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Abstract: The resource and large-scale utilization of waste ceramic materials, magnesium slag, and
coal gangue are one of the important ways for the sustainable development in metallurgy, coal,
and other related enterprises. In this paper, waste ceramic materials were used as aggregates; coal
gangue and magnesium slag were used as mixed binder; and the all solid-waste-based permeable
bricks with excellent performance were prepared by forming pressure at 5 MPa. The mechanical
properties and water permeability of the all-solid-waste-based permeable bricks were evaluated. The
results proved that the porous channel of permeable brick is mainly composed of waste ceramic
materials with a particle size of 2–3 mm. Pore structures below 200 µm were mainly composed of
fine aggregate and mixed binder. Using 60% coarse aggregate, 20% fine aggregate, 10% coal gangue,
and 10% magnesium slag as raw materials, the all-solid-waste-based permeable bricks were obtained
by pressing at 6 MPa and sintering at 1200 ◦C, which exhibited the best performance, and its water
permeability, compressive strength, and apparent porosity were 1.56 × 10−2 cm/s, 35.45 MPa, and
13.15%, respectively. Excellent water permeability, compressive strength, and apparent porosity of the
all solid-waste-based permeable bricks were ascribed to the high content of connecting open pores,
and closely adhesive force were ascribed to the porous microstructure constructed by the grading
of waste ceramic materials and the tight conjoined points of the liquid phases in coal gangue and
magnesium slag at a high sintering temperature.

Keywords: waste ceramic materials; magnesium slag; coal gangue; sintered brick; permeability

1. Introduction

Rapid developments of industrialization are acquired owing to the use of massive
amounts of minerals and fossil resources [1,2]. Considerable industrial solid wastes (ISWs)
are piling up everyday, leading to extreme pollution in air and water conditions, posing
unexpected dangers to the environment [3–5]. Therefore, ISW must be managed in appro-
priate and low energy-consuming ways. Nevertheless, ISW is a so-called misallocation
of resources [6–8]. Utilizing and recycling ISW has aroused attention all over the world
in the recent decades. As reported by Wang et al. [9], the ceramic industry in China has
constantly occupied the first place in the world, while about 30% of production in the
ceramic industry goes to waste [10]. Waste ceramic materials (CW), which are difficult to
degrade because of their durable and highly resistant characteristics [11], have been used
in civil engineering and, more specifically, in calcined cement clinker, active admixtures,
and cementing materials [12]. However, its use rate is still limited. Meanwhile, coal gangue
(CG), a by-product in the coal industry, has been widely studied and used in studies [13–16].
Currently, many researchers have focused on studying the use of CG in pavements and
cementing building materials thanks to its high content of Al2O3 and SiO2. However, the
annual utilization of CG in China is only 60% [17]. By contrast, the singleton of magnesium
metal can produce approximately 5.5–10 tons of magnesium slag [18], which is directly
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disposed of on cultivated land, causing the presentation of secondary hazards such as
atmospheric pollution and soil alkalization [19,20]. The use of MS as an admixture to
produce cement is discontinued today. Consequently, the related research on construction
materials using MS is rare, even though has a high content of CaO.

Currently, the phenomena of urban heat island effect and urban inland inundation are
occasionally presented [11], leading to considerable problems, including but not limited
to the cost of property damage. The permeable brick contained various connected open
channels, relieving the urban heat island effect and building sponge city [21,22]. Some
efforts have been made to use ISW as aggregates and mixing binders in permeable bricks.
Yang et al. [10] reused waste ceramic materials prepared for the high permeability and
mechanical properties of permeable bricks. Xu et al. [23] sintered the coal gangue and
brick at 900–1250 ◦C, obtaining bricks with high mechanical properties. However, few
researchers report and use MS in building materials. This may be because the high content
of CaO had a negative impact on mechanical properties. The fundamental properties of
permeable bricks are mechanical property and permeability coefficient. However, various
reports indicate [24,25] that there is a negative correlation between them. Therefore, the
related studies on the application of CG in porous materials are rare owing to its vitrifi-
cation at high temperatures. To solve the vast accumulation of waste ceramic materials,
magnesium slag, and coal gangue, it is necessary to combine those industrial solid wastes
with permeable bricks.

