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Abstract: Additive manufacturing, in particular the powder bed fusion of metals using a laser beam,
has a wide range of possible technical applications. Especially for safety-critical applications, a quality
assurance of the components is indispensable. However, time-consuming and costly quality assurance
measures, such as computer tomography, represent a barrier for further industrial spreading. For
this reason, alternative methods for process anomaly detection using process monitoring systems
have been developed. However, the defect detection quality of current methods is limited, as single
monitoring systems only detect specific process anomalies. Therefore, a new methodology to evaluate
the data of multiple monitoring systems is derived using sensor data fusion. Focus was placed on the
causes and the appearance of defects in different monitoring systems (photodiodes, on- and off-axis
high-speed cameras, and thermography). Based on this, indicators representing characteristics of
the process were developed to reduce the data. Finally, deterministic models for the data fusion
within a monitoring system and between the monitoring systems were developed. The result was a
defect detection of up to 92% of the melt track defects. The methodology was thus able to determine
process anomalies and to evaluate the suitability of a specific process monitoring system for the
defect detection.

Keywords: additive manufacturing; multi-monitoring; PBF-LB/M; spatter

1. Introduction

Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M) is an additive man-
ufacturing process. It is becoming increasingly important in industrial applications due
to the high geometric freedom of the component design and the resource efficiency of the
process. In recent years, it has been applied for components in highly stressed engineering
applications [1]. These include, for example, turbine blades for aircraft engines or pistons
for sport car combustion engines. These components must withstand high forces and
temperatures during their use. They are therefore subject to strict standards and quality
requirements. However, in the PBF-LB/M process, fluctuations appear that can affect the
component quality.

Common defects in PBF-LB/M, which can result from process instabilities, are, for ex-
ample, cavities (pores). These can be divided into different types according to their forma-
tion mechanism [2]. Most pores result from the inclusion of gas into the melt pool, and
are therefore called gas pores. The gas originates from the surrounding atmosphere, such
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as the shielding gas [3]. It can also be released from gas inclusions within the powder [4].
The inclusions result from the gas atomization production of the powder or from spatter
particles, which can appear in reused powder [5]. Larger gas pores result from instabilities
in the keyhole. When the keyhole collapses, the surrounding atmosphere can be entrapped,
resulting in the formation of a pore [6,7]. In addition to gas pores, a lack of fusion can
also cause cavities. These elongated binding defects typically result from an insufficient
energy input. The low energy input can cause the melt track to break off, creating a gap
(balling). It was found that an increased number of spatters form when balling occurs
during the process [8]. Therefore, the number of spatters and the geometry of the melt
pool are potential criteria for the stability of the process. The influence of the porosity on
the component properties depends on the shape, the size, and the location of the pores
in the component [9,10]. Compared to elongated binding defects, spherical gas pores
have a lower influence on the static mechanical properties [11]. This makes it necessary to
employ quality assurance measures to meet the quality requirements for the process and
for the components.

Since the PBF-LB/M process is mainly used for a small batch production, statistical
quality assurance is difficult to guarantee [12]. Quality assurance methods based on in
situ process monitoring are therefore increasingly subjects of research. Process monitoring
systems can be used to detect process anomalies and defect-causing process conditions
as early as possible in the process. Compared to current costly and time-consuming post-
process measures for quality assurance, such as computed tomography, these systems can
thus help to reduce production time and production rejects. For process monitoring in the
PBF-LB/M process, the melt pool is of particular interest. Its geometry and dynamics are
strong indicators for the stability and continuity of this process [13].

Process monitoring systems can be classified into on-axis and off-axis configurations.
An on-axis system measures the process emissions following the beam path of the laser,
while an off-axis system monitors the process from outside of the beam path of the laser.
The on-axis systems typically employ pyrometers or high-speed cameras [14,15]. These
systems are especially suitable for the characterization of the melt pool during the process,
as the field of view moves with the melt pool. The off-axis systems often use thermographic
cameras to monitor process by-products (e.g., spatters and fumes) [8,16–19]. Spatter track-
ing from frame to frame can increase the signal-to-noise ratio compared to the absolute
number of spatters per frame [20]. Kolb et al. [21] used a combination of a high-resolution
camera and a photodiode for an in situ surface evaluation of the PBF-LB/M process.
Forien et al. [22] used a pyrometer to evaluate the keyhole stability for pore detection.

