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Dalian 116024, China; s201051122@mail.dlut.edu.cn; Tel.: +86-137-9519-3001

Abstract: Aiming at the numerical simulation of the entire crack propagation process in concrete,
a numerical method is proposed, in which cohesive stress on the fracture process zone (FPZ) is
simulated and applied by a nonlinear spring element. Using displacement control, the cohesive stress
values on the FPZ are obtained from solving a system of nonlinear equations through an iterative
process. According to a crack propagation criterion based on initial fracture toughness, the approach
adds the spring elements to finite element analysis when simulating mode I crack propagation in
standard three-point bending notched concrete beams with different strengths, initial crack ratios
(a 0 /D), and depths (D). The simulated load versus displacement (P-Delta) curves are performed
to recalculate the fracture energy and verify the accuracy of cohesion in the proposed method. The
simulated load versus crack mouth opening displacement (P-CMOD) curves are consistent with the
previous experimental results. Subsequently, the variations of the FPZ length and the crack extension
resistance (KR) curves are studied according to the proposed iterative approach. Compared with the
existing methods using a noniterative process, the iterative approach generates a larger maximum
FPZ length and KR curve where the FPZ length is mainly determined by the fracture energy, tensile
strength, and geometry shape of the beam, and the KR curve is primarily determined by the fracture
energy and FPZ length. The significant differences in numerical results indicate that the applying
cohesion is essential in numerical simulation. It is reasonable to conclude that the proposed nonlinear
spring element is more applicable and practical in the numerical simulation of the concrete mode I
crack propagation process by improving the accuracy of the cohesion applied on the FPZ.

Keywords: cohesion on FPZ; iterative approach; nonlinear spring element; displacement control;
P-delta curve; P-CMOD curve; FPZ length; KR curve

1. Introduction

It is well known that concrete is a quasi-brittle material. The cracking behavior of
notched concrete beams is influenced by size effects and environmental conditions. Fracture
tests have been conducted to investigate the effects of these factors [1,2]. In addition,
scholars have proposed different fracture criterions to determine the instability of cracks in
concrete, such as the maximum circumferential stress criterion [3], the maximum energy
release rate criterion [4], and the double-K fracture criterion [5,6]. Specifically, the double-K
fracture criterion uses crack initial fracture toughness and unstable fracture toughness to
determine the initiation and instability of concrete fracture. Subsequently, researchers have
studied all steps of crack development based on crack propagation criterions, which could
reflect the association between the propagation force at the crack tip and the material’s own
resistance during crack propagation.

To describe the strain softening behavior of concrete fracture, the concept of fracture
process zone (FPZ) was established. By considering attractive atomic forces, Barenblatt [7,8]
introduced FPZ, which was defined as a confined area near the crack tip. Furthermore, a
different theory was proposed by Dugdale [9], which stated that the stress was equivalent
to the yield strength of the material that acted across the crack within the plastic zone near
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the crack tip. This theory is applicable to ductile metal materials. Later, Hillerborg et al. [10]
presented a fictitious crack model to represent the FPZ of quasi-brittle materials, where
cohesions were distributed on both sides of the fictitious crack according to the settled
softening constitutive relationship. The softening constitutive relationship of concrete, such
as linear [10], bilinear [11], and exponential curves [12], described the characteristics of
cohesive force on the FPZ. Fracture energy Gf represented the envelope area under the soft-
ening constitutive curve and concluded that it was a necessary parameter in the numerical
analysis of the concrete fracture process. It could be determined through experiments, such
as direct tensile tests [13] or three-point bending beam tests [14].

The fictitious crack model has been widely adopted and applied in the crack propaga-
tion process simulation. Based on the fictitious crack model proposed by Hillerborg [10],
Gerstle and Xie [15] simulated the crack propagation process according to the maximum
tensile strength criterion by using a linear softening constitutive relationship. Carpinteri
and Massabó [16] introduced a crack propagation criterion characterized by the stress
intensity factor for the mode I fracture of cement-based materials, which can be expressed
as Equation (1):

KP
I − Kσ

I = 0, (1)

where KP
I represents the stress intensity factor generated by external force, and Kσ

I rep-
resents the stress intensity factor generated by cohesion. The criterion stated that when
the crack was in a critical state, the difference between the stress intensity factor caused
by external force and cohesion was zero at the crack tip. Ooi and Yang [17,18], Yang and
Deeks [19], and Moës and Belytschko [20] applied this criterion to simulate the mode I
and mix-mode fracture of reinforced concrete and plain concrete. However, concrete is
a quasi-brittle material, and KP

I −Kσ
I is supposed to be a finite value. Based on this, Wu

et al. [21] proposed an intensity-factor-based fracture propagation criterion where the
difference between the stress intensity factor at the crack tip generated from external load
and cohesion was greater than the initiation fracture toughness (Kini

Ic ), and crack started
propagating. The propagation criterion can be shown as Equation (2):

KP
I −Kσ

I ≥ Kini
Ic , (2)

This modified criterion is recently widely used in simulating the entire process of crack
propagation, such as: three-point bending beams [21], infinite slab [22], concrete gravity
dam model [23], concrete mode I [24], modes I–II [25] fracture of different strengths, and
bimaterial interface crack propagation [26]. Meanwhile, numerical methods for calculating
the FPZ length and KR curve are developed [21,22].