In this paper, the novel all solid-waste-based permeable bricks with waste ceramic
materials, coal gangue, and magnesium slag were prepared via the pressing-sintering
process. The purposes of the research are as follows: (1) prepare the new permeable bricks
and achieve the resource comprehensive utilization of waste ceramic materials, coal gangue,
and magnesium slag; (2) the prepared permeable bricks meeting national standards provide
a new possibility for the selection of pavement materials, so as to realize the large-scale
and engineering application of solid waste.

2. Experimental

CG was purchased from Shendong mining area, Yulin City, Shaanxi Province. MS
and CW were provided by the Inner Mongolia Shaanxi Coal Technology Co. Ltd., Xi’an,
China. CG and MS were crushed and ground into powders below 0.1 mm using ball milling
equipment after the dewatering process at 100 ◦C for 24 h. CW was crushed and ground
into the distribution of 3.00–1.00 mm, which was sieved to the two aggregates’ gradation in
the range of 3.00–2.00 and 2.00–1.00 mm by a standard sieving apparatus, acting as coarse
and fine aggregates in permeable bricks, respectively. The mixing binder used MS and CG.
Then, 10% of deionized water was added into the mixture with CW (80%), and the mixing
binder (20%) lay for 24 h; this proportion guaranteed its properties based on our early
experiments. Subsequently, the mixture was pressed into cylinders bodies (Φ64 × 24 mm)
by a uniaxial hydraulic sampling machine (YES-2000 model Jinan, China) at 6 MPa, and
the samples were dried in an oven at 105 ◦C for 2 h. The samples were sintered at 1125 ◦C,
1150 ◦C, 1175 ◦C, 1200, and 1225 ◦C, maintaining for 1 h in an electrical gradient furnace
(GR 1300/13S, Nabertherm, Germany) at a heating rate 5 ◦C/min in air atmosphere. The
bricks cooled to room temperature in the furnace. Table 1 shows the composition design of
raw materials. The process flow is shown in Figure 1.

Elemental analysis was characterized using a Spectro Midex X-ray fluorescence ana-
lyzer. The mineralogical compositions of specimens were obtained using a XRD-6100 X-ray
diffraction (XRD) analyzer under the following conditions: 40 Kv voltage, 40 mA current,
and Cu Kα radiation (λ = 1.5406 Å). The microstructure and surface of the permeable bricks
were measured using the VEGA II XMU afield-emission scanning electron microscopy
(SEM) and optical camera.

According to the Chinese standard GB/T 25993-2010 (permeable paving bricks and per-
meable paving flags) [10,16], the permeability coefficient (Kt cm/s) is shown in Equation (1):

Kt = Qd/(AHt) (1)
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where Q (mL) is the volume of water that flowed out. H (cm) and d (cm) represent the
water level difference and the width of the permeable bricks, respectively. A (cm2) is the
surface area of the sample measuring with a vernier caliper. T(s) is 5 min of scheduled time.
Using waterproof glue around the sides of sample ensured the water flow from the upper
surface to undersurface.

Table 1. The mix proportion of permeable bricks.

Sample Fine Aggregate/% Coarse Aggregate/% CG/% MS/% ◦C

A-1 80 0 10 10 1200
A-2 60 20 10 10 1200
A-3 40 40 10 10 1200
A-4 20 60 10 10 1200
A-5 0 80 10 10 1200
B-1 60 20 0 20 1200
B-2 60 20 4 16 1200
B-3 60 20 8 12 1200
B-4 60 20 10 10 1200
B-5 60 20 12 8 1200
B-6 60 20 16 4 1200
B-7 60 20 20 0 1200
C-1 60 20 8 12 1125
C-2 60 20 8 12 1150
C-3 60 20 8 12 1175
C-4 60 20 8 12 1200
C-5 60 20 8 12 1225

Figure 1. The preparation process of permeable bricks.

