro-mechanical instability is traced.

The present paper is organized as follows. Section 2 introduces the constitutive model-
ing approach and the associated finite element implementation. In Section 3, the method
used to determine thermal properties of silicone rubber is described. In Section 4, several
numerical examples are demonstrated. Section 5 ends the paper with a brief summary.

2. Thermo-Electro-Mechanics

This section is devoted to present a constitutive formulation and its associated nu-
merical treatment, which are used to emulate thermo-electro-mechanical interactions at
large deformations. Principles of continuum mechanics are demonstrated and employed
within a coupled thermo-electro-mechanical environment. An overview of the kinematics
and balance laws of the coupled problem is outlined. Subsequently, a constitutive model is
presented. Finally, the used finite element formulation is described.

2.1. Preliminaries

The nonlinear deformation map x = ϕ(X, t) at time t ∈ T projects points X in the
reference configuration B0 to their counterparts x in the current setting Bt. The deformation
gradient F = ∇Xϕ, its cofactor cof[F] = det[F]F−T and its Jacobian J = det[F] project an
infinitesimal line element, area element and volume element from the reference setting to
the current setting, respectively. The reference density ρ0 is connected to the current density
ρ by ρ0 = Jρ. Furthermore, a scalar electric potential φ(x, t) and an absolute temperature
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θ(x, t) are defined. The outer boundary ∂Bt is decomposed in terms of the mechanical,
electrical and thermal boundary conditions as

∂Bt = ∂Bϕ
t ∪ ∂Bt

t with ∂Bϕ
t ∩ ∂Bt

t = ∅,

∂Bt = ∂Bφ
t ∪ ∂Bw

t with ∂Bφ
t ∩ ∂Bw

t = ∅,

∂Bt = ∂Bθ
t ∪ ∂Bqθ

t with ∂Bθ
t ∩ ∂Bqθ

t = ∅,

(1)

respectively. ∂Bϕ
t , ∂Bφ

t and ∂Bθ
t are the surfaces where Dirichlet mechanical, electric and

thermal boundary conditions can be prescribed, respectively. The Neumann boundaries,
where mechanical tractions t, surface charge densities w and surface heat flow qθ can be
prescribed, read ∂Bt

t , ∂Bw
t and ∂Bqθ

t , respectively.

2.2. Mechanical Field

The right Cauchy-Green deformation tensor is introduced as

C = FT gF, (2)

where g is the covariant Eulerian metric tensor. The strong form of the balance of linear
momentum for quasi-static problems can be defined as

∇x · σ + ργmec = 0 in Bt (3)

with the divergence with respect to the spatial coordinates ∇x · [ · ], the total Cauchy
stresses σ and the mechanical body forces per deformed unit volume ργmec. The total
stresses can be split into mechanical and ponderomotive stresses as σ = σmec + σpon. The
ponderomotive stresses σpon express electro-mechanical coupling in the material. For
further details, the reader is referred to [20,31,32].

2.3. Electrical Field

In the case of electro-statics, where magnetic fields are absent, the electric field at the
reference configuration E and the electric field at the current configuration e are defined as

E = −∇X φ(X, t), e = −∇xφ(x, t) = F−T
E, (4)

where ∇X [ · ] denotes the differential operator with respect to the reference coordinates
X, and ∇x[ · ] is its counterpart with respect to the current coordinates x. Gauss’s law
for electricity can be written with its differential form in terms of the current electric
displacement d as

∇x · d = $ f in Bt, (5)

where $ f is the free charges per deformed unit volume. In insulators, there are no free
volume charges ($ f = 0). The electric displacement in the deformed setting d is connected
to its counterpart in the undeformed setting D by

d = J−1FD. (6)

The surface charge densities at the undeformed and at the deformed setting are defined as

W = −D · N, w = −d · n (7)

with the unit normal vector N on the surface ∂B0 and the unit normal vector n on the
surface ∂Bt.
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2.4. Thermal Field

The heat flux at the reference configuration Q and its counterpart at the current
configuration q are introduced as

Q = −k C−1 · ∇X θ(X, t), q = −J−1k ∇xθ(x, t), (8)

respectively, where k is a parameter of heat conductivity. The evolution of temperature is
expressed by the transient heat equation, which reads

ρc θ̇ +∇x · q− ρr− ρwext = 0 in Bt, (9)

where ρc is the heat capacity, ρr is the heat source, ρwext is the external power, all introduced
per unit deformed volume. The term of external power ρwext can be decomposed into
mechanical, electro-mechanical and electrical parts as

ρwext = ρwmec
ext + ρwcoup

ext + ρwelec
ext ,

ρwmec
ext = θ∂θ [σ

mec : d],

ρwcoup
ext = θ∂θ [σ

pon : d],

ρwelec
ext = −θ∂θ

[
d ·
(
ė+ lT

e

)]
,

(10)

where l = ḞF−1 is the spatial velocity gradient, d = (l + lT)/2 is its symmetric part
and ė denotes the rate of change of the current electric field with respect to time. The
terms ρwmec

ext , ρwcoup
ext and ρwelec

ext express the work done by the mechanical stresses σmec, the
ponderomotive stresses σpon and the electric displacement d, respectively.