The main difference of the above literature is the utilization of different fracture
propagation criterions in finite element numerical simulation to obtain the entire process of
fracture propagation. What needs to be emphasized is that whichever fracture propagation
criterion is used for numerical simulation, criterions are always based on the fictitious crack
model, and the cohesion applied in the fictitious crack is an important link to affect the
numerical simulations.

There are mainly two methods to apply cohesion in fictitious crack during crack prop-
agation. The first method is to add the interfacial elements to characterize the cohesion
in a separate crack, as shown in Figure 1a. Ingraffea et al. [27–29] used six-node interface
elements to characterize fictitious crack for the analysis of complex fracture, but the non-
linear calculation efficiency was low. Swenson [30] used the six-node interface elements
to simulate the dynamic crack propagation process. In the analysis of Bocca et al. [31]
and Gerstle and Xie [15], a four-node linear displacement interface element was used to
characterize the cohesion in the fictitious crack. Moreover, none of the above-mentioned
finite element models can calculate or apply stress intensity factors.

The second method to apply cohesive stress is considering the calculation results of a
finite element and directly applying cohesion to the corresponding crack surface nodes as a
boundary condition [21–26], as shown in Figure 1b. It is noticeable that the cohesion applied
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in this process is not accurate enough. Crack opening displacement (COD) is obtained
from external load, P, rather than the superposition of external load and the cohesion, P + σ,
denoted by CODP+σ < CODP, where CODP+σ is COD induced by P + σ and CODP is
COD induced by P, so that the corresponding cohesion relationship is σP+σ > σP, where
σP+σ is a recalculated cohesion under P + σ and σP is a cohesion calculated from P based
on the softening law, which indicates that the cohesion applied on a crack surface according
to this method is less than the theoretical value. To obtain a more realistic cohesive stress
value, it is plausible to use the multiple iterations of CODP+σ and σ. However, it is incorrect
to solve the nonlinear problem, and this iterative method often gives a nonconvergent
result. Although the latter method considered the initial fracture toughness of concrete and
used it as a control parameter for a crack propagation criterion, cohesion on the FPZ has
not been applied accurately in the past research [21–26]. Therefore, other methods need to
be explored to effectively solve the nonlinear problem.
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Figure 1. Methods to apply cohesion on the FPZ: (a) insert interface element into FPZ, (b) directly
apply cohesion on FPZ.

In this paper, a numerical method is proposed, in which cohesive stress on FPZ in
concrete is simulated and applied by a nonlinear spring element. The crack propagation
criterion based on initial fracture toughness, which considers the stress singularity at the
crack tip, is used. The proposed method improves the accuracy of cohesion applied on
the FPZ and optimizes the numerical simulation process through displacement control.
Subsequently, the P-delta curves, the P-CMOD curves, the variation of the FPZ length, and
the KR curves are obtained. The simulated P-delta curves are performed to recalculate
fracture energy and verify the accuracy of cohesion in the proposed method. The simulated
P-CMOD curves are consistent with the previous experimental results, while the FPZ length
and KR curves are different from the previous numerical results. The reasons that lead to
the differences in results are discussed in detail. The comparative results in this paper will
lead to a better insight, in which the accurate application of cohesive force on the FPZ has a
crucial impact on the results of numerical simulations.

2. Methods and Materials
2.1. Nonlinear Spring Element

The user-defined nonlinear spring element of Ansys finite element software is used to
complete the nonlinear finite element iterative solution process to achieve accurate cohesion
applied on the concrete FPZ.

The unidirectional spring element with nonlinear generalized force deflection capa-
bility, combin39, can be utilized in the structural analysis [32]. This element can achieve
longitudinal or torsional force in 1-D, 2-D, and 3-D application. In this paper, the element
1-D mode is used to apply the cohesive stress on the surface of a newly generated separate
crack. The generalized force–deflection curve of this element is shown in Figure 2. The first
and third quadrants indicate the tension and compression of the element, respectively. The
element can output stress according to the user-defined force–deflection relationship curve.
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The Combin39 element controls the mechanical behavior through key options. KEY-
OPT(1) controls the unloading path of the element. Since there is no COD reduction in
the FPZ of concrete mode I cracks, 0 is assigned to KEYOPT(1) to unload according to the
F-D loading curve. KEYOPT(2) controls the deformation behavior of the element under
compression. The Combin39 elements used in this simulation provide tensile force on
the surface of the newly generated separate crack to simulate cohesion that hinders the
crack from opening and expanding. The cohesion does not transmit compressive stress,
for KEYOPT(2), and assigns a value of 1 so that the element does not provide compressive
stress under compression, as shown in Figure 3. KEYOPT(3) = 0 makes the element provide
stress along the x-axis direction of the element itself. KEYOPT(4) = 0 makes the element
provide 1-D F-D relationships.
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Figure 3. Combin39 force–deflection curves (KEYOPT(1) = 0, KEYOPT(2) = 1).

