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Abstract: This paper is a discussion of the results of tests intended to (i) estimate the effects of
component mix ratios and heat curing of an adhesive joint on the tensile strength, and (ii) to determine
the adhesive component mix ratio for which heat curing is insignificant to the strength of adhesive
butt joints. Experimental tests were carried out at ambient temperature and elevated temperature
during which adhesive butt joints were loaded with a tensile force until failure. The variables were the
mix ratio of epoxy adhesive components and the application of heat holding at the adhesive curing
stage. An LSTM (long short-time memory) forecast was used to determine the point corresponding
to the mix ratio of adhesive components at which heat holding of the adhesive joint no longer has a
positive and significant importance to the final tensile strength of the joint.

Keywords: artificial neural networks; LSTM; modelling; adhesive joints; epoxy; resin; hardener; mix
ratio; temperature degradation

1. Introduction

Joining with adhesives which are sometimes underestimated is a major complement to
the traditional techniques of joining materials. Adhesive joining or bonding is applied not
only where the operating conditions of a joint do not require it to have high strength but
also for the joining of structural materials, such as metals, and beyond simple applications,
which means the aerospace industry, for example, to produce structures which require
superior strength to mass ratios [1,2].

There is a number of requirements to be met for the final adhesive joint to be produced
properly, meaning strong and durable. The requirements include proper pretreatment of
the surfaces to be joined, preparation of the adhesive, and suitable conditions for adhesive
curing. The final quality of an adhesive joint also depends on its operating conditions,
both in terms of the behaviour of the joint, the joint’s operating temperature and its
range of variation, the operating humidity, and more. These issues belong to different
scientific disciplines, thus adhesive bonding can be called an interdisciplinary process,
which combines chemistry, physics, and mechanics [3–9].

The sheer diversity of adhesive compositions in use requires engineers to understand
the methods and parameters of adhesive curing. Some adhesives become cured by chemical
reactions while other adhesives develop their properties by evaporation of solvents and for
some adhesives, curing is achieved by solidification of their melts. In this selection of the
basic groups of adhesives, subgroups of adhesives can be refined by the detailed mechanism
of curing. Chemical reaction-cured adhesives include two-component adhesives, single-
component adhesives activated with catalysts or hardeners, moisture-cured adhesives,
UV-cured adhesives, and substrate-catalysed anaerobic adhesives. Between the adhesive

Materials 2022, 15, 721. https://doi.org/10.3390/ma15030721 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15030721
https://doi.org/10.3390/ma15030721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-0917-1693
https://orcid.org/0000-0003-4063-8503
https://doi.org/10.3390/ma15030721
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15030721?type=check_update&version=2


Materials 2022, 15, 721 2 of 20

groups, the adhesive joints produced with them vary in performance, but first they vary in
the recommendations and processes for proper fabrication of adhesive joints [7,10,11].

A study of chemically cured two-component adhesives, namely epoxy materials,
revealed that the quantitative mix ratio of the epoxy resin to its hardener is significant to
the final performance characteristics of the adhesive. If there is too little of a hardener per
unit of resin, incomplete polymerisation may occur, whereas too much of the hardener
may result in brittleness and fragility of the cured compound, leading to corrosion of the
metallic interfaces [12–14]. Other characteristics of adhesives, such as resistance to heat
or rigidity, may also change with deviations from the specified resin-to-hardener ratios
or when admixtures are used [15–20]. This is due to the different degree of crosslinking,
i.e., the case of an incomplete or different mode of curing the polymeric adhesive material
when there is a shortage of hardener; on the other hand, when there is an excess, a certain
amount of unreacted hardener remains in the adhesive.

One of the ways for optimising the results of adhesive joining is curing of the adhesive
while holding the joint at heat [4]. The heat holding is intended to change the physical
properties of the adhesive joint by altering the crosslinking performance. The technical data
sheets of adhesives are usually rather vague in specifying that as the curing temperature
increases, so does the joint strength, while the curing time is reduced [21–23].