2.5. Material Model

The deformation gradient is multiplicatively decomposed into purely volumetric
and isochoric (volume-preserving) contributions as F = Fvol F̄, where the volumetric
contribution is defined by Fvol = J1/31 and the isochoric contribution is given by F̄ =
J−1/3F. The isochoric part of the right Cauchy-Green deformation tensor is introduced as
C̄ = F̄T gF̄. Electro-mechanical and entropic thermo-mechanical couplings of the material
are expressed through the energy density function

Ψtot(J, C,E, θ) =
θ

θ0
Ψvol

e (J) +
θ

θ0
Ψiso

e (C̄) +

(
1− θ

θ0

)
e0(J)

+T0(θ) + Ψcoup(C̄,E),

(11)

where θ0 is the reference temperature. The volumetric contribution of the mechanical
energy density is introduced as

Ψvol
e (J) = κ(J − lnJ − 1), (12)

where κ is the bulk modulus. The isochoric part Ψiso
e of the mechanical energy function is

specified by the Neo-Hookean model as

Ψiso
e (C̄) =

1
2

Gc( ĪC̄ − 3), (13)

where Gc is the shear modulus and ĪC̄ = trC̄ denotes the first invariant of the isochoric
right Cauchy-Green tensor. The thermal expansion is expressed in terms of the reference
internal energy

e0(J) = καθ0lnJ (14)
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with the coefficient of thermal expansion α [30]. The thermal function T0(θ) is introduced by

T0(θ) = ρ0c
(

θ − θ0 − θln
(

θ

θ0

))
, (15)

where ρ0c = −θ∂2
θθT0(θ) denotes the heat capacity per unit reference volume. The coupled

electro-mechanical contribution of the energy function Ψcoup is considered as it is suggested
in [12,25], and it is introduced here as

Ψcoup(C̄,E) = −1
2

εrε0 C̄−1 : [E⊗E], (16)

where εr [−] denotes the relative electric permittivity of the material and
ε0 = 8.854× 10−12 N/V2 is the electric permittivity of vacuum. The total Cauchy stresses
σ and the ponderomotive stresses σpon can be computed by

σ = 2J−1∂gΨtot(J, C,E, θ), σpon = 2J−1∂gΨcoup(J, C,E), (17)

respectively. The current electric displacement d is introduced as

d = −J−1∂eΨcoup(C̄,E). (18)

As it is shown in Equation (11), the electro-mechanical contribution Ψcoup(J, C,E)
is not scaled with a temperature field. Therefore, the the ponderomotive stresses σpon

and the electric displacement d as defined in Equations (17) and (18), respectively, are
temperature independent. Due to that, the external power terms ρwcoup

ext and ρwelec
ext , as

defined in Equation (10), are equal to zero.

2.6. Finite Element Formulation

In order to avoid volumetric locking that can arise due to the material’s nearly in-
compressible behavior, a mixed Q1P0 formulation is adopted and implemented within a
thermo-electro-mechanical framework. To this end, the mean dilatation De and the mean
pressure pe are introduced as additional field variables and treated as averages on finite
element level [25,33]. The method of weighted residuals as previously used in [24,25,30],
is employed to formulate a thermo-electro-mechanical finite element framework. To this
end, the main strong forms as given in Equations (3), (5) and (9) are scaled with the test
functions δϕ, δφ and δθ, respectively. Thereafter, integration by parts is applied and the
Gauss theorem is used. Performing the latter two steps allows to express the associated
weak forms as

Gϕ(δϕ,ϕ, φ, θ, pe) =
∫
Bt
∇xδϕ : σ dv−

∫
∂Bt

δϕ · t da−
∫
Bt

δϕ · ργmec dv = 0,

Gφ(δφ, φ,ϕ, θ) =
∫
Bt
∇xδφ · d dv +

∫
∂Bt

δφ w da +
∫
Bt

δφ $ f dv = 0,

Gθ(δθ, θ,ϕ, φ, pe) =
∫
Bt

δθ ρc θ̇ dv−
∫
Bt
∇xδθ · q dv +

∫
∂Bt

δθ qθ da

−
∫
Bt

δθ ρr dv−
∫
Bt

δθ ρwext dv = 0.