A Combin39 element defines multiple points to represent the F-D relationship, so
using this element can achieve stress softening behavior. The bilinear softening constitutive
proposed by Petersson [11] is used in this paper to represent the relationship between
cohesion and COD in the FPZ. This constitutive relationship is consistent with that used
in previous research studies [21–26], so the results of this paper can be compared with
those obtained before for discussion. The region under the softening constitutive curve
represents the material’s fracture energy. The softening constitutive relationship is shown
in Figure 4.
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The corresponding formula is as follows:

σ(w) =


ft−(f t−σs)(w/w s), 0 ≤ w ≤ ws,

σs(w 0 −w)/(w 0−ws), w0 ≤ w ≤ ws
0 , w ≥ w0,

, (3)

where ft is the tensile strength of concrete, w is the opening displacement at any position
between the newly generated crack surface, w0 is critical crack opening displacement, σs
and ws separately represent the cohesive force and crack opening displacement of the
turning point in a bilinear softening constitutive relationship. The concrete tensile strength
ft and fracture energy Gf determine σs, w0, and ws. The expressions are as follows:

σs= ft/3, (4)

w0= 3.6Gf/ft, (5)

ws= 0.8Gf/ft. (6)

A point should be noted that the Combin39 element in Ansys requires the stiffness
characterized by the first section in the first quadrant to be positive. To this end, a positive
value must be assigned to the stiffness of the spring element. In addition, it is necessary to
give the spring element an infinite initial stiffness, which is consistent with the softening
constitutive relationship as in Figure 5. Therefore, the value corresponding to 0.1% of
the critical crack opening displacement w0 on the softening constitutive curve is used to
calculate the initial stiffness. In fact, during the nonlinear solution process, the relative
displacements of the nodes at both ends of the spring element with an initial length of zero
will be greater than 0.1% w0, and the effect of the first elastic section in the spring element
constitutive relationship on the overall numerical simulation can be ignored.
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2.2. Methods of Simulation

In this finite element analysis, the element in use is six-node triangular elements,
the crack propagation length is set to 2 mm per step, and the gird near the crack needs
to be encrypted. Different from the existing cohesive stress application method, after
re-establishing and remeshing the model, the Combin39 nonlinear spring element should
be added to connect the corresponding node on the crack surface, as shown in Figure 6.
Due to the fine meshing of the model, a trapezoidal formula is used to apply nodal force at
nodes of the triangular element instead of the nonuniform surface load of the element.
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Then enter the solver, apply the load, and use the Newton–Raphson method to perform
a nonlinear solution using line search. For nonlinear problems, Ansys uses Gaussian point
results for calculation by default. At this time, the cohesive stress calculated is more accurate
than the existing cohesion application method [21–26] under the same load constraint.

Equation (2) is applied as the crack propagate criterion [21] in this paper. The entire
crack propagation process numerical simulation algorithm is described as follows:

1. According to the test of geometric parameters and material parameters, a finite
element model is established and meshed. The crack tip grid element should be
performed to meet a singularity of −1/2.

2. Apply displacement constraints to the finite element model, and calculate the stress
intensity at the crack tip. When it reaches the initial fracture toughness, the crack
starts to propagate.

3. Crack spreads forward for a certain unit length ∆a, and the finite element model is re-
established and remeshed. Add the spring element between the newly generated interface.

4. Use the displacement results from the previous step as the initial displacement condi-
tions for this step.

5. Determine whether the crack propagation criterion is satisfied. If not, increase the
loading point displacement until the criterion is satisfied.

6. Repeat steps 4 to 5 until the crack tip extends to the edge of the model, and the
simulation of the entire crack propagation process ends. The calculation flow diagram
is shown in Figure 7.
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In the simulation, different from the load control method used in previous litera-
tures [21–26], a displacement control method consistent with the real test is used. In a
practical test represented by a three-point bending beam test, displacement-controlled
loading is used, and the external load at the loading point is measured by a load sensor.
Compared with the load control, the displacement control can quickly get a convergent
solution from the finite element as a boundary condition. In contrast, load-controlled load-
ing will lose the calculation accuracy in the nonlinear calculation process, which requires
more iterations and even does not converge. In this paper, the proposed spring element is
used to apply cohesive stress on the concrete FPZ to simulate the mode I crack propagation
process of three-point bending beams.