Each sensor, off-axis and on-axis, detects only specific process anomalies [23]. Due to
this, the significance of a single sensor for a global defect detection is limited. The evaluation
of the collected data is additionally dependent on the process knowledge of the user.
Therefore, a comprehensive in situ quality assurance must monitor the process at different
scales at the same time. The sensor data fusion allows combining the collected data to
fulfill this need. Zhang et al. [24] used machine learning for the fusion of sensor data to
detect flaws in PBF-LB/M single tracks. Petrich et al. [25] applied this method to multi-
modal sensor data for the defect detection for PBF-LB/M processed components. However,
the machine learning approach needs a high amount of experimental data for the training
of the neural network.

In this work, a methodology for the sensor data fusion based on a small amount
of experimental data is presented. With this methodology, it is possible to evaluate the
quality and the suitability of a specific process monitoring system for the defect detection.
The methodology was tested and validated by single melt track experiments in two PBF-
LB/M systems with on-axis and off-axis process monitoring.
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2. Materials and Methods
2.1. Research Approach

In this work, the influence of process anomalies on the quality of three PBF-LB/M melt
tracks was investigated. The melt tracks were manufactured on two PBF-LB/M systems.
Subsequently, the quality of the melt tracks was examined using a height profile from
optical microscopy. Thereby, the regions with a severely reduced height in the melt track
were assigned to balling defects. Process monitoring systems observed the manufacturing
process. For this purpose, photodiodes, high-speed cameras, and a thermographic camera
were used. The raw sensor data were mapped with the melt pool position within a single
melt track and condensed to indicators. They are selected based on known process phe-
nomena linked to defect-related process anomalies. To detect the anomalies, filters for the
indicator signals were developed, calibrated, and evaluated. Afterwards, a two-step data
fusion combined the data of the process monitoring systems. First, the indicators within
each process monitoring system were combined on the sensor-level. Second, the indicators
from the different process monitoring systems were linked by the subsequent data fusion
on the system-level. The research approach is shown schematically in Figure 1.

Data fusion

Indicator
determination

Filter application

Sensor-level
data fusion

System-level
data fusion

Fabrication of
single lines in two

PBF-LB/M systems

Data processing
from process
monitoring

Height profile
measurement

Figure 1. Research approach for the implementation of a data-fusion-based quality assurance for the
PBF-LB/M process.

2.2. Experimental Set-Up

The presented approach was examined in two experimental systems. Different process
monitoring systems (on-axis and off-axis) and two materials (316L stainless steel and
Scalmalloy) were used in the PBF-LB/M systems.

2.2.1. EOS M290 and Monitoring Set-Up

The first PBF-LB/M system was an EOS M290 (Oxford, MA, USA) equipped with a
400 W fiber laser and a beam diameter of 100 µm (see Figure 2A). The material 316L stainless
steel and a parameter set developed in previous studies were used for the fabrication of the
melt tracks [26]. The applied monitoring system EOSTATE Melt Pool Monitoring (MPM)
(Krailling, Germany) consisted of two photodiodes. One photodiode was positioned on-
axis and detected the thermal radiation of the area where the laser was located. The second
photodiode was positioned off-axis in the upper part of the process chamber and detected
the entire layer. An optical band-pass filter in the range of 400–900 nm protected the photo-
diodes from backscattered laser radiation [27]. The second applied monitoring system was
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an on-axis high-speed camera (HSC1; plasmoEye, plasmo Industrietechnik, Wien, Austria).
An optical band-pass filter limited the radiation to (900 ± 50) nm. The HSC1 recorded
the thermal radiation with a frame rate of 13,800 Hz and a resolution of 160 × 140 pixels.
The data from both process monitoring systems were assigned to the position in the melt
track. For this purpose, the control position of the scanner mirrors was used. Due to the
large amount of data, this assignment was performed ex situ.