(19)

In Equation (19), the surface tractions t, the surface charge density w and the surface
heat flow qθ are introduced as t = σ · n on ∂Bt

t , w = −d · n on ∂Bw
t and qθ = q · n

on ∂Bqθ
t , respectively. The finite element implementation of the problem is performed

through discretizing the weak forms in Equation (19) and the associated incremental forms.
Therefore, the undeformed domain B0 is split into finite elements as B0 ≈

⋃ne
e=1 Be

0, where
ne is the total number of solid elements. To treat the material model within the mixed Q1P0
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finite element framework, the total energy density function as given by Equation (11) is
additively decomposed into two contributions and is reformulated to

Ψtot(De, C̄,E, θ) = Ψ̂(C̄,E, θ) + Ψvol
tot (De, θ), (20)

where Ψ̂ is considered on each Gauss point. The volumetric part Ψvol
tot is parameterized in

terms of the mean dilatation De and can be written as

Ψvol
tot (De, θ) =

θ

θ0
Ψvol

e (De) +

(
1− θ

θ0

)
e0(De). (21)

The average dilatation and average mean pressure are evaluated over each finite
element as

De =
1

Ve

∫
Be

0

J dV and pe = ∂De Ψvol
tot (De, θ). (22)

In Equation (19), the total Cauchy stresses are additively decomposed as σ = σ̂ + σvol ,
where the part σ̂ = 2J−1∂gΨ̂ is computed at Gauss points and the volumetric contribution
σvol = peg−1 is evaluated at each element Be

t . The method followed to treat the power
term ρwext within the Q1P0 finite element is detailed in [33]. The isoparametric concept
of the finite element method is utilized, where the fields ϕe, φe, θe and the associated test
functions are interpolated over the finite element Be

t using nodal values and Lagrangian
shape functions. Regarding the solution scheme adopted, the thermo-electro-mechanical
problem is decomposed into an electro-mechanical and a thermal sub-problem. The electro-
mechanical part of the problem is solved monolithically at a fixed temperature. Thereafter,
the thermal sub-problem is solved and attached to the whole system using a staggered
transfer of solution fields [28]. The evaluation of both sub-problems is based on an exchange
of information after each iteration. The presented material model and finite element
formulation are implemented within an in-house finite element program.

3. Estimation of Thermal Properties

Firstly, polymeric chains, which consist of 418 monomer units, have been constructed
by the Moltemplate software [34]. The monomer unit of silicone rubber is shown in
Figure 1a. After that, ten polymeric chains have been randomly distributed in a periodic
supercell (see Figure 2a) by Packmol software [35]. In the next step, the chains have been
crosslinked in a canonical ensemble via an algorithm similar to the one presented in [36].
During this procedure, CH3 groups participating in the creation of a bond between the
polymeric chains are turned into CH2 groups. The crosslink bridge of silicone rubber is
shown in Figure 1b. The degree of crosslinking of the obtained model of silicone rubber is
equal to 9.8 %. It is defined as given in [37].

(a) (b)

Figure 1. (a) Monomer unit of silicone; (b) crosslink bridge between silicone chains.
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The force field description has been used to describe interactions between the atoms,
where the CH3 group has been modeled as one united atom. The total potential energy of a
polymeric system is calculated in this approximation as

E = Ebond + Eangle + Edihedral + Enon-bonded. (23)

Non-bonded interactions are modeled only with van der Waals interactions. The cutoff
distance is set to 10 Å in all simulations. The Lorentz-Berthelot mixing rules are used to
find the missing parameters of the Lennard-Jones potential. The force field parameters
have been taken from the OPLS-AA (All Atom) [38] force field, except the parameters of
Lennard-Jones potential for the CH3 group, which has been modeled by the OPLS-UA
(United Atom) [38] force field. All simulations are carried out using the LAMMPS [39]
software package.

(a) (b) (c)

Figure 2. (a) Randomly distributed silicone chains in a periodic supercell; (b) the silicone chains after
crosslinking procedure; (c) model of silicone rubber.

After the crosslinking procedure, density of the system has been equilibrated in an
isothermal-isobaric ensemble at normal conditions for 200 ps. Before calculation of thermal
conductivity by the Green-Kubo method, it has been modeled in a canonical ensemble
for 100 ps for equilibration of temperature. By the Green-Kubo formula, the thermal
conductivity of an isotropic material can be found as

λ =
V

3kBT2

∫ ∞

0
h(0)h(t) > dt, (24)

where h is the heat flux calculated as

h =
1
V
[∑

i
ei~υi −∑

i
Si~υi ], (25)

where ei is the total energy of i-th atom, Si is the stress tensor of i-th atom, ~υi and ~υj are
velocities of i-th and j-th atoms.

