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Abstract: ZnO nanowires and nanowalls can be fabricated on the glass substrate with a ZnO seed
film and low-cost aluminum (Al) foil by the aqueous solution method (ASM), respectively. The
different concentrations of ZnO precursors can use to control the densities of ZnO nanowalls. In
addition, FESEM, FETEM, EDS, XRD, XPS, and CL were used to evaluate the characteristics of
ZnO nanowalls. The ZnO nanowalls exhibited higher photocatalytic efficiency (99.4%) than that of
ZnO nanowires (53.3%) for methylene blue (MB) degradation under UVC light irradiation at the
ZnO precursors of 50 mM. This result is attributed to ZnO nanowalls with Al-doped, which can
improve the separation of photogenerated electron-hole pairs for enhanced photocatalytic activity.
In addition, ZnO nanowalls can also reveal higher photocatalytic activity for the degradation of
tetracycline capsules (TC) rather than commercial ZnO nanopowder under UVC light irradiation.
The superoxide and hydroxyl radicals play essential roles in the degradation of MB and TC solutions
by the radical-trapping experiment. Furthermore, the ZnO nanowalls exhibit excellent recycling
and reuse capacity for up to four cycles for the degradation of MB and TC. This study highlights
the potential use of ZnO nanowalls directly grown on commercial and low-cost Al foil as noble
metal-free photocatalysis.

Keywords: ZnO nanowires; ZnO nanowalls; aqueous solution method; UVC light; methylene blue;
tetracycline; reusability

1. Introduction

Nanowalls are novel three-dimensional nanostructures that have attracted increas-
ing attention due to their large surface-to-volume ratios and extremely thin wall thick-
nesses [1,2]. Various semiconductor nanowalls have been synthesized by chemical or
physical routes, such as ZnO, ZnS, Cd(OH)2, and GaN [3–6]. ZnO is a unique n-type
semiconductor material with a large exciton binding energy of 60 meV and a wide direct
band gap energy of 3.37 eV, which has been extensively investigated for its promising
applications [7–10]. Furthermore, ZnO is one of the ideal photocatalysts for degrading
environmental pollutants, attributed to its non-toxicity, low cost, and high oxidative power
of photogenerated holes [11–15]. Recently, ZnO nanowalls have been synthesized by vapor
transport and conduction [16], pulsed laser deposition [17], electrochemical deposition [18],
sonochemical method [19], and aqueous solution method (ASM) [1,2,20,21]. The ASM
approach is the most successful fabrication method for growing ZnO nanowalls at low
reaction temperatures with flexibility, simplicity, and cost-effectiveness, while being less
hazardous, and environmentally friendly [22].

ZnO nanowalls have been widely grown on various substrates, such as glass [23], alu-
minum foil [1,24], silicon [25], polyethersulfone (PES) [26], Al alloy [27], and polyethylene
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terephthalate (PET) [28]. Among them, they use high-purity aluminum (Al) foil or deposit
a high-purity Al film on the substrate to grow ZnO nanowalls [1,24,25]. However, fewer
reports use commercial and low-cost Al foil to grow ZnO nanowalls directly. In addition,
there is no report on growing ZnO nanowalls for photocatalytic degradation of tetracy-
cline. Tetracycline is one of the main antibiotics used for human, pet, and agricultural
purposes [29]. Among the different types of antibiotics, tetracycline needs more attention
mainly because it exhibits severe environmental problems, including ecological risks and
damage to human health [30].

Herein, we investigated the effect of ZnO nanowalls with different densities grown at
different concentrations of ZnO precursors on the commercial and low-cost Al foil by the
ASM approach. The commercial and low-cost Al foil is primarily used in the household
kitchens. ZnO nanowalls grown on the Al foil exhibited higher photocatalytic activity and
a reaction constant of 6.65 times higher than ZnO nanowires grown on the glass substrate
at the same concentrations of ZnO precursors under UVC light irradiation. This result
is attributed to the enhanced photocatalytic activity by inhibiting the recombination of
photogenerated electron-hole pairs by the Al-doped ZnO nanowalls. In addition, ZnO
nanowalls can also use for the photodegradation of TC under UVC light irradiation with
high reusability. ZnO nanowalls can provide a facile, low-cost, high photocatalytic activity
and reusability, which can benefit many other related fields.