2.2.2. Test Bench and Monitoring Set-Up

The second PBF-LB/M system was a novel test bench for process monitoring (see
Figure 2B). The energy source was a 1000 W fiber laser (YLR-1000-WC-Y14, IPG, Burbach,
Germany) with a spot size of 80 µm. The optical instruments of the beam path were mounted
on a breadboard (Thorlabs, München, Germany). The beam was expanded by a collima-
tor (D50-F200, IPG, Burbach, Germany) and was then guided through the scanning system for
area irradiation (intelliSCAN III30, Scanlab, München, Germany) and beam waist variation
(varioSCAN de40i, Scanlab, München, Germany). A more detailed description of the test
bench can be found in the work of [28]. The process monitoring system consisted of an off-axis
thermographic camera (TC) and an off-axis high-speed camera (HSC2). The thermographic
camera (X69000sc, FLIR Systems, Wilsonville, OR, USA) had a spectral range of 2 µm to 5 µm.
It was equipped with a camera lens with 100 mm focal length. To increase the imaging scale,
distance rings with a length of 68.5 mm were used. The TC was mounted in front of the build
chamber to observe the process zone in the X-Z-plane. The observed window of the TC was
resolved with 640 × 120 pixels at a frame rate of 3940 Hz. The HSC2 (Chronos 1.4, Kron
Technologies, Hessen, state abbreviation, USA) faced the X-Y-plane of the process zone at an
angle of approximately 60◦. The process was monitored with a frame rate of 4532 Hz and a
resolution of 1280 × 240 pixels. The data processing was performed ex situ. The start and
end point of the laser were used to assign the camera data to the position in each melt track.
The material Scalmalloy® was used and processed with a scanning velocity of 900 mm/s,
a laser power of 450 W, and a layer thickness of 80 µm.

Z
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(A) (B)
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Figure 2. PBF-LB/M systems with process monitoring: (A) EOS M290 and (B) test bench.

2.3. Ex-Situ Melt Track Defect Detection

An optical microscope (Infinite Focus, Alicona, Austria) was used to detect the balling
defects in the manufactured melt tracks. These defects served as the reference defects for
the defect detection in this work. An exemplary evaluated melt track is shown in Figure 3.
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The anomalies detected by the process monitoring systems are named sensor defects within
this work. The height profiles of the melt tracks relative to the build plate were measured
and processed using MATLAB. Sintered powder particles on the surface of the melt track
led to noise in the signal. These data points were detected and excluded by an edge
detection algorithm. To evaluate the defects quantitatively, deviations of the melt track
height were detected. These deviations refer to the defect type balling in this method.
A balling defect is regarded as the combination of a material accumulation and a following
material-reduced area. The material accumulations are mainly a result of the surface tension
of the melt [29]. The material reduced areas represent the actual defect as the continuous
melt track breaks off. Within the melt tracks investigated in this work, such a defect pattern
appears when the melt track height deviates more than 40 percent from the mean value of
the melt track height. Regions with a melt track height more than 40% lower than the mean
value were therefore defined as reference defects.

To quantitatively evaluate the defect detection capability of the monitoring systems,
the melt tracks were divided into regions. In this work, the sizes of these regions depended
on the data sampling rates of the individual process monitoring systems, as every region
must contain several data points from each process monitoring system. The width of the
regions in X-direction for the EOS M290 was 125 µm and 300 µm for the test bench in this
work. The regions with a defect were called defective regions and the regions without a
defect were called defect-free regions.

(A)

(B)

150

Z
in

µ
m
→ Defective regions

Defect-free regions

100

50

0
Y

X
150 µm

Figure 3. (A) Microscopy image of a single PBF-LB/M melt track and (B) exemplary detection
of reference defects in a measured height profile of a single PBF-LB/M melt track.

3. Data Fusion

The area surrounded by dashed lines in Figure 1 shows the individual steps of the
data fusion. The process monitoring data is first reduced to signals of individual indicators.
Using filters, defect-related anomalies are found in the reduced indicator signal. The data is
then fused for each individual sensor (sensor-level data fusion). Afterwards, the data of the
different process monitoring systems are fused (system-level data fusion). The following
section describes the methodology of the individual steps in detail.