The model of silicone rubber has been simulated in a microcanonical ensemble for 3 ns
with a time step of 1 fs. The heat flux has been calculated at each time step and the thermal
conductivity has been obtained for each correlation time interval, which is equal to 3 ps.

For calculation of specific heat capacity at constant pressure and coefficient of thermal
expansion, the model has been simulated in an isothermal-isobaric ensemble at normal
conditions for 100 ps and data points at equilibrium have been taken. The specific heat
capacity and the coefficient of thermal expansion have been obtained as derivatives of
enthalpy and volume as in [40–42]

cp =
H(p, T + ∆T)− H(p, T − ∆T)

2∆T
, (26)

α =
1

V(p, t)
V(p, T + ∆T)−V(p, T − ∆T)

2∆T
· (27)
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The thermal conductivity obtained by the Green-Kubo method is roughly 0.15 W/m/K
(see Figure 3), which is close to experimental value (≈0.17 W/m/K [43]). The specific
heat capacity at constant pressure found by the MD simulations is around 1500 J/kg/K.
For comparison, in [44], it is approximately 1.2 kJ/kg/K. Calculated coefficient of thermal
expansion (2.83 × 10−4 1/K) is close to measured value (roughly 3 × 10−4 1/K [45]).

correlation time [ps]

th
er
m
a
l
co
n
d
u
ct
iv
it
y
[W

/
m
/
K
]

Figure 3. Thermal conductivity of silicone rubber at normal conditions as function of correlation time
in picosecond.

4. Numerical Examples

This section is devoted to present several numerical studies of the coupled thermo-
electro-mechanical response of heterogeneous structures using the finite element meth-od.
An electro-active composite consisting of soft matrix and stiff inclusion is considered. The
material parameters are taken as they are shown in Table 1. An initial Poisson’s ratio
ν0 = 0.499 is considered. The simulations are driven by applying electrical Neumann
boundary conditions, where surface charges are prescribed on the top and the bottom
surfaces of the composite, as demonstrated in Figure 4a. That permits to trace the structural
response beyond an electro-mechanical instability point. The surface charge density W is
defined in terms of volume-averaged electric displacement D, as indicated in Figure 4a.
Mechanical Dirichlet boundary conditions are assigned to mid-planes of the structure,
where the motion along each mid-plane’s perpendicular direction is constrained. Similar
electrical and mechanical boundary conditions have been previously used in [12]. As
the geometry and the boundary conditions are symmetric, only one-eighth of the whole
composite is analyzed. All considered configurations are discretized using eight-noded
Q1P0 finite elements. The discretization of a structure consisting of soft matrix and ellip-
soidal stiff inclusion is shown in Figure 4b. In the first example, the effect of varying initial
temperature on the response of a composite with spherical inclusion is studied. The second
example is meant to examine the influence of varying volume fraction of the inclusion on
the composite’s response. In the third example, heterogeneous structures with different
aspect ratios of the inclusion are studied.

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��

��
��
��

���
���
���

���
���
���

�
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���
���
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���
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����

(a) (b)

D

xx
yy

zz

W+ = −D ·N+

W− = −D ·N−

Figure 4. (a) Schematic representation of the structure with applied surface charge density W,
(b) finite element mesh of the structure showing one-half of the soft matrix and the full inclusion
with a volume fraction f = 1% and an aspect ratio r = 2 [−].
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The polarization behavior is evaluated through examining the relation between the
electric field and the electric displacement. Moreover, the intensity of electro-mechanical
coupling is investigated in terms of the relation between the electric field and the deforma-
tion. The global response of the composites is evaluated using normalized and averaged
electric field Ẽ [−], normalized and averaged electric displacement D̃ [−], and averaged
deformation gradient F, which are defined by

Ẽ =
1

V
√

Gc/(εrε0)

∫
B0

E dV, D̃ =
1

V
√

Gcεrε0

∫
B0

D dV, F =
1
V

∫
B0

F dV, (28)

where here εr denotes the relative electric permittivity of the soft matrix, Gc is the shear
modulus of the soft matrix and V is the total volume of the structure.

Table 1. Parameters for the finite element simulations.

soft matrix
Gc = 0.0473 MPa, εr = 3.0 [−], α = 2.83× 10−4 K−1,
k = 0.15 N/(Ks), θ0 = 298 K, ρ0c = 1.438 N/(mm2K).

stiff inclusion
Gc = 47.3 MPa, εr = 103 [−], α = 1.57× 10−5 K−1,
k = 6.0 N/(Ks), θ0 = 298 K, ρ0c = 3.190 N/(mm2K).