Based on the Archimedes principle [15], the apparent porosity is measured, which is
shown in Equation (2):

ε = (M1 − M2)/(M1 − M3) (2)

where M1 (g) and M2 (g) are the oven-dried weight and the fully submerged weight of
the sample, respectively. With the boiling time of 1 h, and M3 being the fully impregnated
weight while suspended in deionized water, ε (%) is the apparent porosity of the samples.

The results from the tests above are the average value of three measurements.

3. Results and Discussion
3.1. Phase Analysis of Samples

The chemical composition results are demonstrated in Table 2, and the CG comprised
61.39%, 23.76%, and 4.14% of SiO2, Al2O3, and Fe2O3, respectively. Meanwhile, the CaO
and Al2O3 reaching up to 56.08% are the main chemical compositions of MS. Therefore,
the mixture of CG and MS with the content of SiO2, Al2O3, and CaO could serve as the
mixing binder.
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Table 2. The chemical composition of raw materials (mass fraction, %).

Samples CaO MgO SiO2 Al2O3 Fe2O3 TiO2 K2O Na2O Loss on Ignition

MS 39.57 1.18 6.64 16.51 1.77 0.67 0.72 0.46 17.03
CG 0.82 1.57 61.39 23.76 4.14 0.79 2.82 1.62 2.11
CW 1.17 0.64 39.10 12.2 1.28 0.34 2.18 2.09 40.02

The X-ray diffraction analysis spectra of raw materials are depicted in Figure 2a. The
CG mainly consisted of quartz (SiO2, JCPDS Card 87–1780) and kaolinite (Al4[Si4O10](OH)8,
JCPDS Card 78–2109) phases. The mineral phase of MS was composed of wollastonite
(CaSiO3, JCPDS Card 72–2284) and dmisterinbergite (CaAl2Si2O8, JCPDS Card 74–0814)
phases. The spectra of CW present mullite (Al4.56Si1.44O9.72, JCPDS Card 79–1458) and
quartz phases. In addition, previously published papers [13] indicate that the presence of
quartz and kaolinite of CG would lead to the dehydration reaction below 600 ◦C sintering
temperature, and the quartz partial melting and glass formation when sintering temper-
ature is more than 1100 ◦C. In addition, the naturally cooled magnesium slag scarcely
contained the high activity β-C2S, and it rapidly became the low activity γ-C2S with cool-
ing [18]. Generally, the intensities of the diffraction peak of CG were the highest compared
with other materials. The XRD pattern analyses of samples sintered at 1200 ◦C are shown in
Figure 2b. The mineral phases of samples mixed with CG and MS were complex, and their
intensities of characteristic diffraction peaks were lower. Anorthite (Ca(Al2Si2O8) JCPDS
Card 89–1461) and silicon oxide (SiO2 JCPDS Card 85–1780) were the predominant minerals
of the sample with 12% CG. In addition, rankinite (Ca3Si2O7 JCPDS Card 73–0623) and
gehlenite (Ca2(Al(AlSi)O7)) JCPDS Card 74–1607) phases were also evident in the sample
with 8% CG, owing to the CG with SiO2 and Al2O3 and MS contained minerals with CaO.
Therefore, the introduction of Ca contributed to the generation of the more liquid phases,
decreasing the intensities of diffraction peaks. In addition, the content of liquid phases
would influence the properties in many respects [24]. To further study the transformation
mechanism of mineral phases, XRD was used to detect the composition of the sample with
8% CG at the sintering temperatures in the range of 1125–1200 ◦C. The results are demon-
strated in Figure 2c. The gehlenite and silicon oxide (SiO2 JCPDS Card 85–1559) phases
existed as the most stable phases in the whole range of sintering temperatures. Gehlenite
was the highest peak of intensities of diffraction peaks, which were of great importance
in the preparation of glass-ceramic [26]. In addition, the phases of rankinite and calcium
aluminum oxide (CaAl4O7 JCPDS Card 74–1467) both transformed to gehlenite and silicon
oxide with the sintering temperatures over 1150 ◦C. Besides, rankinite (CaSi2O7 JCPDS
Card 76–0623) phases appeared in the patterns at a sintering temperature of 1200 ◦C. Com-
paring the peak intensities of samples sintered in the range of 1125–1200 ◦C, it is observed
that the intensity of crystallinity was lowest at 1200 ◦C. The number of peaks presented in a
rising tendency, with sintering temperatures decreasing from 1175 to 1125 ◦C, which could
be attributed to the crystal melted and generation of liquid phases, and insufficient liquid
phases resulted in the lower connection in the microstructure. In contrast, excessive liquid
phases would have the opposite affect [27]. Macroscopically, the rankinite remained in
samples and the increasing sintering temperature enhanced the formation of silicon oxide
with an amorphous.