An analysis of mechanical performance durability is critical to the estimation of
adhesive joint life and the design engineering of modern materials. This is especially
important because these materials are often required to withstand elevated temperature
conditions and the adhesive strength of epoxy is decreases with increased temperature [24].
However, a large number of experimental tests is often infeasible, for example, because of
the constraints of time and costs. One of the solutions can be the application of computer
methods, such as the finite element method (FEM) [25–30], the boundary element method
(BEM) [31–34], predictive modelling [35–39], and data analytics [40–45]. Mathematical
modelling with a modest dataset acquired may help to determine the relationships between
the individual parameters and mechanical properties, to identify the most promising
direction of research, to reduce the number of physical tests, and to markedly reduce the
time and costs of research.

Another way of approaching the problem of eliminating quality level deviations in
manufacturing processes from the desired values may be the Taguchi method, a technique
of optimising process parameters by reducing the variation in the process and examining
how different parameters can affect both the mean and variance of the outcome charac-
teristics of the process, as well as which variables have a significant effect. The method
defines product quality as the difference between the characteristics of the process result
and the value to be achieved (target), which is defined as a function. The Taguchi method
uses a procedure that applies orthogonal arrays to statistical design experiments to obtain
good results with a minimum number of experiments. This can reduce the cost and time
required for the experiment. The objective function of this experimental matrix is the signal-
to-noise (S/N ratio. It is used to measure the yield characteristics of the process and the
percentage contribution of the process parameters through an analysis of variance. If these
characteristics are continuous, then the S/N ratio can be classified into three categories:
nominal-the-best, smaller-the-better, and larger-the-better characteristics. The optimal level
of process parameters for this optimisation is the level that produces the largest S/N ratio
transformation [46]. There are known studies in the field of polymer engineering in which
this method was applied [47,48], however, the subject of this paper has not been studied
with this method so far.

Response Surface Methodology (RSM) is a set of mathematical and statistical methods
for experimental model building and the optimisation of any process in which the response
of interest is influenced by several independent factors and their interactions. Central
composite design (CCD) is the most suitable experimental design used in RSM, which
helps to optimise effective parameters with a minimum number of experiments, as well as
to study the interaction between parameters. As it allows for evaluation of the influence of
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multiple factors and their interactions on one or more response variables, it is a very useful
method [49–51].

This paper was an attempt at analysing the accuracy of the results produced with the
tools for modelling the effects of deviation from the specified adhesive mix ratios on the
potential reduction of the performance of an adhesive in operation at temperatures higher
than ambient. The modelling tool considered was artificial neural networks (ANNs) capable
of memorising and processing information of random input data sequences. The tasks of
classification and forecasting was based on a full dataset used as the input data for teaching
the ANN. ANNs are designed to process data by classifying it into specific sequences.
When solving problems with artificial neural networks, the type and operating principle of
an ANN must always be considered or the ANN can be ‘overtrained’ [52,53]. Overtraining
is symptomatic by overt matching of the ANN to the teaching data. Specific sequences
and structures present in one-off runs can also be memorised by ANNs. Although the
capacity of ANNs for information acquisition is very useful, certain problems benefit just
as well from the capacity of an ANN to ‘forget’ past states. An example of this application
is an information stream which contains a sequence within which subsequences exist
with a variable structure. Given these types of processing tasks, a need emerged to build
ANNs capable of resetting the memorised states by setting their values to zero without
any need for a system operator to intervene and manually delete the states. This is what
led to artificial recurrent neural networks (RNN) with the architecture termed LSTM (long
short-time memory) [54].

The essence of LSTM is feedback loops existing between the basic network units,
which are the memory cells. Another distinguishing feature of LSTM is that it has specific
logic gates: an input gate, a forget gate, and an output gate. The input data is calculated
by regular artificial neuron units. The accumulation of their values to a state is governed
by an input gate, which learns to protect the error flow present in the memory cells
against interference from irrelevant input data [55]. The steady, non-decaying, and non-
increasing error flow is managed by a feedback loop and the forget gate, which controls the
maintenance of the stability of the weight. The output gate opens and closes access to the
steady error flow, learning to protect other memory cells against interference from their
currently irrelevant contents. A diagram of information processing in LSTM [56] is shown
in Figure 1.

Figure 1. LSTM information processing diagram.

