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Abstract: The application of optimization techniques to improve the performance of polymer pro-
cessing technologies is of great practical consequence, since it may result in significant savings of
materials and energy resources, assist recycling schemes and generate products with better properties.
The present review aims at identifying and discussing the most important characteristics of polymer
processing optimization problems in terms of the nature of the objective function, optimization
algorithm, and process modelling approach that is used to evaluate the solutions and the parameters
to optimize. Taking into account the research efforts developed so far, it is shown that several opti-
mization methodologies can be applied to polymer processing with good results, without demanding
important computational requirements. Furthermore, within the field of artificial intelligence, several
approaches can reach significant success. The first part of this review demonstrated the advantages
of the optimization approach in polymer processing, discussed some concepts on multi-objective
optimization and reported the application of optimization methodologies to single and twin screw ex-
truders, extrusion dies and calibrators. This second part focuses on injection molding, blow molding
and thermoforming technologies.

Keywords: polymer processing; single screw; twin screw; injection molding; blow molding; thermo-
forming; optimization; artificial intelligence

1. Introduction

Societal and economic requirements, as well as environmental sustainability policies,
progressively call for manufacturing technologies that consume fewer resources, yield
more performing products, and accept bio-derived materials, even if these often have
inferior properties. Given the current worldwide concern with the environmental impact
of plastics, there is certainly an impetus towards increasing the performance of polymer
processing technologies.

Processing of thermoplastic polymers typically comprises a plasticizing step, followed
by melt shaping and cooling. These steps have been extensively analyzed both experimen-
tally and phenomenologically in terms of fluid mechanics, heat and mass transfer, rheology,
solid mechanics, polymer physics and chemistry. Physical models, and subsequently math-
ematical descriptions of the processes, have been used to develop computational modelling
routines, which are gradually able to determine with good accuracy the behavior of the
various processing routines for specific sets of equipment geometry, operating conditions
and material properties [1–4].

In part one of this work [5], it was shown that the available process modelling routines
are often used inefficiently to solve real processing problems, such as setting the operating
conditions of a process, defining the profile of a plasticizing screw, balancing the runner
system of an injection mold, defining the geometry of the pre-form for blowing a bottle
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with a specific thickness profile, or identifying the temperature distribution of a sheet for
thermoforming a part with a given thickness gradient. Indeed, these powerful simulation
tools are frequently exploited on a trial and error basis, requiring from the user the capacity
to assess the suitability of each process response and input a better one. Therefore, the
authors advocated the formulation of real processing problems as optimization problems.

As depicted in Figure 1, the optimization approach involves modelling and opti-
mization routines, and routines able to deal with the articulation of the objectives of the
optimization. The process modelling routine must be able to handle the decision variables
(typically operating conditions and/or geometric parameters) in order to obtain measures
of performance (objectives and restrictions). Since most polymer processing problems are
multi-objective and multi-constrained [6,7], there is a need to consider the simultaneous
existence of several objectives and constraints. Thus, the objective routines must deal
with the objectives in such a way that the optimization routines understand, i.e., rank the
solutions using a single number. In turn, the optimization algorithms decide about the
solutions to be evaluated by the modelling routine, i.e., they define the sets of decision
variables to be passed to the modelling routine. This decision is made on the basis of the
performance measures of the previously evaluated solution.

Figure 1. Optimization-based design framework.

Other, often more complex relationships must be also established between the existing
and/or generated data and the decision variables, objectives, constraints and environmental
parameters (see Figure 1):

(i) Data are generated experimentally and/or computationally. For a given problem,
data may be created either while the machine is operating (on-line), or disconnected
from the process (off-line) and environmental data may eventually influence the process
(e.g., room temperature, humidity). A global and complete portrait of the process can be
built by applying, for example, data mining techniques, in order to establish relations
between the data, including necessarily objectives and constraints. This type of analysis
relies on the use of Artificial Intelligent (AI) models that are able to tackle the decisions
about the process;

(ii) The use of environmental data may contribute to obtaining robust solutions,
i.e., solutions that perform well for a range of variations of specific design variables. For
instance, if the room temperature influences the performance of a specific process, a
robustness analysis can be made in order to find a better solution performing satisfactorily
under a wider range of room temperatures;
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(iii) The multi-objective nature of the problems needs to be considered in a sophisti-
cated way, since the use of simple methods, such as the aggregated sum, often fails even
in simple problems [6,7]. Usually, Multi-Objective Optimization Problems (MOOPs) use
an optimization algorithm where a specific articulation between the different objectives
is made through a single number, designated as a fitness value, which measures the per-
formance of a particular solution. Only optimization algorithms that can tackle various
solutions at once can be used as Multi-Objective Optimization Algorithms (MOOA) [6,7];

(iv) Generally, the need of obtaining reliable solutions requires the use of computa-
tionally demanding numerical modelling routines. Moreover, during optimization, many
modelling runs must be made. An alternative consists in using data mining techniques to
develop simpler models, designated by meta or surrogate models. This type of approach
relies on the concept of data-driven optimization, or in the use of AI techniques [8,9], and
has been previously applied to single screw extruders with innovative designs [10–13].