2.3. Materials for Simulation

One set simulates concrete with different strengths, which is named C-series; the
experimental data are from Dong [24] and Wang [33]; and concrete properties are shown in
Table 1 (where fc represents the compressive strength, and E represents the elastic modulus).
The size of the specimen in this set is S × D × B = 480 mm × 120 mm × 60 mm, and the
initial crack ratio a0/D is set to 0.3, as shown in Figure 8.
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Table 1. Material properties.

Concrete fc
(MPa)

ft
(MPa)

E
(GPa)

Kini
Ic

(MPa·m1/2)
Gf

(N/m)

C20 32.8 3.05 29.9 0.461 117.1
C40 48.9 3.74 33.2 0.616 124.5
C60 69.9 4.43 35.7 0.632 114.9
C80 84.1 5.01 38.1 0.667 120.5

C100 115.8 5.71 41.4 0.917 115.4
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Figure 8. Notched concrete beam under three-point bending.

Another set of data is from Dong [21]. This set is used to simulate beams with a
different initial crack ratio a0/D and depth D. The specimens in the literature [21] were
divided into two series, named B-series and L-series, and the same series names were
still used in this paper. For the B-series, the size of specimens is retained at S × D × B =
600 mm × 150 mm × 40 mm, but the initial crack ratio a0/D varies from 0.2 to 0.6 (Table 2),
and the material mechanical properties are ft = 2.4 MPa and E = 28 GPa. For L-series
specimens, the span-to-depth ratio S/D is set to 4, the initial crack ratio a0/D is set to
0.4, the depth D varies from 100 mm to 300 mm (Table 3), and the material mechanical
properties are ft = 2.3 MPa and E = 24 GPa.

Table 2. Size and material parameters for B-series beams.

Specimen S × D × B (mm) a0/D Kini
IC (MPa·m1/2) Gf (N/m)

B2-1 600 × 150 × 40 0.2 0.60 96
B2-2 0.59 100
B2-3 0.62 92
Avg. 0.60 96

B3-1 600 × 150 × 40 0.3 0.65 100
B3-2 0.63 105
B3-3 0.53 88
Avg. 0.60 98

B4-2 600 × 150 × 40 0.4 0.58 85
B4-3 0.61 100
Avg. 0.60 92.5

B6-1 600 × 150 × 40 0.6 0.60 105
B6-2 0.62 120
B6-3 0.58 100
Avg. 0.60 108
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Table 3. Size and material parameters for L-series beams.

Specimen S × D × B (mm) a0/D Kini
Ic (MPa·m1/2) Gf (N/m)

L1-1 400 × 100 × 100 0.4 0.52 104
L1-2 0.52 90
Avg. 0.52 97

L2-1 800 × 200 × 100 0.4 0.71 155
L2-2 0.62 151
Avg. 0.67 153

L3-1 1200 × 300 × 100 0.4 0.78 123
L3-2 0.75 146
L3-3 0.75 153
Avg. 0.76 141

3. Results and Discussion

The simulation results of the crack propagation process based on the proposed method
are compared with the previous experimental results and previously simulated results. In
the same series, the crack propagation criterion, the softening constitutive, the material
mechanical properties, and the specimen size are all the same except for the cohesion
application method. In this section, the numerical method based on applying cohesion
by the Combin39 nonlinear spring element is called iteration, and the previous numerical
method that directly applies cohesion is called no iteration. The results will be discussed
through four aspects: P-delta curve, P-CMOD curve, FPZ length, and KR curve.

3.1. P-Delta Curve

The P-delta curves were not provided in the previous study, so the comparison be-
tween simulation results and experimental results cannot be performed. However, simula-
tion results obtained from different methods can be compared. Fracture energy is repre-
sented by cohesion on the FPZ, and the fracture energy can be calculated by Equation (7):

Gf =
W0 + mgδ0

Alig
, (7)

where W0 represents the external load work, which is equal to the enveloped area un-
der the P-delta curve; mgδ0 represents the work done by specimen self-weight; and
Alig = (D − a0)× B represents the ligament area. Therefore, fracture energy can be re-
calculated from the P-delta curves obtained by numerical simulation and compared with
the input values to verify the accuracy of the applied cohesion with iteration. The P-delta
curves obtained by the iterative and noniterative methods are plotted in Figure 9, and the
plots enable us to find that the enveloped areas under the P-delta curves are significantly
different under the two different methods. The fracture energy is recalculated according to
Equation (7), and comparison results are shown in Table 4.
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Table 4. Recalculated fracture energy comparison table.