An LSTM RNN was applied in this work to complete the reliable forecast of the
full-strength characteristics and maximum breaking forces of specimens. An information
sequence containing several sets of full-strength characteristics was a dataset for which the
capability to control the changes in the data structures of a narrower range was relevant.
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In summary, the study analysed the results of tensile strength tests of adhesive joints
made using an adhesive with a deviation from the manufacturer’s recommended A/B
ratio (resin/hardener). Two methods of joint curing were tested: at ambient temperature
and with additional heating. Samples were tested at ambient and elevated temperatures.
LSTM RNN analyses were performed to determine the limiting proportion of adhesive
components for which the reheating process at the stage of the adhesive crosslinking of
polymeric material would not influence the improvement of the mechanical parameters of
the adhesive bond.

2. Materials and Methods
2.1. Materials and Sample Preparation

Experimental tests were performed on adhesive butt joints made with ø20 × 100 mm
cylindrical specimens made of grade 1.0037 steel (EN 10025:2019–S235JR; Figure 2). The
butt surfaces were pretreated per EN 13887:2005 (Structural adhesives—Guidelines for
surface preparation of metals and plastics prior to adhesive bonding) with steady pro-
cessing parameters to ensure the geometric repeatability of the surface pretreatment for
all specimens.

Figure 2. Cylindrical specimen comprising two bars butt-joined by adhesive bonding.

The specimens were bonded with Loctite Hysol 9492 (Henkel, Düsseldorf, Germany), a
commercially available, two-component adhesive composition. The adhesive was supplied
in a manually emptied cartridge which provides a constant resin-to-hardener mix ratio of
2:1 [21]. To precisely estimate the weight ratio, the components were mixed manually after
precise dispensing of the correct amounts by weight. The adhesive was mixed by hand
and degassed in a vacuum chamber. The surfaces of the steel specimens to be adhesively
bonded specimens were degreased with Loctite 7036 [57]. The specimens were fabricated
by adhesive joining under an identical pressure (approx. 8 Pa) to obtain identical joints of a
constant adhesive thickness of 0.08 mm in all specimens. The adhesive joints were cured
according to the test plan (Table 1) with one of the two methods: a long cure at ambient
temperature (3 days/25 ◦C) and a fast cure with heat holding (1 h/100 ◦C). To ensure the
axial alignment of the upper and bottom specimen halves, a self-alignment fixture was
used (a stand with vee blocks—Figure 3). Nine specimens were fabricated for each tested
combination of the mix ratio, curing method, and planned strength testing temperature.
The flashes of the adhesive were not removed, as permitted by EN 15870:2009 [58]. In the
presented study, the degree of curing of the adhesive was not analysed for the conditions
considered, assuming that the resulting inaccuracy of the proportions of the components of
the adhesive is an accidental, unintentional error occurring at the stage of preparation of
the adhesive and resulting in an unintentional change in the final strength properties of the
joint made with such an adhesive. Crosslinking degree is of course an important factor in a
detailed explanation of the mechanism of changes in joint strength.
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Table 1. Experimental test plan.

Adhesive Component A/B Mix Ratio
(resin/hardener)

Curing
Conditions

Test
Temperature

1.4:1/1:0.71

x

3 days/25 ◦C

x

25 ◦C1.8:1/1:0.55

2.0:1/1:0.50(manufacturer-specified “m”)

2.2:1/1:0.45
1 h/100 ◦C 70 ◦C2.6:1/1:0.40

3.0:1/1:0.33

Figure 3. Self-alignment fixture in heating chamber.

2.2. Mechanical Testing

The produced specimen joints were tensile-tested. This was done in fixtures with
clamps on both ends of the specimen to ensure that no bending moment was introduced
during the tensioning (Figure 4). The test plan provided for different operating conditions
of the adhesive joints, thus the specimens were tested in ambient temperature and elevated
temperature (70 ◦C). The specimens tested at the elevated temperature were heated in
an oven so that their entire volume was heated to the planned temperature level. Each
specimen was tensioned at a steady rate of 4 mm/min and the failure force of the adhesive
joint was recorded and converted to the joint strength by dividing the failure force by the
cross-sectional area of the adhesive joint. For each of the tested adhesive joints, its failure
mode was recorded with a total of three failure mode types: cohesive failure (within the
adhesive joint), adhesive failure (between the adhesive layer and the bonded material), and
mixed failure according to ISO 10365 Standard—Designation of main failure patterns [59]
(Table 2).
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Figure 4. Fixtures with clamps (double-Cardan universal joint).

Table 2. Failure patterns: (a) CF—cohesion failure, (b) AF + CF—mixed, (c) ACFP—adhesion and
cohesion failure with peel, and (d) AF—adhesion failure.