Table 1 compares the different optimization algorithms that are referred to in this
paper. The algorithms were classified based on their adequacy and efficiency, taking into
account the important parameters for the optimization problems analyzed here, i.e: dealing
with a single objective, finding the global optimum (or a good approximation to it), dealing
with a discontinuous objective space and a multi-objective environment, and the flexibility
or adaptability to deal with different types of problems.

Table 1. Classification of the optimization algorithms adequacy and efficiency: “—”, not adequate;
“–”, very inefficient; “-”, inefficient; “+”, adequate; “++”, efficient; “+++”, very efficient.

Algorithm Single Objective Global Optimum Discontinuous
Objective Space Multi-Objective Flexibility

Empirical + — — — —

Simplex + – — — —

Complex ++ – – — —

Regression ++ – — — –

Direct + — — — —

Gradient +++ - - — —

Simulated Annealing +++ + + ++ +

Particle Swarm Optimization +++ + + +++ +

Artificial Bee Colony +++ + + +++ +

Data Envelopment Analysis ++ + + ++ -

Ant Colony Optimization +++ +++ +++ +++ ++

Evolutionary Algorithms +++ +++ +++ +++ +++

This work continues the task initiated in part one [5], discussing the application
of optimization methods to solve practical problems in polymer processing, specifically
involving injection molding, blow molding and thermoforming. The most important
contributions to the topic are presented, and the corresponding objective function, process
modelling approach, optimization algorithm and decision variables adopted are identified.

2. Optimization Algorithms in Polymer Processing
2.1. Methodology

The methodology used here is identical to that adopted in Part I, dedicated to extru-
sion [5]. Thus, the investigation of the open literature on injection molding, blow molding
and thermoforming of polymers is based on the following information:

1. Objective function, which can be pursued as a Single Objective (SO), Aggregated
Product (AP), Aggregated Sum (AS) or Multi-Objective (MO);

2. Optimization algorithm, which can include Empirical, Simplex, Complex, Regression,
Direct, Gradient, Simulated Annealing (SA), Particle Swarm Optimization (PSO), Arti-
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ficial Bee Colony (ABC), Data Envelopment Analysis (DEA), Ant Colony Optimization
(ACO), Evolutionary Algorithms (EA);

3. Process modelling approach, which could be experimental, one-dimensional analytical
(1D-A), two-dimensional numerical (2D-N) or three-dimensional numerical (3D-N);

4. Decision variables, i.e., the process parameters to optimize;
5. Other characteristics, related to the process/modelling approach, optimization, etc.

2.2. Injection Molding

Injection molding involves two main stages, plasticating the polymer followed by
molding and cooling the part inside the mold, which can originate different types of
optimization problems. The plasticating step is comparable to plasticating single screw
extrusion (see part 1 [5]), the differences being related to the cyclic nature of injection
molding, and with the axial screw displacement during plastication and injection. In
the case of the molding and cooling phases, the design of the cavity(ies), gate, runner
system, and cooling channels, as well as defining the operating conditions can be tackled
as optimization problems. Table 2 summarizes the many publications dealing with the
optimization of these aspects. As expected, they embrace designing the screw of the
plasticiating unit, balancing the runner system, locating the gate, outlining the cooling
system, or setting the operating conditions.

Table 2. Previous publications on the optimization of injection molding (SD—screw design, GL—gate
location, OC—operating conditions, MD—mold design, CC—cooling channels, RS—runner system,
CB—cavity balancing, PG—part geometry).

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics Authors (Year), Reference

SO Empirical Experimental SD Variousgeometries Verbraak and Meijer (1989) [14]

SO Regression 3D-N SD Huang (2016) [15]

WS EA 3D-N SD Wang et al. (2020) [16]

SO Empirical 3D-N CB Seow and Lam (1997) [17]

SO Complex 3D-N OC Lee and Kim (1995) [18]

SO Regression Experimental OC DOE Chang and Faison (2001) [19]

SO Regression Experimental OC ANN Feng et al. (2006) [20]

SO Regression Experimental OC ANN Tang et al. (2007) [21]

SO Regression Experimental OC Taguchi Ahmad et al. (2019) [22]

SO Regression Experimental OC Kriging model Mukras (2020) [23]

SO Regression 3D-N OC Chen et al. (2010) [24]

SO Regression 3D-N OC Huang et al. (2015) [25]

SO Gradient 3D-N GL + OC Smith et al. (1998) [26]

SO Gradient 3D-N CB Lam and Seow (2000) [27]

SO Gradient 3D-N GL Lam and Jin (2001) [28]

SO Gradient 2D-N CC SQP Pirc et al. (2008) [29]

SO EA + Gradient 2D-N + 3D-N GL Zhai et al. (2005) [30]

SO EA + Gradient 2D-N CC Qiao (2006) [31]

SO SA 3D-N GL Li et al. (2007) [32]

SO EA 3D-N OC + GL Ye and Wang (1999) [33]

SO EA 3D-N OC ANN Shi et al. (2003) [34]

SO EA 3D-N OC + CC Lam et al. (2004) [35]

SO EA 3D-N OC Kurtaran et al. (2005) [36]
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Table 2. Cont.