3.1. Indicator Determination

The indicators are characteristics within the signal of the process monitoring systems,
such as the width of the melt pool in a camera signal. Indicators thus reduce the signal
to a minimum amount of data without a loss of information. The raw data of the process
monitoring system is analyzed qualitatively to determine these indicators. Based on the
understanding of defect-related process phenomena (e.g., the collapse of the melt pool),
a pre-selection of indicators is possible. Additionally, the data of the process monitoring
systems can be compared qualitatively to the reference defects. This makes it possible to
find further anomalies in the data from the process monitoring systems, which then serve
as indicators.

3.2. Filter

In the previous step, the indicators are determined to reduce the raw process moni-
toring data. In order to detect the anomalies, it is necessary to identify deviations in the
indicator signal. For this purpose, three different filter algorithms are developed within
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this work (see Figure 4). The first algorithm detects absolute fluctuations around the mean
value of the whole signal of the melt track (see Figure 4B). The mean value of the data series
is therefore calculated. A calibration factor shifts the mean value up and down. The shifted
signal defines the upper and the lower threshold for the allowed signal deviation. A region
is defined as sensor defective, if the signal value of this region is outside of these thresh-
olds. Thereby, the sensor defects are classified according to the threshold (upper or lower)
that is passed. The second filter algorithm detects anomalies in the signal dynamics (see
Figure 4C). The difference in the signal value of two sequencing data points specifies the
dynamics of the signal. Afterwards, the calculated dynamics are analyzed for absolute
fluctuations in a way analogous to the filter algorithm for absolute fluctuations. The last
filter algorithm detects short fluctuations (see Figure 4D). A moving average of the signal is
calculated and then shifted up and down by a calibration factor. These two curves then
form the thresholds for the signal.

(A) Raw data (B) Absolute fluctuations

(C) Dynamic (D) Short fluctuations

Limit

Raw data

Characteristic value for
the signal dynamics

Shifted mean average
of the raw data

Exceedance of the
upper limit

Underrun of the
lower limit

Figure 4. Filter algorithms for the detection of anomalies in the PBF-LB/M process.

3.3. Filter Calibration

To design and evaluate the defect detection of the process monitoring systems, the de-
fects detected by the filters (sensor defects) must be compared with the reference defects. If the
filter shows a deviation at least once over the length of a defective region, the monitoring
system detects the reference defect correctly. A defect-free region is correctly detected if the
signal permanently stays between the thresholds of the filter. Table 1 gives an overview of
this defect evaluation.

Table 1. Fourfold table of the defect evaluation.

Reference Defect No Reference Defect

Defective region TP FP
Defect-free region FN TN

Here, TP is the number of the correctly identified defective regions, TN is the number
of the correctly identified defect-free regions, FP is the number of the incorrectly identified
defective regions, and FN is the number of the incorrectly identified defect-free regions.
With this defect evaluation, the filters are calibrated for each indicator signal separately.
If the values for the sensitivity and the specificity are on the same level within ±10%,
the calibration is considered to be successful in this work. The sensitivity and the specificity
are calculated by the following equations:

sensitivity = TP/(TP + FN), (1)
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speci f icity = TN/(TN + FP). (2)

In the remainder of this paper, these values are given with the notation (sensitiv-
ity|specificity). Based on this, the data fusion is performed for each type of defect to further
increase the accuracy of the defect prediction. In particular, the sensor data fusion accounts
for the suitability of each process monitoring system for the detection of specific causes
of defects.

3.4. Sensor-Level Data Fusion

Each filter–indicator combination is particularly suitable for the detection of a specific
type of defect cause. A fusion of these data enables an extension, and thus an improvement,
of the detection. The accuracy value of each combination can be used as an evaluation
parameter for the system-level data fusion. The accuracy is calculated by:

accuracy = (TP + TN)/(TP + TN + FP + FN). (3)

For the further evaluation, only filter–indicator combinations with an accuracy above
65% are considered to exclude purely statistical detections within the scope of this work.
The remaining combinations are then sorted according to the sensitivity and the specificity.
The combinations with a high sensitivity are linked with the logical operator “and” to
improve the specificity. This means, that the fused signal indicates a sensor defect, if both
signals indicate a sensor defect. Otherwise, it is marked as sensor defect-free. The signals with
a high specificity are linked with the logical operator “or” to increase the sensitivity. Here,
the fused signal indicates a sensor defect, if one or both signals indicate a sensor defect. If both
signals are sensor defect-free, the result is also sensor defect-free. The principle of this data
fusion is shown in Figure 5.
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Defect free

Sensitivity: 100 %
Specificity: 25 %

Fusion result: Sensitivity: 100 %
Specificity: 75 %

Sensitivity: 100 %
Specificity: 50 %

Sensitivity: 33 %
Specificity: 75 %
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Specificity: 75 %
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Specificity: 100 %
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Figure 5. Principle of the sensor-level data fusion based on the sensitivity and specificity of two
exemplary signals A and B.