2. Materials and Methods
2.1. Materials

An aluminum (Al) foil (7.62 m × 30.4 cm (2.1 USD) was commercially obtained from
Diamond (North Billerica, MA, USA). All chemicals were purchased from commercial
sources and used without further purification. Zinc nitrate dihydrate (98%, Alfa Aesar,
Ward Hill, MA, USA), hexamethylenetetramine (HMTA, 99%, Alfa Aesar, USA), zinc
acetate dihydrate (97%, Alfa Aesar, USA), ZnO nanopowder (Uniregion Bio-Tech, Taoyuan,
Taiwan), methylene blue (MB, 95%, Alfa Aesar, USA), tetracycline capsules (TC, 250 mg,
Veterans Pharmaceutical, Taoyuan, Taiwan), triethanolamine (TEOA, 98%, Alfa Aesar,
USA), isopropyl alcohol (IPA, 99.5%, Alfa Aesar, USA), L-ascorbic acid (AA, 98%, Alfa
Aesar, USA), silver nitrate (AgNO3, 99%, Alfa Aesar, USA) and ethanol (C2H5OH, 99%,
Sigma-Aldrich, Darmstadt, Germany) were used in this experiments. De-ionized water
with a resistivity higher than 18.2 MΩ was used for all solution preparations.

2.2. Synthesis of ZnO Nanowires

Glass substrates (1.5 cm × 2.5 cm) were thoroughly cleaned in 95% ethanol by an
ultrasonic vibrator for 10 min to remove particles and organic contaminants from the
substrate surface. Next, ZnO seed film was prepared by spin-coating a layer of ethanol
solution with 20 mM zinc acetate dihydrate, followed by thermal annealing at 80 ◦C and
350 ◦C for 3 min and 20 min. Finally, the ZnO nanowires were directly synthesized
on the glass substrates with a ZnO seed film by an ASM in a 100 mL aqueous solution
with different ZnO precursors (equimolar zinc nitrate dihydrate and HMTA). The glass
substrates with ZnO seed film (1.5 cm × 2.5 cm) were pasted on a glass sheet, placed in
a sealed crystallizing dish (150 mL) containing the above reaction solution, and heated
in a hotplate at T = 90 ◦C for 3 h. The reaction device of the growth of ZnO nanowires is
illustrated in Figure 1.

2.3. Synthesis of ZnO Nanowalls

An Al foil was cut into a 1.5 cm × 2.5 cm substrate. These Al foils (1.5 cm × 2.5 cm)
were thoroughly cleaned in 95% ethanol by an ultrasonic vibrator for 10 min to remove
particles and organic contaminants from the substrate surface. Then, the ZnO nanowalls
were directly synthesized by an ASM in a 100 mL aqueous solution with different ZnO
precursors (equimolar zinc nitrate dihydrate and HMTA). The Al foils were pasted on a
glass sheet, placed in a sealed crystallizing dish (150 mL) containing the above reaction
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solution, and heated in a hotplate at T = 90 ◦C for 3 h. The reaction device of the growth of
ZnO nanowalls is illustrated in Figure 1.
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Figure 1. Schematic diagram of the reaction device for the growth of ZnO nanowalls.

2.4. Material Characterization

The surface morphologies and the crystal structures of the ZnO nanowalls were
investigated using field-emission scanning electron microscopy (FESEM, Hitachi S4800, Ky-
oto, Japan), field-emission transmission electron microscopy (FETEM, JEOL-2100F, Kyoto,
Japan), and X-ray diffraction (XRD, Bruker D2 phaser, USA). X-ray photoelectron spec-
troscopy (XPS, ULVAC-PHI PHI 5000 Versaprobe II system, Kanagawa, Japan) was used to
identify the surface elemental composition and electron configuration of ZnO nanowalls
grown on the Al foil. Finally, the cathodoluminescence (CL) of the ZnO nanowalls was
evaluated using a CL spectrometer (JEOL, JSM7001F, Japan).

2.5. Photocatalytic Activity Test

The photocatalytic activities of as-synthesized photocatalysts were evaluated via the
degradation of MB (10−5 M) and TC (10−4 M) aqueous solutions. A UV lamp (253.7 nm,
10 W, Philip, Amsterdam, The Netherlands) was used as a UVC light source in a typical
photocatalytic process. The concentrations of MB and TC solutions were measured using a
DR/UV-Vis spectrometer (Hitachi U-2900, Tokyo, Japan) to record changes in character-
istic absorption bands. The photocatalytic efficiency of photocatalysts under UVC light
irradiation was determined by C/C0, where C0 and C were the initial and instantaneous
concentrations of MB or TC solutions, respectively.