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics Authors (Year), Reference

SO EA 3D-N CC Ozcelik and Erzurumlu (2005) [37]

SO EA 3D-N OC ANN Ozcelik and Erzurumlu (2006) [38]

SO EA 3D-N OC + RS + PG Wu et al. (2011) [39]

SO ABC 3D-N OC ANN Iniesta et al. (2013) [40]

SO EA 3D-N OC ANN Changyu et al. (2007) [41]

AS(2) Regression Experimental OC Taguchi Singh et al. (2018) [42]

AS(8) Regression Experimental OC Sreedharan et al. (2019) [43]

AS(3) Regression Experimental OC Gray Rel. Anal. Kumar et al. (2019) [44]

AS (20) Regression Experimental OC SQP Yacoub and MacGregor (2004) [45]

AS(2) Regression 3D-N OC RBF Kitayama et al. (2017, 2018) [46,47]

AS(3) Regression 3D-N OC Fuzzy analysis Moayyedian and Mamedov (2019) [48]

AS(2) Gradient 3D-N CC Tang et al. (1997) [49]

AS(2) Gradient 3D-N OC Park and Kwon (1998) [50]

AS(2) Gradient 3D-N CC Huang and Fadel (2001) [51]

AS(4) Gradient 3D-N GL Shen et al. (2004) [52]

AS(2) Gradient 3D-N CC SQP Mathey et al. (2004) [53]

AS(2) Gradient 3D-N CC Agazzi et al. (2010) [54]

AP(3) Gradient 3D-N OC Shie (2008) [55]

AS(3) Gradient + SA 3D-N GL and OC Pandelidis and Zou (1990, 1990) [56,57]

SO + AS(2) Gradient + EA
+ DE + SA 3D-N OC Turng and Peić (2002) [58]

AS(2) Gradient+EA 3D-N OC Lam et al. (2006) [59]

AS(3) EA 3D-N OC Kim et al. (1996) [60]

AS(2) EA Exp. + ANN OC Chen et al. (2007) [61]

AS(3) EA 3D-N OC ANN Meiabadi et al. (2013) [62]

AS(4) EA 3D-N OC + MD + PD ANN Mok et al. (2001) [63]

MO(3) EA 3D-N OC + RS Alam and Kamal (5 April 2003 [64–66]

MO(3) EA 3D-N OC morphology Gaspar-Cunha et al. (2005) [67]

MO(5) DEA 3D-N OC + GL ANN Castro et al. (2007) [68]

MO(4) EA 3D-N OC Fernandes et al. (2010) [69]

MO(2) EA 3D-N OC+CC Fernandes et al. (2012) [70]

MO(3) PSA Experimental OC Taguchi + ANN Xu et al. (2012) [71]

Screw design will be discussed first, given its similarity with the design of screws for
single screw extrusion, as discussed earlier [5]. This will be followed by an analysis of
the literature in terms of the type of objective function, i.e., single objective, aggregation
function, multi-objective, and optimization algorithm.

2.2.1. Plasticating Unit (Screw Design)

Verbraak and Meijer [14] made a major contribution to screw design for injection
molding by evaluating experimentally the performance of different screw geometries (con-
ventional three zone screws with different compression ratios, screws containing pineapple,
Maddock, or Egan mixing sections, static mixers as add-ons, and/or combinations of
these solutions). They took individually into account the maximization of distributive
and dispersive mixing, and of the plasticating capacity, and the minimization of melt tem-
perature differences. In order to optimize injection molding screws considering together
the operating conditions (screw speed) and screw geometry (channel depth and screw
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length), Huang [15] applied a grey relational analysis (a data analysis technique) based on
the Taguchi method, using a commercial process modelling software, and evaluating the
performance in terms of plasticating rate and melt temperature uniformity. Wang et al. [16]
applied EA to design screws taking into account the length of the feed and compression
zones, the depth of the metering zone and the flight thickness. An ANN was trained based
on 3D numerical modelling results defined by the Taguchi method, and the performance
was evaluated using the weighted sum of four objectives (maximize output, minimize melt
temperature variation at the screw tip, minimize specific mechanical energy and minimize
length for melting).

2.2.2. Single Objective Optimization

Concerning single objective optimization of injection molding, Seow and Lam [17]
optimized the runner system layout in order to obtain a uniform pressure balance, by
changing the thickness of the different flow paths using a trial-and-error procedure. Lee
and Kim [18] optimized the injection velocity, cooling and packing times, packing pressure,
melt temperature, and mold coolant temperature, with the aim of minimizing part warpage.
The complex method was employed, which is a modification of the simplex method to take
constraints into account.

Some authors optimized the process using regression analyses based on experimental
results. Chang and Faison [19], Feng et al. [20] and Tang et al. [21] defined the operating
conditions with a view to minimizing shrinkage. The last two studies used regression
analysis and ANN based on experimental data. Ahmad et al. [22] applied the Taguchi
method to analyze experimental data and find the operating conditions that minimize
shrinkage. Mukras [23] proposed a framework for optimizing the operating conditions
that minimize cycle time while assuming volumetric shrinkage and warpage as constraints.
The operating conditions were experimentally related with the objective and constraints
by means of the Kriging model (also known as Gaussian process regression, which is
an interpolation method based on a Gaussian process), and the selection of the optimal
solution was made graphically.