4.1. Varying Initial Temperature

The influence of varying initial temperature θinit on the electro-mechanical coupling
and the polarization behavior of a composite, where entropic thermo-elastic coupling takes
place, is investigated. The structure considered here has a spherical inclusion with volume
fraction f = 1%. The polarization behavior is represented by the relation between the
dimensionless electric displacement D̃z [−] and the dimensionless electric field Ẽz [−],
both evaluated along z-direction. Figure 5a shows that as the temperature increases, lower
values of electric field Ẽz [−] result in response to the same applied electric displacement
D̃z [−]. Electro-mechanical coupling is evaluated using the relation between Ẽz [−] and
the averaged stretch in z-direction Fzz [−]. Figure 5b demonstrates that increasing the
initial temperature leads to less deformation of the composite, in response to the same
electric field.

(a) (b)

˜

E

z
[−

]

Ẽz [−]D̃z [−]

F
z
z
[−

]

0.0
0.0 0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.5

0.5

0.6
0.6

0.6

0.7

0.7

0.7

0.9

0.8

0.8

0.81.0

1.0

1.1

1.2
1.5 2.0 2.5 3.0 3.5

θinit = 298 K θinit = 318 Kθinit = 338 K θinit = 358 K

Figure 5. Plot of (a) averaged and normalized electric displacement D̃z [−] and (b) averaged defor-
mation Fzz [−] versus averaged and normalized electric field Ẽz [−] with varying applied initial
temperature θinit = {298, 318, 338 and 358 Kelvin}.
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The temperature distribution within the composite at an applied electric displacement
D̃z = 1.75 [−] is shown in Figure 6a. The distribution of the electric potential φ is depicted
in Figure 6b, where it can be noticed that there is a discontinuity in the distribution of φ.
Figure 6c demonstrates that the electric fields within the inclusion tend to zero, compared
to the fields within the region of soft matrix. That is due to the inclusion’s relatively high
electric permittivity. The vectors in Figure 6c indicate the direction of the electric field at the
reference configuration Ez. Figure 6d shows the distribution of the vertical displacement
within both, the soft matrix with relatively low shear modulus and the stiff inclusion with
relatively high shear modulus.
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Figure 6. Finite element simulation of the heterogeneous structure at D̃z = 1.75 [−] and
θinit = 298 Kelvin, showing the contour map of (a) absolute temperature θ in Kelvin, (b) electric
potential φ in Volt, (c) electric field Ez in Volt per millimeter and (d) displacement uz in millimeter.

4.2. Varying Volume Fraction of the Inclusion

The influence of different volume fractions f = {1%, 5%, 10% and 15%} of a spherical
inclusion with respect to the whole composite, is studied in this section. Figure 7a,b
demonstrate finite element discretizations of a composite with f = 1% and a composite
with f = 5%, respectively. The results show that increasing the volume fraction f leads to
higher polarization intensity in terms of D̃z [−] for the same value of the electric field Ẽz
[−], as demonstrated in Figure 8a. Regarding electro-mechanical coupling, Figure 8b shows
that the structure deforms more as the volume fraction of the stiff inclusion f increases
under the same electric field Ẽz [−].
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Figure 7. Finite element mesh of one half of the soft matrix and the whole spherical inclusion with a
volume fraction (a) f = 1% and (b) f = 5%.
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Figure 8. Plot of (a) averaged and normalized electric displacement D̃z [−] and (b) averaged defor-
mation Fzz [−] versus averaged and normalized electric field Ẽz [−] with different volume fractions
f of a spherical inclusion with θinit = 298 Kelvin.

4.3. Varying Aspect Ratio of the Inclusion

The effect of varying aspect ratio of the inclusion r = {0.5 [−], 1 [−] and 2 [−]} on the
global response of the composite, is studied. Finite element meshes of composites with
r = 0.5 [−] and r = 2 [−] are depicted in Figure 9a,b, respectively.
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Figure 9. Finite element mesh of one half of the soft matrix and the whole inclusion with aspect ratio
(a) r = 0.5 [−] and (b) r = 2.0 [−], where f = 1%.

(a) (b)

˜

E

z
[−

]
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Figure 10. Plot of (a) averaged and normalized electric displacement D̃z [−] and (b) averaged
deformation Fzz [−] versus averaged and normalized electric field Ẽz [−] with different aspect ratios
r [−] of the inclusion, where f = 1% and θinit = 298 Kelvin.
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Figure 10a shows that as the aspect ratio r [−] increases, lower values of Ẽz [−]
correspond to the same applied D̃z [−]. The results in Figure 10a demonstrate that the
influence of r on the D̃z − Ẽz relation is relatively insignificant. Figure 10b depicts the
influence of r on the relation between Ẽz [−] and Fzz [−]. It is noticed from Figure 10b
that for the same electric field Ẽz [−], the deformation in z− direction increases slightly by
increasing r.