3.5. System-Level Data Fusion

The sensor-level data fusion results in a sensitivity and specificity value for each indi-
vidual process monitoring system. These values provide information about the prediction
quality of the systems. The different process monitoring systems can only detect specific
defects and defect causes due to their specification. The detection quality can be increased
by the same method as for the sensor-level data fusion. In the case of different detection
qualities of the individual monitoring systems, the fusion of a system with a high prediction
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quality with a system with a significantly lower prediction quality leads to no improvement.
High deviations of the prediction qualities lead to a deterioration of the overall system.

4. Results and Discussion

The data fusion methodology presented in Section 3 was applied to process monitoring
data of single melt track experiments. The experiments were conducted in two PBF-LB/M
systems. In this section, the defect detection capability of the systems is presented. First,
the indicators and the filter combinations for the systems are described. Second, the results
of the sensor-level data fusion and the data fusion on the system-level are presented.

4.1. Indicators and Filters
4.1.1. EOS M290

The MPM provides one intensity data set each for the on-axis photodiode and for
the off-axis photodiode. These intensity data sets were used directly as indicators, as they
cannot be reduced any further. Additionally, the HSC1 provides the spatially resolved 2D
intensity distribution of the melt pool. Important indicators for the process stability are the
length and the width of the melt pool (see Figure 6). This is due to the interruption of the
melt pool when balling occurs. During the interruption and rebuild of the melt pool, a re-
duction of its length and width can be expected. In addition to the geometry, the mean and
the maximum intensity of the melt pool were measured. The mean intensity was used as an
indicator for relative changes in the overall temperature of the melt pool. The variations of
the maximum intensity were used as an indicator for changes of the temperature gradient.
However, only qualitative conclusions from the intensity to the temperature were possible
since the emission coefficient of the molten material was unknown. The two indicator
systems, the melt pool geometry and the melt pool intensity, are related to different process
phenomena. Hence, they are considered as two individual systems in the following.
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Figure 6. Indicators for the melt pool geometry for the monitoring system HSC1.

Due to the dynamics of the molten material, the rule for the detection of a sensor defect
was adapted during the analysis of the data. The measurement data showed that the
position of a process anomaly and the position of the resulting defect were not always the
same. It is supposed that this is related to the contraction of the molten material during
solidification. If a filter detects an anomaly in the surroundings of a defective region, it counts
as a correctly detected sensor defect.

Falling below the lower limit in the filter absolute fluctuations led to the highest sensitiv-
ity and specificity values for the indicators melt pool width (61|77), melt pool length (72|73),
maximum intensity of the HSC1 (68|76), mean intensity of the HSC1 (64|86), and intensity
of the on-axis photodiode (71|74). The filter short fluctuations was not suitable for the defect
detection. The accuracy values were below 60% for all indicators. The filter dynamic showed
increased values when an accumulation of material occurred. The increased values were
found for the indicators intensity of the on-axis photodiode, melt pool length, and melt
pool width. This was attributed to the interruption and reconstruction of the melt pool
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when balling occurs. Thus, the process monitoring signal shows increased signal dynamics
in this region. However, the material accumulations were not considered as a defect in
this work.