CF AF + CF ACFP AF

2.3. Statistical Analysis

To verify if there were significant differences in the strength values between the heat-
held and the non-heat-held adhesive joints, the experimental test results were analysed
statistically [4,60] in the Statistica 13 suite from TIBCO Software Inc. (2017; Palo Alto, CA,
USA). The significance level assumed was α = 0.05. A selection of strength test results (in
pairs) was analysed using:

• The Shapiro–Wilk W-test (for the normality of distribution in the produced series of
resultant joint strength test values);

• The tests by Fisher, Levene, and Brown–Forsythe (for the equality of group variances); and
• Student’s t-test (for the results characterised by normality of distribution and equality

of variances to analyse the equality of the average resultant joint strength values at the
adopted significance level).
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2.4. Long Short-Term Memory Artificial Recurrent Neural Network

The recorded experimental test data was analysed with two approaches: first, a set of
averaged data was tested, and second, the processing was run on the samples at random
within the assumed range of adhesive composition mix ratios. The common core of both
approaches is the generic diagram of signal processing, consisting of the determination
of the zero crossings for the differential maximum breaking force vs. the selection of
component mix ratios (Figure 5). The columns show the values of the differences of
the maximum destructive loads between the heated and non-heated joints, expressed as
a percentage increase/decrease in relation to the non-heated joint load. The red circle
marks the assumed area of the sought component ratio. Generally speaking, the test data,
which included a specific mix ratio of the applied adhesive components, was analysed by
forecasting the full-strength characteristics. The input data was the strength characteristics
for the mix ratios at which the static strength was found to be reduced after heat-held
curing. The sequence of input data was set from the highest to the lowest hardener ratio:
1:0.7; 1:0.55; 1:0.5; 1:0.45; 1:0.4; and 1:0.3.

Figure 5. Relative change of the average static strength between the heat-held cured joints and the
ambient temperature-cured joints.

The signal processing diagram for the first approach involved preprocessing by re-
sampling and averaging the data. The trends within the specified mix ratios were forecast.
The declared teaching data was the averaged trends with the hardener ratio order from
the highest to the lowest. Here, the ratios were 1:0.7; 1:0.55; 1:0.5; and 1:0.45, equal to 67%
of the entire signal length (Figure 6). The remainder of the signal which included two
full-strength characteristics (for mix ratios 1:0.4 and 1:03) were forecast with a DLN LSTM
algorithm (Deep Learning Networks—Long Short-Term Memory). For the downstream
data processing, the experimental test data was also included for mix ratios 1:0.4 and 1:0.3
(independent of the forecast). Based on the produced test results, the maximum breaking
forces, namely Lmax, were determined for the heat-held cured joints (LmaxH) and the
ambient temperature-cured joints (LmaxN). Based on the breaking force determined for
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the values obtained by experimental testing (LmaxT) and the values from the forecast
characteristics (LmaxF), the following differences were determined:

LmaxTH − LmaxTN (1)

LmaxFH − LmaxFN (2)

Figure 6. Range of forecast-processed data.

The values of the differences present within the assumed mix ratios were used to
determine the node points. The zero crossings of the static strength change vs. tested
adhesive mix ratio were determined by node interpolation. The diagram of this procedure
is shown in Figure 7a.

However, assuming it is feasible to reduce the number of experimental/laboratory
tests, complementing the data with forecast values might lead to certain inaccuracies in the
specification of adhesive component mix ratios. To more accurately verify the produced
results due to the natural measurement discrepancies, it was decided to run a second
analysis by testing random samples within the range of the tested mix ratios.

This second analysis included separate forecasting of the strength characteristics for
a set of adhesive joints within the tested mix ratios. Like in the previous analysis of the
experimental test results, the specimens were sequenced from the highest to the lowest
hardener ratio. This time, the share of teaching data in the signal length was between 54%
and 76%. The difference was a result of the different lengths of the strength characteristics.
No resampling algorithm was implemented in order to avoid distortion in the individual
signals. Like in the first analysis, two strength characteristics were forecast for the adhesive
joints with the lowest hardener ratios. As in the first analysis, the DLN LSTM integrated in
Matlab 2021a was used for the forecasting process.