5. Summary

In the present work, finite element analyzes of thermo-electro-mechanical interactions
in heterogeneous structures are performed. The considered structures are composed of a
soft matrix and a stiff inclusion. The influences of varying initial temperatures, different
volume fractions and varying aspect ratios of the stiff inclusion on the overall response
of the composite are studied. For the evaluation of the material’s response, both the
polarization and the electro-mechanical coupling are evaluated. The thermal material
parameters of the soft matrix, namely, thermal conductivity, heat capacity and coefficient of
thermal expansion are identified based on molecular dynamics (MD) simulations of silicone
rubber. In future contributions, it is aimed to implement the presented thermo-electro-
mechanical model within a multi-scale homogenization framework. That allows to analyze
multi-physical response of structures used for industrial applications, on multiple scales.
Furthermore, it is aimed to validate the computational model using experimental data.

Author Contributions: Conceptualization, A.K.; methodology, A.K. and A.V.; software, A.K. and
A.V.; formal analysis, A.K.; investigation, A.K.; writing—original draft preparation, A.K. and A.V.;
writing—review and editing, M.K. and C.B.; visualization, A.K. and A.V.; supervision, M.K. and C.B.;
funding acquisition, M.K. and C.B. All authors have read and agreed to the published version of
the manuscript.

Funding: The DFG research project 380321452/GRK2430 is supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation). The financial support is gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EAP Electro-active polymers
DEA Dielectric elastomer actuators
MD Molecular dynamics

References
1. Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-speed electrically actuated elastomers with strain greater Than 100%. Science

2000, 287, 836–839. [CrossRef]
2. Bar-Cohen, Y. Electro-active polymers: Current capabilities and challenges. In Proceedings of the SPIE 4695, Smart Structures

and Materials Symposium, Electro-active Polymer Actuators and Devices, San Diego, CA, USA, 17–19 March 2002.
3. Pfeil, S.; Katzer, K.; Kanan, A.; Mersch, J.; Zimmermann, M.; Kaliske, M.; Gerlach, G. A biomimetic fish fin-Like robot based on

textile reinforced silicone. Micromachines 2020, 11, 298. [CrossRef] [PubMed]
4. Shian, S.; Bertoldi, K.; Clarke, D. Dielectric elastomer based “grippers” for soft robotics. Adv. Mater. 2015, 27, 6814–6819.

[CrossRef]
5. Xing, Z.; Zhang, J.; McCoul, D.; Cui, Y.; Sun, L.; Zhao, J. A super-lightweight and soft manipulator driven by dielectric elastomers.

Soft Robot. 2020, 7, 512–520. [CrossRef] [PubMed]
6. Pelrine, R.; Kornbluh, R.; Joseph, J. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens.

Actuators A Phys. 1998, 64, 77–85. [CrossRef]

http://doi.org/10.1126/science.287.5454.836
http://dx.doi.org/10.3390/mi11030298
http://www.ncbi.nlm.nih.gov/pubmed/32178455
http://dx.doi.org/10.1002/adma.201503078
http://dx.doi.org/10.1089/soro.2018.0134
http://www.ncbi.nlm.nih.gov/pubmed/31990630
http://dx.doi.org/10.1016/S0924-4247(97)01657-9


Materials 2022, 15, 783 13 of 14

7. Böse, H.; Uhl, D.; Flittner, K.; Sclaak, H. Dielectric elastomer actuator with enhanced permittivity and strain. Proc. SPIE Int. Soc.
Opt. Eng. 2011, 7976, 79762J.

8. Risse, S.; Kussmaul, B.; Kürger, H.; Kofod, G. Synergistic improvement of actuation properties with compatibilized high
permittivity filler. Adv. Funct. Mater. 2012, 22, 3958–3962. [CrossRef]

9. Stoyanov, H.; Kollosche, M.; Risse, S.; McCarthy, D.N.; Kofod, G. Elastic block copolymer nanocomposites with controlled
interfacial interactions for artificial muscles with direct voltage control. Soft Matter 2011, 7, 194–202. [CrossRef]

10. Tian, L.; Tevet-Deree, L.; de Botton, G.; Bhattacharya, K. Dielectric elastomer composites. J. Mech. Phys. Solids 2012, 60, 181–198.
[CrossRef]

11. Miehe, C.; Vallicotti, D.; Teichtmeister, S. Homogenization and multiscale stability analysis in finite magneto-electro-elasticity.
Application to soft matter EE, ME and MEE composites. Comput. Methods Appl. Mech. Eng. 2015, 300, 294–346. [CrossRef]