3. Results

Figure 2a displays the fabrication processes of ZnO nanowires by an ASM. First, the
glass substrate was grown with a ZnO seed film by combining spin coating and thermal
annealing processes. Second, ZnO nanowires were synthesized on the glass substrate with
a ZnO seed film by an ASM at the reaction temperature of 90 ◦C for 3 h under different ZnO
precursor concentrations. Figure 2b–e display the top-view FESEM images of well-aligned
ZnO nanowires directly synthesized on the glass substrate with a ZnO seed film from
different concentrations of ZnO precursors. The concentrations of zinc precursors are 10,
20, 50, and 75 mM, respectively. The average diameters of ZnO nanowires are 49.5, 65.2,
82.1, and 165.3 nm, respectively. The average lengths of ZnO nanowires are 1.75, 1.89,
2.01, and 2.29 µm, respectively. The average diameters and lengths of ZnO nanowires
tend to increase with the increase in ZnO precursor concentration, as shown in Figure S1.
This result shows that the ZnO precursor concentration can be used to control the sizes of
ZnO nanowires.
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Figure 2. (a) Schematic diagram of the reaction processes for the growth of ZnO nanowires. (b–e) The
top-view FESEM images of ZnO nanowires synthesized on the glass substrate with a ZnO seed film
at different concentrations of ZnO precursors. The concentrations of ZnO precursors are (b) 10, (c) 25,
(d) 50, and (e) 75 mM, respectively.

Figure 3 shows the FETEM characterization results of ZnO nanowires grown at the
concentrations of ZnO precursors of 50 mM. Figure 3a displays the FETEM image of a
ZnO nanowires with a diameter of 86.2 nm. The selected area electron diffraction (SAED)
pattern (Figure 3b) exhibits the (010) zone axis of hexagonal ZnO (JCPDS No. 75–0576).
Figure 3c shows the HRTEM image of ZnO nanowires with a lattice spacing of 0.260 nm,
corresponding to the (002) crystal plane of hexagonal ZnO (JCPDS number 75–0576). Based
on the above SAED pattern and HRTEM image, the ZnO nanowire is single crystalline for
growing along the [001] direction. Figure 3d displays the energy dispersive spectroscopy
(EDS) spectrum of the ZnO nanowire in Figure 3a. It can be observed that Zn and O
determine the composition of ZnO nanowires. The composition of Cu is ascribed to the
TEM grid. The XRD diffraction pattern of ZnO nanowires grew on the glass substrate
with a ZnO seed film at the concentrations of ZnO precursors of 50 mM. An intense
and sharp diffraction peak corresponding to the (002) crystal plane of hexagonal ZnO
(JCPDS No. 75–0576) suggests that the preferred growth direction of ZnO nanowires is
the [001] direction.
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Figure 3. (a) FETEM, (b) SAED pattern, (c) HRTEM images, and (d) EDS spectrum of a ZnO nanowire
(50 mM). (e) The XRD diffraction pattern of ZnO nanowires (50 mM) synthesized on the glass
substrate with a ZnO seed film.

Figure 4 displays 45◦ tilt-view FESEM images of ZnO nanowalls that were directly
grown on the Al foils from the different concentrations of ZnO precursors by an ASM at
the growth temperature of 90 ◦C for 3 h. In general, HMTA can fix the pH value of the
solution at around 6 and react with the Al substrate to form hydroxyl ions of Al(OH)4

−.
The Al(OH)4

− binding to the Zn2+ terminal surface prevents ZnO growth along the (001)
direction and promotes lateral growth to form nanowalls [1,31]. The concentrations of
ZnO precursors are 10, 20, 50, and 75 mM, respectively. The density of the ZnO nanowalls
tends to increase with the concentrations of the ZnO precursors. This phenomenon shall be
ascribed to the higher concentrations of ZnO precursors, which accelerate the reaction and
are more favorable for the growth of ZnO nanowalls on the Al foil [32].