The first dataset analysed was the specimens with and without the heat-held curing at
the test temperature of 70 ◦C. This dataset was resampled, followed by averaging over the
limits of the test temperature, mix ratios, and curing specifications. The next step was to
forecast the locations of nodes for the function of strength change following heat holding
of the adhesive joints. The zero crossings were determined by interpolation with a cubic
spline and a function obtained by the least-squares method.
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Figure 7. LSTM processing diagram: (a) averaged tests and (b) independent tests.
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The second dataset was random samples in the following range: test temperature, mix
ratios, and curing specifications. Similar to the first analysis, the input (teaching) data for
the forecast was the trends with the decreasing mix ratios: 1:0.7; 1:0.55; 1:0.5; and 1:0.45. The
output was the forecasts of subsequent trends for mix ratios 1:0.4 and 1:0.3. Each resulting
trend had the maximum breaking force of the specimen determined separately for the
forecasts and the experimental tests. The produced breaking force values for all tested mix
ratios were adopted as the nodes for the subsequently interpolated functions. In line with
the objective of this paper, each set of specimens had zero crossings determined, denoting
the proportions of the components at which holding at heat was no longer relevant to the
adhesive joint strength. The processing diagram of the algorithm for independent tests is
shown in Figure 7b.

3. Results and Discussion
3.1. Mechanical Testing

The obtained values of the adhesive joint breaking (failure) force were converted
to the adhesive joint strength by dividing the force value by the joint (specimen) cross-
sectional area. The strength results for the adhesive joints cured at ambient temperature are
illustrated in Figure 8a. For the adhesive joints cured by heat holding (for 1 h at 100 ◦C), the
strength results are shown in Figure 8b. Both charts include a slight scatter of the results,
being a standard deviation. A summary of all obtained experimental results, allowing for a
general comparison of the series between each other, is shown in Figure 9.

For each of the tested adhesive joints, its failure mode was recorded according to ISO
10365 Standard—Designation of main failure patterns [59], with a total of four failure mode
types: cohesion failure (within the adhesive joint), adhesion failure (between the adhesive
layer and the bonded material), mixed adhesion/cohesion failure, and adhesion/cohesion
failure with peel (Table 2).

A summary combining the individual joint series with the resulting tensile strength
and failure mode of the joint is shown for the series tested at room temperature in Table 3.
Samples tested at elevated temperature are summarised in Table 4.

Table 3. Failure mode change after heat curing samples tested at 25 ◦C.

A/B Mix
Ratio (Resin/

Hardener)

Cured 3 Days at 25 ◦C Cured 1 h at 100 ◦C

Mean Tensile
Strength

(MPa)
Failure Mode

Mean Tensile
Strength

(MPa)
Failure Mode

−50% 1:0.3 35.80 CF 40.56 CF
−30% 1:0.4 34.48 CF 41.12 CF
−10% 1:0.45 35.68 CF 41.15 CF

m: 1:0.5 35.51 CF 39.90 CF
+10% 1:0.55 34.70 CF 37.62 78% AF + CF, 22% CF
+30% 1:0.7 25.26 89% AF + CF, 11% CF 27.40 AF + CF

Table 4. Failure mode change after heat curing samples tested at 70 ◦C.

A/B Mix
Ratio (Resin/

Hardener)

Cured 3 Days at 25 ◦C Cured 1 h at 100 ◦C

Mean Tensile
Strength

(MPa)
Failure Mode

Mean Tensile
Strength

(MPa)
Failure Mode

−50% 1:0.3 23.19 CF 25.67 CF
−30% 1:0.4 22.72 AF + CF 24.44 AF + CF
−10% 1:0.45 22.67 78% CF, 22% AF + CF 20.71 AF + CF

m: 1:0.5 20.57 56% AF + CF, 44% CF 16.73 78% AF + CF, 22% AF
+10% 1:0.55 13.88 AF + CF 10.58 56% AF + CF, 44% AF
+30% 1:0.7 6.38 ACFP 5.23 AF
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Figure 8. Change in the adhesive joint strength from the test temperature for the joints (a) cured
without heat holding and (b) cured with heat holding.