3.2. Microstructure of the Permeable Bricks

The internal structures of samples with various aggregate gradation are totally dif-
ferent, in that the skeleton of the sample using a high content of coarse aggregates was
unstable, causing high permeability and low mechanical strength. The surfaces of perme-
able bricks are shown in Figure 3 with the different gradations of CW. It was apparent that
the average size of pores rapidly expanded with the increase in the content of coarse aggre-
gates, leading to the enhancement in the average size of the main pores over 200 µm. On
the contrary, the sub-pores below 200 µm were dominated by fine aggregates. According to
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the Darcy law, the seepage coefficient of water passing through porous media per unit time
is inversely proportional to the length of the percolation path [28]. However, superabun-
dant introductions of coarse aggregates were bound to impair the mechanical property
significantly for its unstable connection and high porosity in structure. By contrast, the
fine aggregates resulted in better compressive strength, preventing the water permeation
through the samples. Meanwhile, the fine aggregate has a larger specific surface area,
which was more easily melted than coarser.

Figure 2. XRD pattern of samples: (a) raw materials; (b) mixing binder with different CG con-
tent sintered at 1200 ◦C; and (c) samples under different sintering temperatures with 8% CG in
mixing binder.

Figure 3. Optical images of the sample at 1200 ◦C with different content of coarse aggregate: (a) 0%;
(b) 50%; and (c) 100%.
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SEM photographs in Figure 4 show the microstructure of samples with different ratios
of CG in mixing binder at 1200 ◦C. The pores underwent variation significantly with the
CG increasing content. It can be seen that the main pores existed in the samples with 8%
CG, indicating that the remarkable shrinkage of mineral phases increased the number of
pores. Meanwhile, the brick with 0% CG was obviously discontinuous and vulnerable. It
could be inferred that MS led to a decrease in pores size and a loose crumb in the structure.
Meanwhile, the SiO2 and Al2O3 introduced by CG were essential for the decisive influence
on the strength of the brick [29]. According to the results, the mixing binders affected
the pores by the meting phases, in that sample with 8% CG in mixing binder created the
largest average size of pores, which indicated that the shrinkage of mixing binder was most
obvious in the ratio.

Figure 4. SEM morphologies of samples sintered at 1200 ◦C with different CG contents: (a) 0%;
(b) 8%; (c) 12%; and (d) 20%.

To further study the relationship of microstructure and properties, the micrograph of
the samples sintered at different sintering temperatures in the range of 1125–1225 ◦C is
shown in Figure 5 with 80% of aggregates (%2.80–2.00 mm/%2.00–0.90 mm = 3:1) and 20%
mixing binder (CG%/MS% = 2:3). It can be found that the microstructure was distinct and
porous with the increased sintering temperature; at the same magnification of scanning
electron microscopy, the shrinkage in melted liquid phases obviously was presented. The
messy structure with a rough inner surface and acicular crystals developed at 1125 ◦C,
indicating it failed to form the densification in the ceramic framework. With the increase in
sintering temperatures, sufficient liquid phases were yielded, reinforcing the connection in
the microstructure. Notably, the pores expanded significantly as the sintering temperatures
increased to 1225 ◦C. The aggregates reached the melting points to which the internal
structure expanded significantly in Figure 5f.