Figure 5 displays the XRD diffraction patterns of (a) Al foil and (b) ZnO nanowalls
grown at the ZnO precursors of 50 mM. For Al foil, the diffraction peaks at 40.3◦ and 44.7◦

correspond to (004) and (200) crystal planes, confirming the orthorhombic Al2O3 (JCPDS
No. 88–0107) and cubic Al (JCPDS No. 89–4037), respectively. For ZnO nanowalls, there
are another five diffraction peaks at 31.7◦, 34.4◦, 36.3◦, 47.5◦, and 56.6◦ corresponding to
(100), (002), (101), (102), and (110) crystal planes, proving the growth of hexagonal ZnO
crystal phase (JCPDS No. 75–0576). This XRD result confirms that the ZnO nanowalls do
not contain any other impurities.
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Figure 6a displays the FETEM image of ZnO nanowalls grown at the concentrations
of ZnO precursors of 50 mM. The ZnO nanowall is composed of many small grains. The
SAED pattern (Figure 6b) indicates that the ZnO nanowall is polycrystalline and consistent
with hexagonal phase ZnO (JCPDS no. 75–0576). Figure 6c shows the HRTEM image of a
ZnO nanowall with two lattice spacing of 0.248 and 0191 nm corresponding to the (101)
and (102) crystal planes of the hexagonal phase ZnO (JCPDS no. 75–0576). Figure 6d,e
show corresponding EDS elemental mapping images and spectrum of ZnO nanowall for
Zn, O, and Al, respectively. It can be seen that Zn, O, and Al determine the composition of
ZnO nanowall. The content of Al is determined to be 11.3 at%. This result can also verify
that Al has been doped into the ZnO nanowalls.
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XPS can be used to analyze the surface composition and chemical state of ZnO
nanowalls grown at the ZnO precursors of 50 mM. The survey scan spectrum confirms
the presence of Zn, O, and Al elements, as shown in Figure 7a. The presence of C 1s may
come from the organic layer decorated on the ZnO nanowall surface or the pump oil in
the vacuum system of the XPS apparatus. The high-resolution Zn 2p spectrum (Figure 7b)
shows that two peaks at 1021.7 and 1044.8 eV corresponding to the Zn 2p3/2 and Zn 2p1/2,
respectively. The asymmetric O 1s peak (Figure 7c) can be divided into three sub-peaks at
529.7, 530.8, and 532.3 eV, corresponding to O species in the lattice (OL), oxygen vacancies
or defects (OV) and chemisorption or dissociation (OC), respectively. It can be observed
that the oxygen vacancies or defects peak is significantly stronger than the lattice peak.
This result proves that the Al substitute for Zn sites in ZnO nanowalls shall induce the ap-
pearance of oxygen vacancies or defects [33]. In addition, the ZnO nanowalls also exhibited
significantly higher chemisorption or dissociation of O species. The high-resolution Al 2p
spectrum (Figure 7d) shows that one peak at 74.4 eV corresponds to the reported values
for Al2O3: Al 2p at 74.35 eV [3,34]. The Al peak in ZnO nanowalls indicates that the Al
element has been successfully doped into the ZnO lattice.
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The photocatalytic degradation of MB further evaluated the photocatalytic activities
of as-synthesized ZnO nanowires and ZnO nanowalls grown at different concentrations
of ZnO precursors under UVC light irradiation. Monitor the temporal change in MB con-
centration by examining the change in the maximum absorbance in the UV–vis spectrum
at 664 nm. Figure 8a shows the degradation rate of ZnO nanowires grown at differ-
ent concentrations of ZnO precursors. The degradation rate of ZnO nanowires is 36.3
(10 mM), 40.6 (25 mM), 53.3 (50 mM), and 50.9% (75 mM), respectively. ZnO nanowires
(50 mM) revealed the highest photocatalytic activity in the decomposition of MB. The kinet-
ics of the photocatalytic degradation reaction can be fitted to a pseudo-first-order reaction,
and the photodegradation rate constants (k, min−1) for ZnO nanowires grown at different
concentrations of ZnO precursors are estimated from the slopes of the straight lines, as
shown in Figure 8b. The rate constants of ZnO nanowires with different concentrations of
ZnO precursors can be calculated as 0.00238 (10 mM), 0.00292 (25 mM), 0.00444 (50 mM),
and 0.00414 (75 mM) min−1, respectively.