Group mg
(N)

δ0
(mm)

W0
(N·mm)

Alig
(mm × mm)

Gf-Recalc
(N/m)

Gf
(N/m) %

C20-Iteration
81.37

0.60 538.5
84 × 60

116.5
117.1

−0.5%
C20-No Iteration 0.22 224.2 48.0 −59.0%

C40-Iteration
81.37

0.55 592.5
84 × 60

126.4
124.5

1.5%
C40-No Iteration 0.24 286.0 60.6 −51.3%

C60-Iteration
81.37

0.48 553.0
84 × 60

117.5
114.9

2.2%
C60-No Iteration 0.23 283.5 60.0 −47.8%

C80-Iteration
81.37

0.45 581.3
84 × 60

122.6
120.5

1.7%
C80-No Iteration 0.23 303.0 63.8 −47.0%

C100-Iteration
81.37

0.30 571.6
84 × 60

118.3
115.4

2.5%
C100-No Iteration 0.26 374.4 78.5 −32.0%

B2-Iteration
84.76

0.46 438.2
120 × 40

99.5
96.0

3.6%
B2-No Iteration 0.26 235.8 53.7 −44.0%

B3-Iteration
84.76

0.52 385.9
105 × 40

102.4
98.0

4.5%
B3-No Iteration 0.27 203.2 53.8 −45.1%

B4-Iteration
84.76

0.46 300.2
90 × 40

94.1
92.5

1.8%
B4-No Iteration 0.29 164.3 52.5 −43.3%
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Table 4. Cont.

Group mg
(N)

δ0
(mm)

W0
(N·mm)

Alig
(mm × mm)

Gf-Recalc
(N/m)

Gf
(N/m) %

B6-Iteration
84.76

0.48 207.1
60 × 40

106.8
108.0

−1.1%
B6-No Iteration 0.30 104.9 54.3 −49.7%

L1-Iteration
94.18

0.45 523.0
60 × 100

94.2
97.0

−2.9%
L1-No Iteration 0.22 256.7 46.2 −52.3%

L2-Iteration
376.7

0.66 1555.2
120 × 100

150.3
153.0

−1.8%
L2-No Iteration 0.44 831.3 82.1 −45.7%

L3-Iteration
847.6

0.75 2178.4
180 × 100

156.2
141.0

10.8%
L3-No Iteration 0.50 1308.6 96.2 −31.7%

* Gf-recalc means recalculated fracture energy; % means the difference percentage of Gf-recalc from the
material’s Gf.

In Table 4, it can be concluded that the fracture energy calculated by the iterative
method is close to the input values, while the fracture energy calculated by the noniterative
method is much smaller than the input values. This conclusion is also consistent with the
theoretical analysis, indicating that directly applying the cohesion approach results in a
smaller value than the true cohesion value. In other words, the accuracy of cohesion can be
improved by the proposed method, where cohesion is applied by the spring element.

3.2. P-CMOD Curve

The test and simulated P-CMOD results of the C-series are plotted in Figure 10.
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results, and only the P-CMOD curves from [21] are drawn in these figures for comparison. 
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Figure 10. Three-point bending beam P-CMOD curves: (a) C20, (b) C40, (c) C60, (d) C80, (e) C100.

It is worth noting from Figure 10 that, except for the C20 group, the simulated curves
by iteration fit the experimental curves perfectly. In each set of curves, the peak load of the
simulation obtained by no iteration is less than that obtained by iteration. This is because
without iteration, the COD result from external load is larger than the COD obtained from
the superposition of external load and cohesion so that the corresponding cohesive force
is less based on the softening constitutive. In contrast, the iteration method can get a
larger but more accurate cohesion, so it can get a larger peak load according to the crack
propagation criterion in use. The descending section of the curve obtained by the iteration
method agrees better with test curves compared with the no iteration method. Previous
simulation results [24] are plotted in Figure 10 in green. From the comparison of the results
of the P-CMOD curves, it can be found that previous simulated curves given by Dong are
close to the result of no iteration.

The experimental and simulated curves of the B-series and L-series are plotted in
Figures 11 and 12. P-CMOD curves of no iteration are consistent with previous simulated
results, and only the P-CMOD curves from [21] are drawn in these figures for comparison.
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The first linear segment in Figures 11 and 12 represents the elastic deformation behav-
ior of concrete. Using the point on the linear segment on the test curve, the elastic modulus
of concrete can be calculated by Equation (8) [34]:

CMOD =
24Pλ
EB

[
0.76 − 2.28λ+ 3.87λ2 − 2.04λ3 +

0.66

(1 − λ)2

]
, (8)

where λ is equal to (a + H 0)/(d + H 0), H0 is the thickness of the knife edge holding
the clip gauges used to measure CMOD and equal to 2 mm [24], P and CMOD are data
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value chosen on the linear segment in the test curve, and B is the thickness of the test
specimen. The difference of the linear segment between the numerical simulation and the
test indicates that the elastic modulus of the concrete measured by the test is not accurate
enough. However, material parameters from Dong [21] are still used in the simulation
for comparison. It can be seen from figures that the simulation has the same trend as the
previous set.