The EDS results also demonstrated in Table 3 that the content of Si and Al increased
gradually, and the content of O presented a contrary tendency with the increase in sintering
temperatures. There also existed elements like Fe, Mg, and Na in the sample. With the
growth in sintering temperatures, the system was basically constructed. There were no
traces of microscopic pores below 1175 ◦C, and the microstructure in 1200 ◦C was distinct
and well-developed. By contrast, the sample showed the gular shape with sintering
temperatures over 1150 ◦C, leading to the main pores dominating the permeability in
the system.
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Figure 5. SEM photographs of samples at different temperatures: (a) 1125 ◦C; (b) 1150 ◦C; (c) 1175 ◦C;
(d) 1200 ◦C; (e) 1225 ◦C; and (f) the brick sintered at 1225 ◦C.

Table 3. EDS analysis of samples at different sintering temperatures: (a) 1125 ◦C; (b) 1150 ◦C; (c) 1175 ◦C;
(d) 1200 ◦C; and (e) 1225 ◦C.

Elements O Si Al Ca Fe Mg Na TOTAL

(a) 39.49 10.73 10.94 38.84 0 0 0 100
(b) 24.04 18.87 12.94 40.30 2.71 1.13 0 100
(c) 18.42 23.50 14.27 39.67 2.69 0.79 0.67 100
(d) 19.84 26.27 14.62 31.53 4.94 1.63 0 100
(e) 16.00 27.51 17.37 30.89 2.90 3.48 0.5 100

3.3. Influence of Aggregate Gradation of Particle Size on Sample Properties

In this work, the influence of different aggregate gradation was detected, which used
80% of waste ceramic materials material and 20% of mixing binders (CG%:MS% = 1:1) at
1200 ◦C for 1 h. The theory of fractal seepage supposed that the permeability is not just
determined by apparent porosity, and the factors of the radius of pores also played an
important role. According to the Hagen–Poiseulle equation [30,31],

q(r) =
π

128µ
∆P
Lf

r4

The large calculation of the equation reflected permeability. q(r) is on behalf of the
flow rate of a single capillary. Lf is the tortuous length of the capillary; µ is the fluid
viscosity; ∆P is the pressure difference on capillary, and r represented the radius of pores.
According to the permeable experimental, the certain hydraulic pressure on the bricks
guaranteed ∆P as the constant. Figure 6a demonstrates that the radius significantly affected
permeability. the Lf could be ignored when the r increased rapidly, owing to the r affecting
the q(r) in quadruplicate. Figure 6b shows that, with the increase in the content of coarse
aggregate, the permeability of samples ranged from 2.05 × 10−2 to 0.48 × 10−2 cm/s, and
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the compressive strength increased from 27.37 to 51.87 MPa. The apparent porosity acquired
the maximum value of 16.09% with 100% of coarse aggregates. The linear fitting curves
in Figure 6c demonstrate clearly that the permeability(y) and apparent porosity(x) were
expressed as y = −0.79 + 0.17 x with R2 = 0.94. Meanwhile, the compressive strength(y) and
porosity(x) were approximated as y = −2.62 x + 70.26 with R2 = 0.96. The results indicated
that permeability and compressive strength both have a high correlation relationship with
apparent porosity. The results generally conformed to the linear model [32].

Figure 6. (a) The influence of radius on the velocity of water flow; (b) the trend f permeability,
apparent porosity, and compressive strength with different fine aggregate content; and (c) fitting
curves of compressive strength and permeability with apparent porosity.

The samples using a high content of fine aggregates were likely to fill pores in volume,
inevitably reducing the porosity [33]. It was acknowledged that the main pores enhanced
the permeability significantly, while the sub-pores improved the mechanical property
significantly. To obtain the appropriate performance of permeable brick, the coarse and
fine aggregates were selected as 60% and 20%.