Figure 8c reveals the degradation rate of ZnO nanowalls grown at different concen-
trations of ZnO precursors. The degradation rate of ZnO nanowalls is 67.3 (10 mM), 85.7
(25 mM), 99.4 (50 mM), and 94.9% (75 mM), respectively. The photodegradation rate
of MB followed the order of the ZnO precursors concentrations of ZnO nanowalls by
50 mM > 75 mM > 25 mM > 10 mM. The photocatalytic efficiency of ZnO nanowalls is
in comparison with other literature (Table 1), such as γ-Fe2O3/Fe3O4/SiO2 photocata-
lysts [35], Bi/BaSnO3@HNTs nanomaterials [36], Cu-doped ZnO nanoneedles [33], and
Bi2WO6/ZIF8 photocatalysts [37]. Figure 8d shows the pseudo-first-order linear relation-
ship of ZnO nanowalls grown at different concentrations of ZnO precursors. The rate
constants of ZnO nanowalls with different concentrations of ZnO precursors can be calcu-
lated as 0.00636 (10 mM), 0.01149 (25 mM), 0.02957 (50 mM), and 0.01721 (75 mM) min−1,
respectively. For the photocatalytic degradation of MB, the photocatalytic efficiency of ZnO
nanowalls (50 mM) is about 6.65 times higher than ZnO nanowires (50 mM). This result
suggests that ZnO nanowalls can greatly facilitate their practical applications to eliminate
various environmental pollutants in wastewater.

Figure 8e shows the CL spectra of ZnO nanowires and ZnO nanowalls that grew
at the concentrations of ZnO precursor of 50 mM. A strong UV emission (near-band-
edge emission) and a weak visible emission (deep-level emission) are observed at 380 nm
(3.26 eV) and 560 nm (2.21 eV), respectively, for ZnO nanowires. A weak UV emission
(near-band-edge emission) and a strong visible emission (deep-level emission) are observed
at 380 nm (3.26 eV) and 562 nm (2.21 eV), respectively, for ZnO nanowalls. The ZnO
nanowires exhibited a stronger emission property (near-band-edge emission or deep-level
emission) than the ZnO nanowalls. This phenomenon is attributed to ZnO nanowall with
doped Al, which can effectively separate photogenerated electron-hole pairs for improved
photocatalytic activity.

To demonstrate that ZnO nanowalls can also be used for photocatalytic degradation of
drugs. Herein, we chose the tetracycline capsule (TC) as one of the drugs. Figure 9a reveals
the degradation rate of ZnO nanowalls (50 mM) and commercial ZnO nanopowder under
UVC light irradiation. The degradation rate of ZnO nanowalls and ZnO nanopowder is
82.6 and 73.9%, respectively. The pseudo-first-order linear relationship of ZnO nanowalls
and ZnO nanopowder is shown in Figure 9b. The corresponding reaction constants of TC
degradation over ZnO nanowalls and ZnO nanopowder can be calculated as 0.01007 and
0.00724 min−1, respectively. ZnO nanowalls exhibited higher photocatalytic activity and a
reaction constant of 1.39 times higher than ZnO nanopowder under UVC light irradiation.

The reusability of ZnO nanowalls was studied by recycling experiments with MB
and TC solution under UVC light irradiation, as shown in Figure 10. For the MB solution
(Figure 10a), the photocatalytic efficiency was 99.8, 95.0, 96.5, and 97.9% for the four cycles.
For the TC solution (Figure 10b), the photocatalytic efficiency was 82.3, 80.0, 76.6, and
74.8% for the four cycles. After four cycles, the photocatalytic efficiency of ZnO nanowalls
exhibited insignificant changes. ZnO nanowalls revealed a long lifetime as photocatalysts
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with high activity and reusability. In addition, ZnO nanowalls were synthesized directly
on Al foil, thus simplifying the recycling process and making ZnO nanowalls with stable
and economical photocatalysts.

Materials 2022, 15, 9008 9 of 15 
 

 

concentrations of ZnO precursors. The degradation rate of ZnO nanowires is 36.3 (10 
mM), 40.6 (25 mM), 53.3 (50 mM), and 50.9% (75 mM), respectively. ZnO nanowires (50 
mM) revealed the highest photocatalytic activity in the decomposition of MB. The kinetics 
of the photocatalytic degradation reaction can be fitted to a pseudo-first-order reaction, 
and the photodegradation rate constants (k, min−1) for ZnO nanowires grown at different 
concentrations of ZnO precursors are estimated from the slopes of the straight lines, as 
shown in Figure 8b. The rate constants of ZnO nanowires with different concentrations of 
ZnO precursors can be calculated as 0.00238 (10 mM), 0.00292 (25 mM), 0.00444 (50 mM), 
and 0.00414 (75 mM) min−1, respectively. 

 
Figure 8. (a) Photocatalytic activities and (b) kinetic linear simulation curves of ZnO nanowires syn-
thesized on the glass substrate with a ZnO seed film at different concentrations of ZnO precursors 
under UVC light irradiation. (c) Photocatalytic activities and (d) kinetic linear simulation curves of 
ZnO nanowalls grown on the Al foil at different concentrations of ZnO precursors under UVC light 
irradiation. (e) CL spectra of ZnO nanowires and ZnO nanowalls grew at the ZnO precursors of 50 
mM. 