Conclusions can be drawn that improving the accuracy of cohesion in a fictitious crack
has a positive effect on the numerical simulation, and a curve obtained by the iterative
method gives a larger peak load. The criterion based on material initial fracture toughness
with iterative cohesion is suitable for simulating the P-CMOD curves of concrete with a
different strength, a0/D, and size.

3.3. FPZ Length

The simulated FPZ length of the C-series as the crack propagation process is shown in
Figure 13, where the horizontal axis is the ratio of the fictitious crack propagation length
to the ligament length, expressed by ∆a/(D − a 0). Only the C20, C60, and C100 FPZ
length results are given by Dong [24]. For the B-series and L-series, the results are plotted
in Figure 14, the horizontal axis represents the ratio of the crack length to the depth of the
beam expressed by a/D, and the vertical axis represents the ratio of the sum of the initial
crack length and FPZ length to the beam depth expressed by (a 0+aσ)/D.
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The reason for choosing different coordinate systems in the comparison is to facilitate
comparison with the original literature. From the comparison results in Figure 13, it can be
found that after reaching the maximum load corresponding to the P-CMOD curve, the FPZ
length simulated by a different method keeps growing with the crack propagation. The
iteration method obtains a greater maximum length value compared with the no iteration
method, as shown in Figures 13 and 14. The cohesion will appear at the region with COD
less than w0 after multiple iterations, while cohesion will not exist at a part of the same
region whose COD is greater than the critical value without iteration. After FPZ hits the
maximum value, the FPZ length with iteration decreases more significantly. The numerical
simulated results simulated by Dong et al. [21,24] were compared with the numerical
simulated results in this paper. The variation of the C20 group is close to the iteration result,
but the FPZ length of the C60 and C100 groups exceeds the iteration results. It may suggest
that a certain iterative process during simulation process, “repeatedly solving COD and σ”,
is conducted when calculating the FPZ length. However, the results are unstable and not
accurate enough for the C-series.

For the B-series and L-series, FPZ lengths obtained from Dong et al. [21] are smaller
than the results of the iterative ones. In the process of the iteration method, after adding the
Combin39 nonlinear spring element, only boundary conditions of the model are needed.
The load P, COD, and σ are solutions of nonlinear equations so that the cohesion applied in
the FPZ can be characterized more accurately by the iteration method. Next, factors that
affect the FPZ length based on the iterative results are figured out as follows.

For the C-series, it is found that with the increase in concrete strength, the maximum
FPZ length decreases. Based on the softening law, fracture energy and tensile strength are
the main factors in determining critical crack opening displacement. Small critical crack
opening displacement results in small FPZ length. The fracture energy for the C-series is
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close, so the concrete with higher tensile strength results in a shorter length of the FPZ. For
the B-series, as a0/D decreases, the maximum FPZ length increases since the beam with
smaller a0/D has a longer ligament length, which can make the FPZ fully develop. For the
L-series, as the depth of the beam increases, the maximum FPZ length increases, and the
principle is the same as the B-series. From another perspective, it can be concluded that the
geometry shape of beams affects the FPZ length.

3.4. KR Curve

The KR curves are used to represent the change in fracture toughness in the process of
crack propagation. Foote et al. [35] proposed a theoretical analysis model of the KR curve
before the FPZ fully developed. The theoretical model for analyzing the KR curve proposed
by Hu and Wittmann [36] accurately restored the wedge opening loaded mortar specimens’
test results. Xu and Reinhardt [37] proposed a KR calculation model based on cohesion in
the FPZ where KR was the stress intensity factor generated by initial fracture toughness
Kini

IC and cohesion in the FPZ together. However, an assumption was made that the FPZ
length and the cohesive stress distribution stayed unchanged after the FPZ fully developed.
Therefore, the KR curve increased as the ratio of the effective crack length to the beam
depth increased. Lutz and Swain [38,39] found that the KR resistance curve for ceramic
brittle materials increased as the increase in the FPZ length. After the FPZ hit the maximum
value, KR remained a stable value. This result was consistent with the conclusion explored
by Xu et al. [40]. Dong et al. [21] proposed another method for numerically calculating the
KR curve, in which KR is calculated by:

KR(∆a)= Kini
Ic +Kσ

I = KP
I (P, ∆a), (9)

where ∆a means the crack propagation length in numerical simulation, and KR(∆a) and
KP

I (P, ∆a) represent the stress intensity factor of the crack extension resistance and external
load, respectively. In other words, KR is equivalent to the stress intensity factor correspond-
ing to the external load during crack propagation. This paper uses the proposed spring
element model to calculate KR curves based on Equation (9). The simulated KR curves’
results of the B-series and L-series from this paper and previous simulation results [21] are
plotted in Figure 15 for comparison.