3.4. Influence of Mixing Binder Composition on Sample Properties

The affection of mixing binder composition on the properties was discussed. With
60% coarse aggregate, 20% fine aggregate and 20% of mixing binders sintered at 1200 ◦C
for 1 h. Figure 7 shows the compressive strength and permeability, and that the maximum
compressive strength was 56.04 MPa at the ratio of 12% CG. Meanwhile, the permeability
coefficient acquired the maximum of 1.98 × 10−2 cm/s with 8% of CG, which is higher
than the Chinese national standard of 0.01 cm/s [25,27]. The apparent porosity increased
from 4.83 to 20.68% with the decreasing content of CG. The results could be attributed
to the fact that the mixing binder with 10% CG introduced the suitable content of Cao,
SiO2, and Al2O3, improving the properties [34]. By contrast, the mixing binder using
single CG or MS demonstrated low compressive strength and water permeability. From
the high intensities of diffraction peaks in XRD, the mixing binder could not form the tight
cohesive force, leading to the low mechanical strength. It could be seen in Figure 4 that
the microstructure mainly consisted of sub-pores, which subsequently prevented the water
from moving through the samples. The different ratios of mixing binders influenced the
multi-pore permeable system, generating different kinds and quantities of melted liquid
phase in microstructures. According to Figure 7, the compressive strength of the mixing
binder with 12% CG was obviously stronger, which was attributed to the content of CG
and MS producing the highest cohesive strength. The porous microstructure in Figure 4b
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facilitated the highest permeability with the mixing binder using 8% CG. The mixing binder
using 10% CG generated moderate liquid phases, causing the permeable bricks to have
35.5 MPa and 1.56 × 10−2 cm/s permeability.

Figure 7. The trend of permeability coefficient, apparent porosity, and compressive strength with
different CG contents at 1200 ◦C.

3.5. Effect of Sintering Temperature on Sample Properties

The results were exhibited in Figure 8, discussing the influence of sintering temper-
atures on compressive strength and permeability. The samples consisted of 60% coarse
aggregate, 20% fine aggregate, 8% coal gangue and 12% magnesium slag at 1125, 1150, 1175,
1200, and 1225 ◦C sintering temperatures for 1 h. Figure 8a demonstrates the trend of water
permeability and compressive strength. Notably, the properties improved significantly
with temperatures over 1150 ◦C, and the maximum of permeability coefficient appeared at
1225 ◦C. However, the compressive strength rapidly decreased with sintering temperatures
over 1200 ◦C. This phenomenon could be explained in that the sintering temperatures
increasing to 1200 ◦C contributed to the vitrification of the melted liquid phase, generating
an excellent coherence force of liquid phases in the microstructure [35]. The shrinkage of
the mineral phase generated multiple connected channels and tight conjoined points in the
microstructure. However, when the sintering temperatures exceeded 1200 ◦C, the melted
aggregates led to the collapse of the internal microstructures, where the high connected
channels among the samples resulted in high permeability and low mechanical strength.
In the system, the mechanical strength increased in the range of 1125–1200 ◦C, which was
dominated by the cohesive force of mixing binders. When the aggregates melted, more
main pores presented, leading to the significantly decrease in compressive strength at
1225 ◦C. As shown in Figure 8b, it shows a great combination property compared with
other references [16,25,33].

Figure 8. (a) The trend of permeability and compressive strength in the sample sintered at different
temperatures; (b) the comparison of this work with bricks in other references.

4. Conclusions

All solid-waste-based permeable bricks with waste ceramic materials, coal gangue,
and magnesium slag were synthesized via pressing-sintering process. We could draw the
following conclusions:
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1. The porous channel over 200 µm was mainly influenced by the coarse aggregate of
waste ceramic materials, which determines the water permeability. Pore structures
below 200 µm were mainly regulated by fine aggregate and mixed binder, and play
an important role in mechanical properties.

2. The all-solid-waste-based permeable bricks were prepared by pressing at 6 MPa and
sintering at 1200 ◦C with 60% coarse aggregate, 20% fine aggregate, 10% coal gangue,
and 10% magnesium slag. It showed the best properties and its water permeability,
compressive strength, and apparent porosity were 1.56 × 10−2 cm/s, 35.45 MPa, and
13.15%, respectively. Excellent performance of the all-solid-waste-based permeable
bricks was attributed to the porous microstructure of waste ceramic materials and the
interaction of liquid phases of coal gangue and magnesium slag.

3. The research broadened the application of coal gangue and magnesium slag in the se-
lection of pavement materials. At the same time, it is possible to realize the large-scale
and resource utilization of coal gangue and magnesium slag solid waste, which plays
a positive role in ecological environment protection, but the engineering application
still needs to be demonstrated by a large number of experiments.
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26. Ptáček, P.; Opravil, T.; Šoukal, F.; Havlica, J.; Holešinský, R. shlz Al–Si spinel and anorthite from the mixture of kaolinite and

calcite. Solid State Sci. 2013, 26, 53–58. [CrossRef]
27. Wu, J.; Chen, J.; Xu, X.; Fang, B.; Li, L. Research on preparation of water permeable brick from discarded ceramics. J. Wuhan Univ.