12. Miehe, C.; Vallicotti, D.; Zäh, D. Computational structural and material stability analysis in finite electro-elasto-statics of
electro-active materials. Int. J. Numer. Methods Eng. 2015, 102, 1605–1637. [CrossRef]

13. Ponte Castañeda, P.; Siboni, M.H. A finite-strain constitutive theory for electro-active polymer composites via homogenization.
Int. J. Non-Linear Mech. 2012, 47, 293–306. [CrossRef]

14. Eringen, A. On the foundations of electroelastostatics. Int. J. Eng. Sci. 1963, 1, 127–153. [CrossRef]
15. Lax, M.; Nelson, D. Linear and nonlinear electrodynamics in elastic anisotropic dielectric. Phys. Rev. B 1971, 4, 3694–3731.

[CrossRef]
16. Maugin, G.A. Continuum Mechanics of Electromagnetic Solids; North Holland Series in Applied Mathematics and Mechanics;

Elsevier: North Holland, The Netherlands, 1988; Volume 33.
17. Maugin, G.A. On modelling electromagnetomechanical interactions in deformable solids. Int. J. Adv. Eng. Sci. Appl. Math. 2009,

1, 25–32. [CrossRef]
18. Dorfmann, A.; Ogden, R. Nonlinear electroelasticity. Acta Mech. 2005, 174, 167–183. [CrossRef]
19. Dorfmann, A.; Ogden, R. Nonlinear electroelastic deformations. J. Elast. 2006, 82, 99–127. [CrossRef]
20. Dorfmann, L.; Ogden, R.W. Nonlinear electroelasticity: Material properties, continuum theory and applications. Proc. R. Soc. A

2017, 473, 20170311. [CrossRef]
21. Jiménez, S.; McMeeking, R. A constitutive law for dielectric elastomers subject to high levels of stretch during combined

electrostatic and mechanical loading: Elastomer stiffening and deformation dependent dielectric permittivity. Int. J. Non-Linear
Mech. 2016, 87, 125–136. [CrossRef]

22. McMeeking, R.; Landis, C. Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 2005,
72, 518–590. [CrossRef]

23. Vu, D.; Steinmann, P.; Possart, G. Numerical modelling of non-linear electroelasticity. Int. J. Numer. Methods Eng. 2007, 70, 685–704.
[CrossRef]

24. Kanan, A.; Kaliske, M. On the computational modelling of nonlinear electro-elasticity in heterogeneous bodies at finite
deformations. Mech. Soft Mater. 2021, 3, 1–19. [CrossRef]

25. Kanan, A.; Kaliske, M. Finite element modeling of electro-viscoelasticity in fiber reinforced electro-active polymers. Int. J. Numer.
Methods Eng. 2021, 122, 2005–2037. [CrossRef]

26. Kanan, A.; Kaliske, M. Numerical modelling of electro-viscoelasticity for fibre reinforced electro-active polymers. Proc. Appl.
Math. Mech. 2021, 20, e202000118. [CrossRef]

27. Vertechy, R.; Berselli, G.; Castelli, V.; Vassura, G. Continuum thermo-electro-mechanical model for electrostrictive elastomers. Int.
J. Non-Linear Mech. 2010, 44, 503–515. [CrossRef]

28. Mehnert, M.; Pelteret, J.P.; Steinmann, P. Numerical modelling of nonlinear thermo-electro-elasticity. Math. Mech. Solid 2017,
22, 2196–2213. [CrossRef]

29. Mehnert, M.; Mokarram, H.; Steinmann, P. Numerical modeling of thermo-electro-viscoelasticity with field-dependent material
parameters. Int. J. Non-Linear Mech. 2018, 106, 13–24. [CrossRef]

30. Miehe, C. Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput. Methods
Appl. Mech. Eng. 1995, 120, 243–269. [CrossRef]

31. Steinmann, P. Computational nonlinear electro-elasticity—Getting started. In Mechanics and Electrodynamics of Magneto- and
Electro-elastic Materials. CISM International Centre for Mechanical Sciences; Ogden, R.W., Steigmann, D.J., Eds.; Springer: Vienna,
Austria, 2011; Volume 527.

32. Vogel, F.; Göktepe, S.; Steinmann, P.; Kuhl, E. Modeling and simulation of viscous electro-active polymers. Eur. J. Mech. Solids
2014, 48, 112–128. [CrossRef]

33. Behnke, R. Thermo-Mechanical Modeling and Durability Analysis of Elastomer Components under Dynamic Loading.
Ph.D. Thesis, TU Dresden, Dresden, Germany, 2015.