Materials 2022, 15, x FOR PEER REVIEW 16 of 20 
 

 

close, so the concrete with higher tensile strength results in a shorter length of the FPZ. 
For the B-series, as a0/D decreases, the maximum FPZ length increases since the beam 
with smaller a0/D has a longer ligament length, which can make the FPZ fully develop. 
For the L-series, as the depth of the beam increases, the maximum FPZ length increases, 
and the principle is the same as the B-series. From another perspective, it can be concluded 
that the geometry shape of beams affects the FPZ length. 

3.4. Kୖ Curve 
The KR curves are used to represent the change in fracture toughness in the process 

of crack propagation. Foote et al. [35] proposed a theoretical analysis model of the KR 
curve before the FPZ fully developed. The theoretical model for analyzing the KR curve 
proposed by Hu and Wittmann [36] accurately restored the wedge opening loaded mortar 
specimens’ test results. Xu and Reinhardt [37] proposed a KR calculation model based on 
cohesion in the FPZ where KR was the stress intensity factor generated by initial fracture 
toughness K୍େ୧୬୧ and cohesion in the FPZ together. However, an assumption was made 
that the FPZ length and the cohesive stress distribution stayed unchanged after the FPZ 
fully developed. Therefore, the KR  curve increased as the ratio of the effective crack 
length to the beam depth increased. Lutz and Swain [38,39] found that the KR resistance 
curve for ceramic brittle materials increased as the increase in the FPZ length. After the 
FPZ hit the maximum value, KR remained a stable value. This result was consistent with 
the conclusion explored by Xu et al. [40]. Dong et al. [21] proposed another method for 
numerically calculating the KR curve, in which KR is calculated by: 

KR(Δa) = KIc
ini+KI

σ = KI
P(P,Δa), (9) 

where Δa means the crack propagation length in numerical simulation, and KR(Δa) and 
KI

P(P,Δa) represent the stress intensity factor of the crack extension resistance and exter-
nal load, respectively. In other words, KR is equivalent to the stress intensity factor cor-
responding to the external load during crack propagation. This paper uses the proposed 
spring element model to calculate KR curves based on Equation (9). The simulated KR 
curves’ results of the B-series and L-series from this paper and previous simulation results 
[21] are plotted in Figure 15 for comparison. 

  
(a) (b) 

Figure 15. The KR curves: (a) B-series. (b) L-series. 

In the conclusion of a previous research [21], there was a plateau in the KR curve 
with the FPZ length variation. However, it can be found that there is no plateau existing 
in the KR curve by iterative approach in Figure 15. In comparison with Figures 13 and 14, 
the KR curve still exhibits an increasing trend after the FPZ length has fully developed, 
and only the raising rate becomes slightly decreased. To further explore the relationship 
between the FPZ length and the KR curve, this paper draws the FPZ length and KR 
curve of the L3 specimen together in Figure 16. From Figure 16, it can still be inferred that 

Figure 15. The KR curves: (a) B-series. (b) L-series.

In the conclusion of a previous research [21], there was a plateau in the KR curve with
the FPZ length variation. However, it can be found that there is no plateau existing in the
KR curve by iterative approach in Figure 15. In comparison with Figures 13 and 14, the KR
curve still exhibits an increasing trend after the FPZ length has fully developed, and only
the raising rate becomes slightly decreased. To further explore the relationship between
the FPZ length and the KR curve, this paper draws the FPZ length and KR curve of the
L3 specimen together in Figure 16. From Figure 16, it can still be inferred that the FPZ
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length affects the shape of the KR curve. After the FPZ length has fully developed, the KR
curve growth rate decreases. The value of the KR curve simulated in this paper is larger
than that from previous simulations [21], and at the end of the curves, the ratio of the KR
values obtained by two methods is over two times. The difference in results verifies that it
is essential to apply cohesive force in FPZ considering iteration.

Materials 2022, 15, x FOR PEER REVIEW 17 of 20 
 

 

the FPZ length affects the shape of the KR curve. After the FPZ length has fully devel-
oped, the KR curve growth rate decreases. The value of the KR curve simulated in this 
paper is larger than that from previous simulations [21], and at the end of the curves, the 
ratio of the KR values obtained by two methods is over two times. The difference in re-
sults verifies that it is essential to apply cohesive force in FPZ considering iteration. 

 
Figure 16. The FPZ length and KR curve of L3. 

It is necessary to reiterate that for the B-series and L-series, each set shares the same 
material mechanical parameter except for Gf and KIc

୧୬୧. It is more appropriate to explore 
the factors that affect the KR curve from these two series first. According to Figures 14b 
and 15b and Table 3, it can be found that the fracture energy Gf affects the shape of the 
KR curve. Although the depths of beams are different from the L-series, the FPZ length 
variation of the L1 and L2 specimens is similar from overall view in Figure 15b. The reason 
why the KR curve value of L2 is greater than L1 is that Gf of L2 is larger than that of L1. 
Comparing the KR curve of L1 with L3, though Gf of L3 is greater than that of L1, the 
FPZ length variation is the main reason for L3 getting a smaller KR value at the end of 
the curve at this moment. For the B-series as in Figure 14a, the initial crack ratio a0/D of 
specimens is different so the KR curve starts at different points, but at the end of the 
curve, Gf is the main reason for the difference in the KR value. 