Figure 8. (a) Photocatalytic activities and (b) kinetic linear simulation curves of ZnO nanowires
synthesized on the glass substrate with a ZnO seed film at different concentrations of ZnO precursors
under UVC light irradiation. (c) Photocatalytic activities and (d) kinetic linear simulation curves of
ZnO nanowalls grown on the Al foil at different concentrations of ZnO precursors under UVC light
irradiation. (e) CL spectra of ZnO nanowires and ZnO nanowalls grew at the ZnO precursors of
50 mM.



Materials 2022, 15, 9008 11 of 15

In general, the photocatalytic degradation process involves a variety of active species,
including hydroxyl radicals (·OH), superoxide radicals (·O2

−), photogenerated electrons
(e−), and photogenerated holes (h+) [38]. Herein, four kinds of scavengers were used to
explore the photocatalytic mechanism of ZnO nanowalls for MB and TC under UVC light
irradiation, as shown in Figure 11a,b. In order to distinguish the role of active species
in MB or TC degradation and explain the reaction mechanism, TEOA, IPA, AgNO3, and
AA were selected as quenchers for h+, ·OH, e−, and ·O2

−, respectively [39–41]. It can be
observed that the introduction of IPA and AA scavengers in the photocatalytic reaction
results in a significant decrease in the photocatalytic efficiency. These results prove that
·OH and ·O2

− play the main active radicals in the photodegradation of MB or TC. Based
on the above studies, the possible photocatalytic mechanism of ZnO nanowalls is shown in
Figure 11c. The oxygen vacancy can create a new electric state band at the bottom of the CB
of ZnO nanowalls. Herein, the photogenerated electrons of ZnO nanowalls can be excited
from their VB into CB or oxygen vacancy under UVC light irradiation. The photogenerated
electrons (e–) can reduce O2 molecules to ·O2

− for MB or TC solution degradation. The
photogenerated holes (h+) in the VB of ZnO nanowalls can react with H2O molecules to
form hydroxyl radicals (·OH) for MB or TC solution degradation.

Table 1. The degradation of methylene blue over photocatalysts published compared to our work.

Photocatalysts Photocatalytic
Efficiency (%) Light Sources References

ZnO Nanowalls 99.4 UVC
(5 W) Present Work

γ-Fe2O3/Fe3O4/SiO2
Photocatalysts 87.5 UV

(150 W) Ref. [35]

Bi/BaSnO3@HNTs
Nanomaterials 90.2 LED

(200 W) Ref. [36]

Cu-doped ZnO
Nanoneedles 89.5 UVC

(5 W) Ref. [33]

Bi2WO6/ZIF8
Photocatalysts 85.7 Visible light

(400 W) Ref. [37]
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4. Conclusions

In this study, we report a facile ASM that can be fabricated directly on commercial
and low-cost Al foil without ZnO seed film at a low reaction temperature of 90 ◦C. The
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concentration of ZnO precursor plays a substantial role in influencing the density of ZnO
nanowalls. The morphology, microstructures, crystal structures, chemical structures, and
optical properties of ZnO nanowalls were investigated by FESEM, X-ray diffraction, FETEM,
EDS, XPS, and CL. Compared with ZnO nanowires, the photocatalytic efficiency of ZnO
nanowalls is notably boosted from 53.3 to 99.4% in methylene blue degradation under
UVC light irradiation. This phenomenon is ascribed to the effective inhibition of the
recombination of electron-hole pairs via Al-doped. In addition, ZnO nanowalls can also
exhibit higher photocatalytic activity than ZnO nanopowder for treating TC under UVC
light irradiation. Furthermore, the reusability test can demonstrate that the ZnO nanowalls
on the Al foil still maintain high photocatalytic activity for the degradation of MB and
TC, even after four cycles, without any significant decline. ZnO nanowalls can provide a
simple, low-cost, high photocatalytic efficiency and reusability, which can benefit many
other related fields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15249008/s1, Figure S1: The diameter and length of ZnO
nanowires were plotted as a function of the different concentrations of ZnO precursors. Figure S2:
The cross-sectional FESEM images of the ZnO nanowalls synthesized at the different concentrations
of ZnO precursors. The concentrations of ZnO precursors are (a) 50 and (b) 75 mM, respectively.
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