34. Jewett, A.I.; Zhuang, Z.; Shea, J.E. Moltemplate a coarse-grained model assembly tool. Biophys. J. 2013, 104, 169a. [CrossRef]
35. Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular

dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [CrossRef]
36. Hager, J.; Hentschke, R.; Hojdis, N.W.; Karimi-Varzaneh, H.A. Computer simulation of particle–particle interaction in a model

polymer nanocomposite. Macromolecules 2015, 48, 9039–9049. [CrossRef]

http://dx.doi.org/10.1002/adfm.201200320
http://dx.doi.org/10.1039/C0SM00715C
http://dx.doi.org/10.1016/j.jmps.2011.08.005
http://dx.doi.org/10.1016/j.cma.2015.10.013
http://dx.doi.org/10.1002/nme.4855
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.06.012
http://dx.doi.org/10.1016/0020-7225(63)90028-4
http://dx.doi.org/10.1103/PhysRevB.4.3694
http://dx.doi.org/10.1007/s12572-009-0002-y
http://dx.doi.org/10.1007/s00707-004-0202-2
http://dx.doi.org/10.1007/s10659-005-9028-y
http://dx.doi.org/10.1098/rspa.2017.0311
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.10.004
http://dx.doi.org/10.1115/1.1940661
http://dx.doi.org/10.1002/nme.1902
http://dx.doi.org/10.1007/s42558-020-00031-6
http://dx.doi.org/10.1002/nme.6610
http://dx.doi.org/10.1002/pamm.202000118
http://dx.doi.org/10.1177/1045389X12455855
http://dx.doi.org/10.1177/1081286517729867
http://dx.doi.org/10.1016/j.ijnonlinmec.2018.08.016
http://dx.doi.org/10.1016/0045-7825(94)00057-T
http://dx.doi.org/10.1016/j.euromechsol.2014.02.001
http://dx.doi.org/10.1016/j.bpj.2012.11.953
http://dx.doi.org/10.1002/jcc.21224
http://dx.doi.org/10.1021/acs.macromol.5b01864


Materials 2022, 15, 783 14 of 14

37. Kikugawa, G.; Desai, T.G.; Keblinski, P.; Ohara, T. Effect of crosslink formation on heat conduction in amorphous polymers. J.
Appl. Phys. 2013, 114, 034302. [CrossRef]

38. Jorgensen, W. OPLS All-Atom Parameters for Organic Molecules, Ions, Peptides & Nucleic Acids; Yale University: New Haven, CT,
USA, 2009.

39. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef]
40. Luchinsky, D.G.; Hafiychuk, H.; Hafiychuk, V.; Wheeler, K.R. Molecular Dynamics of ULTEM 9085 for 3D Manufacturing: Spectra,

Thermodynamic Properties, and Shear Viscosity; Technical Memorandum NASA/TM–2018–220213; NASA: Washington, DC, USA,
2018; pp. 1–70.

41. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 2017.
42. Wang, Q.; Keffer, D.J.; Petrovan, S.; Thomas, J.B. Molecular dynamics simulation of poly (ethylene terephthalate) oligomers. J.

Phys. Chem. B 2010, 114, 786–795. [CrossRef] [PubMed]
43. Mu, Q.; Feng, S.; Diao, G. Thermal conductivity of silicone rubber filled with ZnO. Polym. Compos. 2007, 28, 125–130. [CrossRef]
44. Kashi, S.; Varley, R.; De Souza, M.; Al-Assafi, S.; Di Pietro, A.; De Lavigne, C.; Fox, B. Mechanical, thermal, and morphological

behavior of silicone rubber during accelerated aging. Polym.-Plast. Technol. Eng. 2018, 57, 1687–1696. [CrossRef]
45. Zhou, W.; Qi, S.; Tu, C.; Zhao, H. Novel heat-conductive composite silicone rubber. J. Appl. Polym. Sci. 2007, 104, 2478–2483.

[CrossRef]

http://dx.doi.org/10.1063/1.4813505
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1021/jp909762j
http://www.ncbi.nlm.nih.gov/pubmed/20017524
http://dx.doi.org/10.1002/pc.20276
http://dx.doi.org/10.1080/03602559.2017.1419487
http://dx.doi.org/10.1002/app.25479

	Introduction
	Thermo-Electro-Mechanics
	Preliminaries
	Mechanical Field
	Electrical Field
	Thermal Field
	Material Model
	Finite Element Formulation

	Estimation of Thermal Properties
	Numerical Examples
	Varying Initial Temperature
	Varying Volume Fraction of the Inclusion
	Varying Aspect Ratio of the Inclusion

	Summary
	References