Technol. 2009, 31, 27–30.
28. Kundu, P.; Kumar, V.; Mishra, I.M. Experimental and numerical investigation of fluid flow hydrodynamics in porous media:

Characterization of pre-Darcy, Darcy and non-Darcy flow regimes. Powder Technol. 2016, 303, 278–291. [CrossRef]
29. Manoharan, C.; Sutharsan, P.; Dhanapandian, S.; Venkatachalapathy, R.; Asanulla, R.M. Analysis of temperature effect on ceramic

brick production from alluvial deposits, Tamilnadu, India. Appl. Clay Sci. 2011, 54, 20–25. [CrossRef]
30. Xu, Y.; Lu, X. Analysis on Seepage Characteristics of Fractal Porous Media. Bull. Sci. Technol. 2021, 37, 1–6.
31. Shou, D.; Fan, J.; Ding, F. A difference-fractal model for the permeability of fibrous porous media. Phys. Lett. A 2010, 374,

1201–1204. [CrossRef]
32. Rice, R.W. Comparison of physical property-porosity behaviour with minimum solid area models. J. Mater. Sci. 1996, 31,

1509–1528. [CrossRef]
33. Zhou, C. Production of eco-friendly permeable brick from debris. Constr. Build. Mater. 2018, 188, 850–859. [CrossRef]
34. Benoit, M.; Ispas, S.; Tuckerman, M.E. Structural properties of molten silicates fromab initiomolecular-dynamics simulations:

Comparison between CaO−Al2O3−SiO2 and SiO2. Phys. Rev. B 2001, 64, 22. [CrossRef]
35. Wang, Y.; Wang, X.; Liu, C.; Su, X.; Yu, C.; Su, Y.; Qiao, L.; Bai, Y. Aluminum titanate based composite porous ceramics with

both high porosity and mechanical strength prepared by a special two-step sintering method. J. Alloys Compd. 2021, 853, 157193.
[CrossRef]

http://doi.org/10.1016/j.jclepro.2020.120167
http://doi.org/10.1016/j.cemconcomp.2005.04.003
http://doi.org/10.1016/j.conbuildmat.2011.12.110
http://doi.org/10.1016/j.fuel.2012.02.027
http://doi.org/10.3390/ma12142250
http://doi.org/10.32604/jrm.2021.016090
http://doi.org/10.1002/ep.12329
http://doi.org/10.1021/ie500295t
http://doi.org/10.1016/j.conbuildmat.2019.07.011
http://doi.org/10.1016/S1003-9953(10)60189-2
http://doi.org/10.1016/j.jclepro.2016.07.071
http://doi.org/10.1016/j.ecolind.2014.08.015
http://doi.org/10.1016/j.compenvurbsys.2015.08.002
http://doi.org/10.1007/s10163-016-0521-0
http://doi.org/10.1016/j.buildenv.2006.11.016
http://doi.org/10.1111/ijac.13205
http://doi.org/10.1016/j.solidstatesciences.2013.09.014
http://doi.org/10.1016/j.powtec.2016.09.037
http://doi.org/10.1016/j.clay.2011.07.002
http://doi.org/10.1016/j.physleta.2010.01.002
http://doi.org/10.1007/BF00357860
http://doi.org/10.1016/j.conbuildmat.2018.08.049
http://doi.org/10.1103/PhysRevB.64.224205
http://doi.org/10.1016/j.jallcom.2020.157193

	Introduction 
	Experimental 
	Results and Discussion 
	Phase Analysis of Samples 
	Microstructure of the Permeable Bricks 
	Influence of Aggregate Gradation of Particle Size on Sample Properties 
	Influence of Mixing Binder Composition on Sample Properties 
	Effect of Sintering Temperature on Sample Properties 

	Conclusions 
	References