The above regression techniques have been used recently but based on 3D numerical
modelling results. Chen et al. [24], aiming to optimize nine operating conditions whilst
assuming warpage as an objective and shrinkage as a constraint, applied the response
surface method (data analysis) combined with nonlinear programming. Huang et al. [25]
linked the Taguchi method with a grey relational analysis to find the best operating condi-
tions (melt and mold temperatures, injection pressure and time, holding pressure) taking
individually into account the minimization of warpage and of temperature distribution.
The way the optimization was performed seems somewhat unclear since the grey relation
analysis is merely a data analysis method.

The gradient method has also been used together with 3D numerical modelling results.
Smith et al. [26] optimized both the operating conditions and gate location that minimize
the filling time. Lam and Seow [27] applied the same strategy to perform cavity balancing,
while Lam and Jin [28] determined the operating conditions that minimized the standard
deviation of the flow path or filling time. Pirc et al. [29] designed the mold cooling channels
(lengths and diameters) in order to minimize the maximum polymer temperature using
sequential quadratic programming (SQP).

Simultaneously, some authors applied more elaborated algorithms, e.g., Simulated
Annealing (SA), Evolutionary Algorithms (EA) and Artificial Bee Colony (ABC), to optimize
injection molding, although based on a single objective function. Zhai et al. [30] applied EA
with 2D modelling and the gradient method with 3D modelling to find the gate location
that minimized the injection pressure. These algorithms were also used by Qiao [31] to
optimize the location of the cooling channels that minimize the standard deviation of the
cavity surface temperature. Li et al. [32] used simulated annealing to optimize the gate
location, aiming to reduce warpage.



Materials 2022, 15, 1138 7 of 20

Single objective optimization using EAs targeted mainly the definition of the operating
conditions. Ye and Wang [33] optimized the gate location and the operating conditions
with the aim of maximizing the pressure at the end of the filling step. Shi et al. [34] defined
the operating conditions that minimize the maximum shear stress in the mold cavities.
Lam et al. [35] determined the operating conditions and geometry of the cooling channels
that minimize the standard deviation of the cavity surface temperature. Kurtaran et al. [36]
optimized the operating conditions in order to minimize warpage, while Ozcelik and
Erzurumlu [37,38] and Wu et al. [39] optimized both the operating conditions and several
dimensional parameters of the part or mold, also to minimize warpage. With the identical
aim, Iniesta et al. [40] used the hybridization of ANN and artificial bee colony (ABC)
algorithms. The results were obtained using a 3D numerical modelling software and the
ANN was applied to map the objectives as a function of the decision variables. Finally,
Changyu et al. [41] defined the operating conditions that minimize volumetric shrinkage.

2.2.3. Aggregation Function Optimization

Several studies dedicated to optimizing injection molding assumed simultaneously
various objectives via an aggregation function and adopted data analysis techniques
(for example, the Taguchi method) to define the experimental/computational results to
be obtained, and a specific technique to fit the data to a regression model. Singh et al. [42]
developed an approach based on the hybridization of Taguchi and desirability func-
tion techniques to optimize the operating conditions that minimize cycle time and
warpage. The experimental data was fitted to a multiple response surface (data analysis).
Sreedharan et al. [43] also applied data analysis to the experimental results based on
grey relational and principal component analyses, to generate a response surface and
optimize the operating conditions in order to nine objectives that were aggregated in
a single function using a weighted sum. Kumar et al. [44] conducted experiments ac-
cording to the Taguchi L27 Orthogonal Array and analyzed and optimized the response
data using the Grey Relational Analysis (an evaluation technique able to solve complex
problems for which only incomplete information exists) and a multivariate analysis. The
operating conditions that minimize shrinkage, warpage, and surface roughness were
identified. Similarly, Yacoub and MacGregor [45] proposed the use of a multivariate
statistical analysis to define a response surface taking into account design variables
related to material properties and operating conditions to optimize quality measures and
the corresponding standard deviations. The optimization was made using a sequential
quadratic programming algorithm. This framework was applied to an industrial over-
molding process. Kitayama et al. [46] proposed a strategy for taking into consideration
various objectives based on the usage of a radial basis function (i.e., a technique able
to fit data to a mathematical function), the aim being to set the operating conditions
that minimize cycle time and warpage. For that purpose, the authors considered the
weighted sum of the objectives and generated successive Pareto fronts after analyzing
the previous ones. In reality, this is a data analysis method, since a fit to data is applied.
Later, the same optimization methodology was adopted to define the values of the same
operating parameters that maximize the minimum weld line temperature and minimize
the clamping force [47]. Finally, Moayyedian et al. [48] applied the Taguchi method and
a fuzzy analytic hierarchy process to rank the performance of the solutions quantified
by a moldability index, which corresponds to a type of weighted sum of the objectives
considered. The aim was to determine the operating conditions (melt temperature, gate
design, filling and cooling times) that minimize shrinkage, warpage and short shots).