4.1.2. Test Bench

The data of the TC were reduced to two different indicator systems: the melt pool
geometry and the number of spatters. As described above, using the number of spatters as
an indicator for the process stability can be beneficial, as a high number of spatters implies
strong melt pool dynamics, and thus an unstable process. Similarly, the melt pool geometry
can indicate defect phenomena such as balling. The height of the centroid of the melt pool
and the total pixel area were selected as indicators for the melt pool geometry (see Figure 7).
The threshold method was used to detect the spatters and the melt pool in each frame.
Here, different threshold values were used for the two indicator systems to clearly separate
them. It was assumed, that the melt pool always describes the largest contiguous area of
pixels in each frame. Subsequently, the coordinates of the center of gravity and the total
area of the detected pixels were determined. To improve the signal-to-noise ratio of the
spatter detection, the spatters were only included in the evaluation if they were tracked
over four consecutive frames. For this purpose, a spatter tracking algorithm similar as in
the work of [20] was used and adapted for the analysis of the TC data. In addition to the
number of spatters, the pixel area of the largest spatter per frame was also included as an
indicator. For the HSC2, only the total number of spatters was chosen as an indicator, as the
melt pool was not resolved in detail.
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Figure 7. Indicators for the melt pool geometry (white dots) and for the number of spatters (black
dots) in the monitoring system TC; the centroids of the melt pool and of the spatters are marked with
an “X”.

Due to the low sampling rate of the process monitoring systems in the test bench
compared to the systems in the EOS M290, only defects lager than 50 µm were detected.
The indicators of the melt pool geometry showed the highest sensitivity and specificity values
with exceedance of the upper limit in the filter absolute fluctuations for the melt pool height
(77|74) and for the melt pool area (77|88). With the filter short fluctuations values of (77|76)
for the melt pool height and (77|72) for the melt pool area were achieved. In the case of
the number of spatters, falling below the lower limit in the filter dynamic (55|74) and in
the filter short fluctuations (77|62) showed the best results. For the indicator area of the
largest spatter, exceedance of the upper limit in the filters dynamic (77|60) and absolute
fluctuations (77|64) and falling below the lower limit in the filter short fluctuations (77|80)
were most suitable for anomaly detection. The defect detection capability of the HSC2
showed significantly lower accuracy for the detection of reference defects for all indicator–
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filter combinations. Here, falling below the lower limit in the filters dynamic (77|49)
and short fluctuations (55|47) were the most suitable.

4.2. Sensor-Level Data Fusion
4.2.1. EOS M290

The sensor-level data fusion improved the prediction accuracy for a specific anomaly,
especially for the HSC1. The low melt pool width and the low melt pool length in the
filter absolute fluctuations were fused with the logical operator “or” (77|76). The fusion of
the low average and the low maximum intensity in the filter absolute fluctuations resulted in
values of (77|76). These results showed that the reduction in the melt track volume is also
accompanied by a reduction of the melt pool area. The reduction in the intensity indicated
that the temperature in the melt pool was also reduced. However, this can only be stated
as a hypothesis, since the emission coefficient of the molten material changes nonlinearly
with the temperature [30]. The reduction of the melt pool dimensions and the reduction of
the melt pool intensity superimposed each other in the intensity signal of the MPM. Both
reduced the recorded intensity data of the photodiodes.

4.2.2. Test Bench

As with the EOS M290 process monitoring systems, the data fusion led to a significant
increase in the defect prediction accuracy of the test bench. For the indicator melt pool
area, a data fusion with the logical operator “or” increased the statistical values to (100|72).
The data fusion within the indicator melt pool height led to statistical values of (78|82).
For the indicator total amount of spatters, falling below the lower limit of the filters dynamic
and short fluctuations were fused with the logical operator “or” (89|54). Higher values
were achieved for the number of large spatters. The exceedance of the upper limit of the
filters short fluctuations and dynamic were fused with the logical operator “or”. With this
sensor-level data fusion, values of (89|71) were achieved. These results indicated, that a
separation of a large amount of molten material (large spatter) from the melt pool results
in a reference defect in a single melt track. Simultaneously, the total number of spatters
decreases. Before the large spatter separates, an enlargement of the melt pool in the Z-
direction can be measured. In this work, the mean area of the melt pool was 150 pixels
and the mean centroid Z-position was 10.6 pixels. A defect was indicated for melt pools
with an area greater than 200 pixels and a centroid Z-position higher than 12 pixels. This
corresponds to an enlargement of the melt pool area of 33.3% and an increase of the centroid
Z-position of 13.2%. This behavior could be attributed to the collapse of the keyhole of the
melt pool and hence to the formation of a sub-surface pore in the resulting component [31].