Preliminary analyses indicate a clearly positive character of the adhesive heat curing
process for samples tested at ambient temperature. In each case of the resin/hardener
ratio tested, the average compressive strength values obtained are ~8–20% higher for the
heat-cured samples. The same is true for samples tested at elevated temperature but only
for samples with significant non-hardener addition (−50% and−30%). From a deficiency of
about −10% hardener, through the manufacturer’s recommended proportion, to adhesives
with excess of hardener, the average strength of the heated joints is lower than that of the
unheated ones.
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Figure 9. Summary of the strength test results.

It can also be seen that the nature of the joint failure changes with the amount of
hardener in the adhesive formulation. At ambient temperature, an excess of hardener will
result in a change in the type of failure from cohesive to cohesive–adhesive. Depending
on how the adhesive is cured, this happens differently: for an unheated adhesive, this is
at about 30% excess hardener and a heat-cured adhesive shows this change with as little
as 10% excess hardener. Interestingly, the correct amount of hardener and its deficiency
always resulted in cohesive failure of the joint. The same adhesive compositions tested at
elevated temperatures showed a similar trend, with purely cohesive failure being recorded
only at very high hardener deficiency (−50%), regardless of whether the bond was heated
or not. Smaller values of hardener deficiency, the manufacturers ratio, and a ratio up to 10%
hardener excess resulted in joints with mixed failure characteristics. The most significant
change in the mode of joint failure between the non-heated and heated adhesive was
observed for samples tested at elevated temperature. This can be seen from a hardener
deficiency of −10%, where the failure mode changes from 3/4 purely cohesive to mixed
(adhesive–cohesive) as a result of samples’ heating. Furthermore, at the manufacturer’s
recommended ratio, the mode changes from cohesive-mixed (~50–50%) to approximately
3⁄4 mixed, and at 10% hardener excess from purely mixed to mixed-adhesive (~50–50%).

A large hardener excess (+30%) resulted in adhesive failure, from adhesive–cohesive
with peel for samples that were not heated to purely adhesive failure for samples that were
heated while curing. Improved adhesive parameters after heat curing can be explained
by the higher mobility of the heated particles of resin, which further supports polymerisa-
tion. The adhesive subjected to thermal curing achieves a significantly higher degree of
crosslinking, becomes stiffer, and, at the same time, its strength increases. However, for
an adhesive tested at elevated temperatures, these changes lead to a deterioration of the
adhesive properties and, consequently, to a change in the mode of destruction towards the
adhesive one.

Figure 10 shows examples of strain-to-stress diagrams obtained during tests at ambient
and elevated temperatures of samples made with adhesives of the tested composition and
curing conditions.
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Figure 10. Stress–extension graphs of tested adhesive joints prepared under inaccurate addition
of hardener component in adhesive (random samples): (a) cured 3 days at 20 ◦C, tested at 20 ◦C;
(b) cured 1 h at 100 ◦C, tested at 20 ◦C; (c) cured 3 days at 20 ◦C, tested at 70 ◦C; and (d) cured 1 h at
100 ◦C, tested at 70 ◦C.

A summary of other important test results, i.e., the value of the maximum strain at
which the joint failed or the value of Young’s modulus for joints made with adhesives of
different compositions, curing conditions, and test temperatures is shown in Figure 11.

Figure 11. Mean Young’s modulus and mean extension-to-break of tested adhesive joints prepared
under inaccurate addition of hardener component in adhesive.
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There is a clear decrease in the mean Young’s modulus with an excess of hardener
in the adhesive formulation, especially for samples tested at elevated temperatures, with
a simultaneous reduction in mean strain to joint failure. A noticeable effect of thermal
curing was also observed, which was almost always associated with an increase in the
Young’s modulus of the adhesive regardless of its test temperature and the ratio in which
the adhesive was made. This can be explained by the higher mobility of the heated particles
during curing, aiding polymerisation. An adhesive subjected to thermal curing achieves
a significantly higher degree of crosslinking, becomes stiffer, and, at the same time, its
cohesive strength increases [61].

The quotient of the produced heat-held cured adhesive joint strength and the ambient
temperature-held adhesive joint strength was the average coefficient of change in the
adhesive joint strength following heat holding for the adhesive compositions varying in
the mix ratio and the test temperature of the joint (Figure 12).

Figure 12. Average strength ratio of the heat cured to the ambient temperature-cured adhesive joints.

The foregoing summary is only a comparison of the average joint strength values. To
understand the relationships between the applied heat holding of cured adhesive joints
and their final strength at both various degrees of distortion of the relevant adhesive
composition mix ratio and different adhesive joint test temperatures, the produced results
underwent mathematical and statistical analysis.