Gradient optimization techniques were also used in numerous studies with the aim of
optimizing operating conditions, gate location and layout of the mold cooling channels.
Tang et al. [49] defined the geometry and location of the cooling channels that minimize
both the maximum temperature and the temperature gradient, whereas Park and Kwon [50]
determined the operating conditions that minimize the average temperature of the molding
and the cooling time. Huang and Fadel [51] defined the geometry of the cooling chan-
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nels that minimize the maximum temperature difference in the part and the cycle time.
Shen et al. [52] optimized the gate location with the aim of minimizing the pressure, the
filling time difference between different paths, the temperature difference in the part and
the percentage of overpacking. Mathey et al. [53] optimized the location and geometry
of the cooling channels that maximize the cooling efficiency and rate, using a specific
gradient method (sequential quadratic programming). Similarly, Agazzi et al. [54] designed
the cooling channels, but in order to minimize temperature and temperature gradient.
Shie [55] defined the operating conditions that maximize tensile strength, minimize wear
and minimize warpage of the part, considering the product of the objectives.

Several studies adopted Simulated Annealing, Evolutionary Algorithms or a combina-
tion of different techniques. For example, Pandelidis and Zou [56,57] combined gradient
and SA methods to define the gate location and the operating conditions that minimized
temperature differences in the part, warpage and material degradation. Turng and Peic [58]
proposed an integrated tool based on the link between a 3D numerical modelling com-
mercial package and an optimization framework through a single or aggregated objective
function, taking into account the relevant constraints, and the possibility of choosing
between different optimization algorithms (e.g., gradient, EA, DE and SA). The authors
applied this tool to two case studies involving the optimization of the operating conditions,
one considering a single objective (minimization of shrinkage in length), the other the
weighted sum of two objectives (minimization of cycle time and volumetric shrinkage).
Lam et al. [59] unveiled the operating conditions that minimized the maximum shear stress
and the maximum cooling time.

Single objective EAs were used to optimize the part, mold design and operating condi-
tions. Kim et al. [60] aimed at minimizing simultaneously the temperature difference in
the part, overpacking and frictional overheating. Chen et al. [61] attempted to minimize
both part length and weight, whilst Meiabadi et al. [62] focused on minimizing the maxi-
mum pressure, part weight and cycle time. In most cases, the results were obtained using
data from a 3D numerical modelling software, except in [61] where experimental results
were mapped using an ANN. Finally, Mok et al. [63] optimized the part, mold design and
operating conditions, with a view to minimizing maximum wall shear stress, maximum
representative shear rate, maximum temperature difference in the part and cycle time.

2.2.4. Multi-Objective Optimization

Alam and Kamal [64–66] optimized runners diameters and lengths, as well as the
operating conditions that minimized the runner-system volume, cycle time and local
part shrinkage differences. Gaspar-Cunha et al. [67] linked an MOEA to a commercial
3D numerical modelling code and determined the operating conditions that induced a
specific morphology that was characterized in terms of thermomechanical indices (skin
thickness, degree of crystallinity and/or level of molecular orientation). Castro et al. [68]
tackled the optimization of the operating conditions and gate location using Data En-
velopment Analysis (a multi-objective algorithm) and employing an ANN (which was
trained using numerical results) to map the objective as a function of the decision variables.
Fernandes et al. [69] applied a MOEA to optimize the operating conditions that minimized
temperature differences in the molding at the end of the filling stage, the maximum cav-
ity pressure, the pressure work (i.e., the integral of pressure over time), shrinkage and
cycle time. Figure 2 exemplifies the results obtained when minimizing simultaneously
volumetric shrinkage (VS) and pressure work (PW). Figure 2A shows the evolution of the
Pareto curves along the various generations, displaying a clear improvement. Figure 2B
depicts the decision variables and objectives values for two solutions (1 and 3). Not only
the trade-off between the two objectives is clear, but it seems that, as expected, holding pres-
sure (Ph) is the most influencing variable. Figure 2C presents a good match between these
solutions and the modelling results for the evolution of pressure with time, as well as that
solution 2 is more equilibrated concerning the pressure work. Later, using the same MOEA,
the locations and diameters of the cooling channels were also optimized, together with
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the operating conditions, in order to minimize warpage and cycle time [70]. Xu et al. [71]
identified the operating conditions that minimized part weight, volume shrinkage and
flash, using a multi-objective particle swarm optimization algorithm, and the results given
by an ANN trained with experimental data defined by a Taguchi method.

Figure 2. Multi-objective optimization of the operating conditions for injection molding: (A) Pareto
curves; (B) Decision variables and objective values for the optimized solutions; (C) Experimental
assessment (adapted from [69]).

2.3. Blow-Molding

Table 3 identifies the reported attempts to optimize blow molding, providing the same
type of data as the previous table. As the technology is mostly used for the packaging sector,
the focus of optimization is often to reduce the weight of the part in order to reduce the
amount of required material while retaining its performance. The discussion is organized
according to each specific processing technology, i.e., extrusion blow molding and injection
blow molding.

Table 3. Previous publications on the optimization of blow molding. Decision vari-
ables: OC—operating conditions; PaTP—parison thickness profile; PTP—part thickness profile;
PfTP—preform thickness profile; PfTemP—preform temperature profile; DGO—die gap opening.

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Processing
Technology Reference

SO Regression Experimental OC Extrusion Tahboub and Rawabdeh (2004) [72]

SO Regression Experimental OC Extrusion Agrawal et al. (2012) [73]

SO Regression Experimental OC Extrusion Dohare et al. (2018) [74]

SO Gradient 3D PaTP Extrusion Diraddo and Garcia-Rejon (1993) [75]

SO Gradient 3D PTP Extrusion Thibault et al. (2001) [76]
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Table 3. Cont.