The data of the HSC2 showed lower values during the evaluation of the filters.
The sensor-level data fusion improved these values, but they were still below the val-
ues of the other process monitoring system of the test bench. The fusion of falling below
the lower limit in the filters dynamic and short fluctuations for the total number of spatters
with the logical operator “and” resulted in values of (56|70).

4.3. System-Level Data Fusion
4.3.1. EOS M290

The system-level data fusion of the different process monitoring systems improved the
overall sensitivity. However, the specificity decreased slightly. For the detection of the defects
for the single melt tracks, values of (92|67) were achieved. This accounted for an increase
in the sensitivity of 15% compared to the sensor-level data fusion. Therefore, the HSC1 melt
pool geometry, the HSC1 melt pool intensity, and the MPM signal of the on-axis photodiode
out of the sensor-level fusion were combined with the logical operator “or”.

4.3.2. Test Bench

In this study, the HSC2 and the TC showed very different prediction qualities of
(56|70) and (89|86), respectively. A fusion would have reduced the prediction accuracy of
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the merged system compared to the data of the TC. Due to this, the data of the two systems
were not fused. The values for the sensitivity and specificity of the TC were achieved with
the fusion of the TC melt pool geometry and the TC spatters by the logical operator “and”.

5. Conclusions and Outlook

In this work, a methodology for improved defect detection in the PBF-LB/M process
by sensor data fusion was presented. The methodology was applied to the balling defect
type as an example. First, indicators were defined based on process knowledge about defect
causes and a qualitative analysis of the data. Using the threshold filters absolute fluctua-
tions, dynamic, and short fluctuations, process anomalies were identified. Via a quantitative
evaluation by the statistical parameters sensitivity and specificity, the filters were calibrated.
Finally, a two-stage data fusion was applied. On the sensor-level, the characteristics of the
three filters of each process monitoring system were fused with logical operators. After-
wards, the different process monitoring systems were fused according to the sensor-level
data fusion. From the results of this work, the following conclusions can be drawn:

• The presented methodology enabled the defect detection in single melt tracks manu-
factured on two different PBF-LB/M systems. They differed in terms of the machine,
the process monitoring systems, and the material. For the EOS M290 with 316L
powder, values of (sensitivity: 92|specificity: 67) were achieved. The test bench with
Scalmalloy® powder showed values of (sensitivity: 89|specificity: 86).

• In both PBF-LB/M systems, the data fusion enabled a significant increase of up to 20%
in the sensitivity of the defect detection. It was shown that each process monitoring
system detects different defect related process phenomena. The fusion of the data
enabled a more comprehensive evaluation of the causes of the defects.

• A reduction in the dimensions of the melt pool and in the intensity of the melt pool
were suitable indicators for the defect detection with on-axis process monitoring
systems. These systems can detect a melt pool collapse through the correlated short-
term reduction in the melt pool size and the cooling of the molten material.

• Off-axis systems showed the melt pool in the X-Z and in the X-Y plane and allowed
for a larger image section. Viewing in the X-Z plane allowed the extension of the melt
pool in the Z-direction to be observed. Melt pools with an area greater than 200 pixels
(mean area = 159 pixels) and a Z-position of the centroid higher than 12 pixels (mean
Z-position = 10.6 pixels) indicated a defect. Off-axis systems with a large field of view
enabled the detection of spatters, but had a reduced acquisition rate. Nevertheless,
these systems showed dynamics in the melt pool as it collapsed. This was detected by
the separation of large spatters from the melt pool.

In future work, the methodology should also be applied to 2D melting surfaces and
3D solids. This will extend the investigations to further defect types, such as porosity.
Additionally, the methodology can be extended to a classification of the defect type and to
a quantification of the defect size. For this purpose, the magnitude of a sensor defect can be
evaluated by the value of the detected process anomaly. In parallel to this consideration,
an optimization of the methodology should be carried out, which examines and optimizes
the influence of the decision rules applied within this study. This work showed that
the different process monitoring systems of the test bench and the EOS M290 detected
different process anomalies. The fusion of these systems would enable more comprehensive
detection of defect-related process anomalies and could further improve the defect detection
and evaluation.
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