To verify that significant differences were present between them, checks were done
with Student’s t-tests, preceded by the Leven and Brown–Forsythe tests of the equality
of variances and a normality test. A graphical comparison from which the comparisons
were removed for the series that had no statistically significant difference demonstrated is
shown in Figure 13.

In the constant cure cycle for all tests, the rate of polymerisation or cure is dependent on
the stoichiometric ratio, r, between the two reacting co-monomers. For adhesives based on
diglycidyl ether of bisphenol A (DGEBA) resins cured with 4,4′-diaminodiphenyl sulfone
(DDS) hardener, the epoxy-rich ratio resulted in the lowest glass transition temperature
(Tg). On the other end, the excess of amine hardener led to lower Tg due to the formation
of rings consisting of partially reacted diamine molecules and epoxy chains which increase
the free volume of the system [62,63]. Other research [64] attributed the differences in
Tg with stoichiometry to be as a direct result of differences in molecular weight between
crosslinks, whereby higher Tg resins have a smaller distance between crosslinks. For higher-
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functionality epoxy resins (tetraglycidyl-4,4’-diaminodiphenylmethane—TGDDM and an
anhydride curing agent), the distance between crosslinks was measured and it was lower
for resins cured within this stoichiometric range. Additionally, better mechanical properties
were obtained for mixtures slightly in excess of epoxy, assuming the improvements were
due to an increase in etherification reactions between epoxy groups and hydroxyls, which
resulted in an increase in crosslink density [65].

Figure 13. Statistically significant change in the ratio of the average strength between the heat-cured
and the ambient temperature-cured adhesive joints.

3.2. LSTM Forecast Adhesive Joint Strength Values at Elevated Temperature

The analyses produced forecasts of the full-strength characteristics of the adhesive
joints within the limits of the tested mix ratios. An example summary of the tested and
forecast trends is shown in Figure 14.

Figure 14. Comparison of the forecast quality to the experimental test values.

Based on the characteristics produced, differences in the maximum breaking forces
were determined between the heat-held cured joints and the ambient temperature-cured
joints. The result was the node points with the coordinates which denoted the values of the
differences between the maximum breaking forces. The zero crossings were determined by
interpolation. This process was applied separately for the values from the experimental
tests and the forecasts. Examples of the interpolation results are shown in Figure 15 (least-
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squares method) and Figure 16 (cubic spline). The full summary of the produced values is
shown in Table 5.

Figure 15. Least-squares interpolation.

Figure 16. Cubic spline interpolation.

Table 5. Independent test and forecast results.

# Test Cubic Spline
Forecast Error (%) Least-Squares

Forecast Error (%)

1 0.424 0.352 16.98 0.353 16.75

2 0.392 0.400 2.04 0.398 1.53

3 0.465 0.465 0.00 0.465 0.00

4 0.438 0.437 0.23 0.437 0.23

5 0.431 0.432 0.23 0.432 0.23

6 0.417 0.416 0.23 0.417 0.00

7 0.475 0.476 0.23 0.476 0.23

8 0.418 0.417 0.23 0.418 0.00
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The test results in the second analysis (comprising the averaging of all tests) provided
a result consistent with the experimental test (0% error). The tests and simulations proved
that 1:0.427 was the mix ratio at which heat curing becomes irrelevant to increasing the
tensile strength of adhesive joints.

4. Conclusions

This paper demonstrates the feasibility of a numerical method for determining accurate
adhesive component mix ratios above which heat holding to cure an adhesive joint will
no longer be a significant and positive contributor to the strength of the adhesive joint
tested at an elevated temperature. The applied numerical methods, i.e., the LSTM (long
short-term memory) artificial recurrent neural network complemented the experimental
test methods, allowing for the production of precise results from partial input data without
any need for additional and detailed experimental testing. Otherwise, the tests would
require more tensile loading of adhesive joint specimens up to their failure. The application
of the presented LSTM RNN test methodology will lead to research which is less time and
cost intensive.