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Processing
Technology Reference

So Gradient 3D PTP + DGO Extrusion Gauvin et al. (2003) [77]

SO Gradient+EA 3D PTP + DGO Extrusion Yu et al. (2002, 2004) [78,79]

SO Gradient+EA 3D PTP + DGO Extrusion Hsu et al. (2004) [80]

SO Gradient 3D DGO Extrusion Yu and Juang (2010) [81]

SO EA 3D PTP Extrusion Huang and Huang (2007) [82]

SO Empirical 3D PfTP Injection Hopmann et al. (2015) [83]

SO Simplex 3D PfTP Injection Bordival et al. (2009) [84]

SO Simplex 3D PfTP Injection Biglione (2015) [85]

SO Simplex 3D PfTP Injection Biglione et al. (2016) [86]

SO Regression Experimental OC Injection Demirel (2017) [87]

SO Gradient 3D PfTP Injection Lee and Soh (1996) [88]

SO Gradient 3D PfTP + OC Injection Thibault et al. (2007) [89]

MO(3) EA 3D PTP Injection Denysiuk et al. (2017, 2019) [90,91]

MO(3) EA 3D PTP Injection Pinto et al. (2019) [92]

MO(3) EA 3D PfTP Injection Pinto et al. (2021) [93]

2.3.1. Extrusion Blow Molding

Tahboub and Rawabdeh [72] employed a design of experiments to optimize the
operating conditions (screw speed, melt temperature, cooling time, blowing pressure,
blowing time and mold temperature) that minimized the variability with time of the volume
of the container. Agrawal et al. [73] applied a statistical data analysis based on the Taguchi
method and a Grey relational analysis to establish the operating conditions that maximized
the compressive strength and volume accuracy of the part. Likewise, Dohare et al. [74]
found the operating conditions that maximized haze and clarity, hardness and compressive
strength, based on experimental data. DiRaddo and Garcia-Rejon [75] proposed a simple
iterative procedure (Newton–Raphson technique) to define the parison thickness profile
capable of minimizing the overall thickness variations of the final part, the solutions
proposed being obtained with a 3D numerical modelling software. Thibault et al. [76] and
Gauvin et al. [77] suggested a multi-disciplinary design optimization (MDO) software
environment for optimizing the process. The authors considered two steps: first, the
mechanical performance of the blown part was optimized in order to delineate the optimal
part thickness distribution; then, the die gap variation minimizing the part thickness
variance was established. A single objective was considered—minimizing part weight,
together with a constraint regarding a minimum mechanical requirement. Given the
significant computation time required by the numerical process modelling, an ANN based
on the Taguchi method was trained to define the computational samples and establish
relations between the design variables and the objectives; the gradient technique was
used in the first step, an EA was applied in the second step [78–80]. Later, the same
team proposed an EA optimization technique together with an ANN and the Taguchi
method, to optimize the die gap variation that minimized part weight while satisfying a
few constraints [81]. Huang and Huang [82] determined the parison thickness distribution
that produced a part with a predefined thickness profile. For that purpose, an EA together
with an ANN were used to evaluate the solutions. Figure 3 illustrates the optimization of
the parison thickness profile undertaken. Two parisons with different thickness profiles
were used (Figure 3A), one with uniform thickness, the other with an optimized profile
(minimizing the differences between the profile obtained and the one targeted (Figure 3B)).



Materials 2022, 15, 1138 11 of 20

The figure compares the thickness profiles of the part obtained from parisons with uniform
thickness and with the optimized profile.

Figure 3. Optimization of the parison thickness profile for extrusion blow-molding: (A) Initial
uniform and optimized parison profile; (B) Part thickness profile after blowing obtained from uniform
and optimized parison profiles, together with the target profile (adapted from [82]).

2.3.2. Injection Blow Molding

Hopmann et al. [83] determined the thickness distribution of the injected preform that
created a blown bottle with a specific wall thickness distribution. The modelling results
were obtained using a response surface methodology based on 3D numerical computations,
while the optimization was supported by an empirical approach. Bordival et al. [84] applied
a Simplex method (the Nelder–Mead optimization algorithm) to define the adequate axial
temperature distribution of the preform making a bottle with uniform thickness, using
results obtained with a 3D modelling software. The preform thickness profile was also
optimized by Biglione et al. [85,86], who attempted to minimize the normalized square
root of the difference between the predefined bottle thickness profile and the thickness
profile calculated for the solutions by a 3D numerical software. For that purpose, the
simplex method and a simple predictor/corrector iterative method were used successively.
Demirel [87] used a design of experiments and a response surface method to define, based
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on experimental data, the operating conditions related to the blowing stage (mold surface
temperature and residence time of the bottle in the mold) that optimized the performance
of the part (in terms of mechanical and thermal properties).

Lee and Soh [88] determined the thickness profile of a preform that created a part with
a pre-defined thickness contour, while satisfying two constraints (a minimum wall thickness
and the absence of undercuts in the inner surface of the preform). The Brent algorithm
(a single objective optimization method based on gradient) was applied, and a 3D numerical
modelling software supplied the results. Thibault et al. [89] optimized the preform thickness
and the operating conditions for injection stretch blow molding, using a gradient-based
optimization strategy based on two steps. First, the thickness distribution that minimized
the preform weight while satisfying a few constraints (top load, pressurization and vacuum
load) was defined, then the operating conditions were optimized.