The KR curves of the C-series are plotted in Figure 17. The KR value of higher-
strength concrete is the highest at first, but then it becomes the smallest. It seems like the 
tensile strength affects the KR value, and the concrete with a higher tensile strength will 
get a lower KR value at the end of the curve. According to the data in Table 1, it is found 
that the fracture energy of concrete with different strengths obtained from the experiment 
is relatively close. However, as discussed above about the influencing factors for the FPZ 
length of the C-series, higher tensile strength results in smaller maximum FPZ length un-
der the same fracture energy. Therefore, it can be concluded that the FPZ length is the 
main reason for the variation in the KR value of the C-series. 

Figure 16. The FPZ length and KR curve of L3.

It is necessary to reiterate that for the B-series and L-series, each set shares the
same material mechanical parameter except for Gf and Kini

Ic . It is more appropriate to
explore the factors that affect the KR curve from these two series first. According to
Figures 14b and 15b and Table 3, it can be found that the fracture energy Gf affects the
shape of the KR curve. Although the depths of beams are different from the L-series, the
FPZ length variation of the L1 and L2 specimens is similar from overall view in Figure 15b.
The reason why the KR curve value of L2 is greater than L1 is that Gf of L2 is larger than
that of L1. Comparing the KR curve of L1 with L3, though Gf of L3 is greater than that of
L1, the FPZ length variation is the main reason for L3 getting a smaller KR value at the end
of the curve at this moment. For the B-series as in Figure 14a, the initial crack ratio a0/D of
specimens is different so the KR curve starts at different points, but at the end of the curve,
Gf is the main reason for the difference in the KR value.

The KR curves of the C-series are plotted in Figure 17. The KR value of higher-strength
concrete is the highest at first, but then it becomes the smallest. It seems like the tensile
strength affects the KR value, and the concrete with a higher tensile strength will get a
lower KR value at the end of the curve. According to the data in Table 1, it is found that
the fracture energy of concrete with different strengths obtained from the experiment is
relatively close. However, as discussed above about the influencing factors for the FPZ
length of the C-series, higher tensile strength results in smaller maximum FPZ length under
the same fracture energy. Therefore, it can be concluded that the FPZ length is the main
reason for the variation in the KR value of the C-series.
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4. Conclusions

Aiming at the numerical simulation of the concrete mode I crack propagation process,
a numerical method using the Combin39 nonlinear spring element to apply cohesive stress
on the FPZ is proposed in this paper. Based on displacement control, the values of cohesion
on the FPZ are nonlinear solutions according to the Newton–Raphson method using line
search. According to the comparison between the above numerical calculation results and
test results, conclusions are drawn as follows:

1. The P-delta curves obtained from numerical simulation were used to recalculate
fracture energy and compared with the input value. The direct application of cohesion
produced results that were much smaller than the true value, while the proposed
method of applying cohesion by the spring element can improve the accuracy of the
applied cohesion.

2. Using the proposed method to apply the cohesive stress on the FPZ for numerical
calculation, though the peak load obtained is larger than the no-iteration result, P-
CMOD curves obtained are still fitted the experimental results, indicating that the
cohesion is applied in a reasonable manner, and the crack propagation criterion based
on material initial fracture toughness is suitable for numerical simulation.

3. The FPZ length obtained by the iteration method can reach a larger maximum value
compared with no-iteration, and the decline gradient of the FPZ length also becomes
larger after the FPZ is fully developed. The fracture energy, tensile strength, and
geometry shape of the beam are main reasons for deciding the FPZ length. According
to the bilinear softening constitutive, fracture energy and tensile strength determine
the critical crack opening displacement. A larger critical crack opening displacement
or a longer ligament makes it easier to obtain a larger FPZ length.

4. The KR curve obtained with iteration is significantly different from the noniterative
curve. The KR value is continually rising with the crack propagation. After the FPZ
length has fully developed, the rising rate of the KR curve has become slow. Through
the synergistic comparison with the change of the FPZ length, it is proved that the
KR value is mainly affected by the fracture energy and FPZ length. The iterative
method is more suitable for simulating the KR curves by improving the accuracy of
the cohesion on the FPZ.

The significant difference in numerical results indicates that applying cohesion is
essential for numerical simulation, and the accuracy of cohesion has a great influence on
the results of numerical simulation. The method has been proved to be well applicable to
numerical simulation for the concrete mode I crack propagation process by improving the
accuracy of cohesion applied on concrete FPZ. According to the crack propagation criterion
based on initial fracture toughness, more numerical simulations are needed to explore the
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effect of the cohesion application in the modes I–II crack propagation process, which is one
of our future studies.
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