On the basis of the conducted error analysis in the context of the averaged data and
independent tests, and in the context of the minimum number of necessary experiments,
it can be concluded that the application of the above method allows for reducing the
samples subjected to testing. Taking into account the possibility of the future use of higher
sampling rates of signals and thus obtaining longer waveforms (reduction of the amount of
necessary learning data with minimal losses in the registration of dynamic link breakage),
it is achievable to reduce the amount of input data to 50% of the conducted tests while
maintaining the error level within 10%.

The fact that satisfactory analytical results were repeatedly produced leads to the
conclusion that the forecasting capabilities are broad and can substitute for other tests
which require a considerably higher expense of resources (time and money).

The use of additional methods of mathematical and statistical analysis of data obtained
from experimental studies (Taguchi and Response Surface Method RSM) may provide
additional information and is planned in further studies.

In the presented results, due to the assumed random nature of the component inaccu-
racies, it was not analysed whether the adhesive under conditions of inaccuracy of resin
and hardener proportions achieves full crosslinking and no quantitative and qualitative
relations between this parameter and the resulting strength of the bond were considered.
Therefore, as an extension study, differential thermal analysis (DTA), i.e., DSC analysis
(differential scanning calorimetry; based on ISO 11357 [66,67]) is planned to determine the
level of cure achieved and the time needed to achieve both full cure and thermal param-
eters, such as the glass transition temperature. The results will allow for extending the
knowledge on the thermal processes occurring during the curing process, such as making
recommendations on the optimum curing conditions for a joint with an inaccurate (known)
resin/hardener component ratio.
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51. Dean, A.; Voss, D.; Draguljić, D. Response Surface Methodology. In Design and Analysis of Experiments; Springer Texts in Statistics;
Springer International Publishing: New York, NY, USA, ; Cham, Switzerland, 2017; pp. 565–614, ISBN 978-3-319-52248-7.

52. Alman, D.H.; Ningfang, L. Overtraining in back-propagation neural networks: A CRT color calibration example. Color Res. Appl.
2002, 27, 122–125. [CrossRef]

53. Sjöberg, J.; Ljung, L. Overtraining, regularization and searching for a minimum, with application to neural networks. Int. J.
Control 1995, 62, 1391–1407. [CrossRef]

54. DiPietro, R.; Hager, G.D. Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted
Intervention; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 503–519.

55. Hochreiter, S.; Schmidhuber, J. LSTM Can Solve Hard Long Time Lag Problems. Adv. Neural Inf. Process. Syst. 1997, 473–479.
56. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; ISBN 0-262-33737-1.
57. Loctite Research, Development & Engineering, Technical Data Sheet: LOCTITE®SF 7063TM. 2013. Available online: https:

//www.techsil.co.uk/media/pdf/TDS/HECL50002-tds.pdf (accessed on 17 November 2021).
58. PN-EN 15870:2009E; Adhesives. Determination of Tensile Strength of Butt Joints. Polish Committee for Standardization:

Warszawa, Poland, 2009.
59. PN-EN ISO 10365:1998; Adhesives—Designation of Main Failure Patterns. Polish Committee for Standardization: Warszawa,

Poland, 1998.

http://doi.org/10.1016/j.compstruct.2020.111941
http://doi.org/10.1016/j.enganabound.2004.12.001
http://doi.org/10.1115/1.4005491
http://doi.org/10.3390/ma13235419
http://doi.org/10.12913/22998624/120989
http://doi.org/10.3390/ma14205981
http://www.ncbi.nlm.nih.gov/pubmed/34683569
http://doi.org/10.1088/1742-6596/1736/1/012025
http://doi.org/10.3390/su11082188
http://doi.org/10.3390/s20174683
http://doi.org/10.1016/j.ifacol.2019.11.378
http://doi.org/10.12913/22998624/132279
http://doi.org/10.3390/ma13215053
http://www.ncbi.nlm.nih.gov/pubmed/33182507
http://doi.org/10.1016/j.aej.2021.08.083
http://doi.org/10.1007/s40735-021-00608-2
http://doi.org/10.1016/j.conbuildmat.2021.125500
http://doi.org/10.5772/intechopen.73690
http://doi.org/10.1007/s10924-021-02115-4
http://doi.org/10.1002/col.10027
http://doi.org/10.1080/00207179508921605
https://www.techsil.co.uk/media/pdf/TDS/HECL50002-tds.pdf
https://www.techsil.co.uk/media/pdf/TDS/HECL50002-tds.pdf


Materials 2022, 15, 721 20 of 20
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