Given the multi-objective nature of these problems, MOEA were combined with
ANN [90–92]. A MOEA was applied to find the best solutions, i.e., to obtain the best trade-
off between material usage and mechanical properties, whereas ANN was used to represent
thickness distributions. The process was modeled using the ANSYS commercial numerical
code. The aim was to determine the best thickness profile for the bottle that assured the
desired mechanical properties with minimal material usage. Recently, Pinto et al. [93]
found the best thickness profile for the preform that would produce the bottle that was
previously optimized. In Figure 4, Solutions S1 and S2 for two different case studies were
selected from the corresponding Pareto fronts (Figure 4A) and the thickness profile of these
solutions was compared with the target (desired) profile (Figure 4B).

2.4. Thermoforming

The term thermoforming covers several technologies that use pressure (either positive
or vacuum), eventually assisted by mechanical means, to force a heated sheet against
the contours of a mold. Typically, these processes involve a sequence of interdependent
stages (heating a sheet, forcing its deformation against a mold and cooling the part), which
are dominated by the thermal (heat conduction, emissivity) and mechanical (extensional
deformation and deformation rate capacity) properties of the polymer.

The deformation mechanisms developing in thermoforming techniques may create
a significant thickness gradient in the final part, which may affect negatively its perfor-
mance under service. Therefore, optimization challenges often involve finding the best
operating conditions (generally, sheet temperature distribution at the end of the heating
stage) and/or mold cavity geometry enabling to obtain, as much as possible, a part with
a uniform/specific thickness distribution. Table 4 identifies previous efforts to attain
these goals.

The inverse heating problem consists in defining the temperatures of the heaters panel
that will produce a uniform sheet temperature, or a specific temperature distribution,
after a given heating time. This was solved by Duarte and Covas [94,95]. Obviously,
the temperature of the sheet at the beginning of the forming stage will influence the
resulting thickness differences in the part, as it determines the local mechanical response
of the polymer. Wang and Nied [96] used a gradient optimization method to define
the optimal temperature distribution in the sheet. They started by defining the desired
thickness profile, and then used 3D numerical modelling to solve iteratively the system
for the temperature field needed to obtain the desired result. The iterations started with a
uniform temperature distribution. Bordival et al. [97] applied a gradient method (sequential
quadratic programming) coupled to a simple analytical model to define the optimized set
of operative parameters that allowed to obtain the optimal temperature of the sheet, using a
cost function representing the heat flux uniformity. In a subsequent step, these results were
used to compute the contribution of the radiation heating resulting from the interaction
between the heaters and the thermoplastic sheet. In the end, the three-dimensional transient
heat transfer equation was solved using a volume control method. Chy et al. [98,99] used
a conjugated gradient optimization method to solve the same problem. This automatic
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optimization methodology was applied using a complicated scheme with a high number
of inputs and outputs for accurate control of sheet temperatures. The authors concluded
that both heat transfer by radiation and conduction have an important role, making this
a very complex task. Li et al. [100,101] optimized the process employing a response
surface coupled to the D-optimal method. First, a 3D numerical modelling software
yielded uniform sheet temperature by achieving a steady-state optimum distribution of
heater power. Then, the optimization methodology was used to determine the time-
dependent optimal heater input by minimizing the temperature difference across the
thickness. Erchiqui et al. [102,103] and Bachir-Cherif et al. [104,105] applied two different
meta-heuristic algorithms (simulated annealing and evolutionary algorithms) and adopted
a 3D volumetric enthalpy-based computational method to determine the optimal sheet
temperature distribution. The same authors also applied a gradient-based technique to the
same problem [106].

Figure 4. Multi-objective optimization of the preform to obtain the target bottle previously opti-
mized for two case studies: (A) Pareto front, average thickness distribution difference between the
obtained and the target bottles versus maximum thickness difference between obtained and target
bottles; (B) comparison between the target bottle profile and the bottle profile obtained for optimized
solutions S1 and S2 (adapted from [93]).
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Table 4. Previous publications on the optimization of thermoforming (decision variables:
OC—operating conditions; TempD—temperature distribution; SThD—sheet thickness distribution).

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics Reference

SO Empirical 1D-N TempD Duarte and Covas (1997, 2002) [94,95]

SO Gradient 3D-N TempD Wang and Nied (1998) [96]

SO Gradient 1D-A TempD Bordival et al. (2005) [97]

SO Gradient 3D-N TempD Chy and Boulet (2010) [98]

SO Gradient 3D-N TempD Chy et al. (2011) [99]

SO Regression 3D-N TempD Li et al. (2008) [100]

SO Regression 3D-N TempD Li et al. (2010) [101]

SO SA + EA 3D-N TempD Erchiqui et al. (2011 [102])

SO SA + EA 3D-N TempD Bachir-Cherif et al. (2015) [103]

SO SA + EA 3D-N TempD Erchiqui (2018) [104]

SO Gradient 3D-N TempD Bachir-Cherif et al. (2018) [105]

SO SA + EA 3D-N TempD Bachir-Cherif (2019) [106]

SO IANN Experimental OC Plug assisted Yang and Hung (2004) [107]

SO IANN Experimental OC Plug assisted Chang et al. (2005) [108]

SO Regression Experimental OC Vacuum Leite et al. (2018, 2018) [109,110]

SO Regression Experimental OC Vacuum, pre-blow Sasimowski (2018) [111]

MO(2) EA 3D-N SThD Plug assisted Gaspar-Cunha et al. (2021) [112]

Several studies focused on the optimization of the sheet deformation stage, with
the objective of obtaining parts with as much as possible uniform thickness. Yang and
Hung [107] proposed an Inverse Artificial Neural Network (IANN) to define the operating
conditions (sheet temperature, vacuum pressure, plug speed and vertical displacement
inside the mold) that maximized the part thickness uniformity. The inputs of the ANN
(which was trained with experimental data) were the thickness distribution at different
part locations, while the outputs were the corresponding operating conditions. A sim-
ilar strategy was adopted to optimize the operating conditions of polypropylene foam
thermoforming [108]. Leite et al. [109,110] applied a response surface methodology to
solve the same type of problem. An ANN based on experimental data (consisting of an
aggregation of different ways of calculating the difference between the thickness of the
parts obtained and the desired thickness profile) related the decision variables with the
objective. Sasimowski [111] applied the same strategy to identify the operating conditions
(heating time, heater temperature, pre-blow time, vacuum time and cooling time) that
created a more uniform thickness distribution in the parts. These contributions used ANN
to obtain output values from a set of input experimental data. This procedure is analogous
to using a regression model, hence its applicability is restricted to the specific cases studied.

The above methods optimized separately the individual process steps. However, since
the input of one stage depends on the outcome of the preceding one, only assuming their
interdependency enables a truly efficient process optimization. Gaspar-Cunha et al. [112]
used a multi-objective evolutionary algorithm to define the initial sheet thickness profile
that will induce a uniform thickness distribution in the part, while minimizing the quantity
of material used. Three optimization conditions were equated to produce the same part:
(i) sheet with uniform thickness; (ii) sheet with thickness varying transversally to the
extrusion direction with a spline shape; and (iii) sheet with concentric thickness variation
with spline shape. The solutions were evaluated using a 3D numerical modelling software.
Figure 5 presents three optimized solutions for each case.
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Figure 5. Multi-objective optimization of the initial sheet thickness profile that will induce a uniform
thickness distribution in the part and minimize the quantity of material used: (A) sheet with uniform
thickness; (B) sheet with thickness varying transversally to the extrusion direction with a spline shape;
and (C) sheet with concentric thickness variation with spline shape. The dashed lines represent the
sheet profile generated from the points in (B,C), the continuous line represents the thickness profile
of the part (adapted from [112].

3. Conclusions

This review discussed the application of optimization methodologies to the most im-
portant thermoplastics processing technologies. The existence of a strong interdependence
between objective function, optimization algorithm and data collecting (i.e., experimental
or computational data) is evident.
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When approaching real processing situations as optimization problems, at least two
objectives must be considered in order to reach valuable conclusions, as different aspects
are to be analyzed simultaneously, i.e., processing problems are multi-objective.

Selecting an optimization algorithm depends on the problem features, and whether
the goal is to optimize one or several objectives. Even if a few objectives exist, any type
of optimization algorithm can be applied by simply aggregating them into a single ob-
jective. However, aspects such as data scarcity, the possibility of generating data dur-
ing the optimization, and the time required to obtain such data, should also be taken
into consideration.

The results produced using statistical, ANN, response surface and other regression
methods are of limited value, as only a few parameters are used, either in the domain of
the decision variables or in that of the objectives. Statistical approaches require a high
amount of data, thus a significant number of simulations is required in order to define a
good response surface, but without guaranteeing that the optimization will not be stuck
in a local optimum. Moreover, the optimization is intrinsically connected to the specific
situation under consideration. If either the polymer properties, the operating conditions
and/or the equipment geometry change, a completely new analysis must be carried out.
Thus, regression methods are not very distinct from trial-and-error procedures where the
optimization progresses with the help of the user.

Artificial Intelligence (AI) techniques, such as EAS, ANN, DE and data mining seem
efficient approaches to address the optimization of complex polymer processing problems,
as they are able to provide continuous or discrete solutions, use available data through a
learning process, and deal efficiently with multiple objectives.

An optimization run is only successfully concluded when the preferences of a decision
maker are introduced in a given process step, and the best solution has been chosen. The
decision maker can be a human or a machine (which can link optimization with Artificial
Intelligence). In this way, AI technologies used in other fields can be applied in engineering
problems. For example, innovization consists in establishing effective rules between all the
variables of the system (decision variables and objectives), from the data obtained after
the run of a MOEA. This is a further step towards developing computational tools that
are able to provide informed solutions to the engineer based on data analysis - they are
designated as data-driven optimization methodologies. In a certain way, the latter is a
form of returning to situations where only a limited quantity of data is available, since
the new AI technologies allow, within some limits, to perform optimizations based on a
limited amount of data, experimental or computational. This is certainly a trend that still
requires further research. For example, Trinh et al. [113] applied these types of techniques
to chemical product engineering, suggesting some guidelines for further research.
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