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Columns Using Finite Element Method
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Abstract: Open holes or cut-outs have been commonly used in composite structures for various
engineering purposes. Those elements often demand perforation especially for weight reduction
and to ease maintenance and servicing operations, for example, in aircraft wing ribs. This work
presents a numerical study of the stability behavior of composite perforated columns subjected to
a compressive load. Profiles were made of CFRP laminate and weakened by three types of cut-out.
Four parameters, spacing ratio S/D0, opening ratio D/D0, hole shape and arrangement of layers,
were selected to check their effect on the buckling load and postbuckling behavior of the tested
channel profiles. To carry out the numerical analysis, the Abaqus software was used. The results
obtained during the analysis helped to identify the best combination of tested parameters to obtain
the highest critical load. The performed analysis show that the columns’ behavior is sensitive to
configuration of composite, opening ratio and hole shape.

Keywords: FEM; stability; linear and nonlinear analysis; holes; failure; composites;
thin-walled structure

1. Introduction

Thin-walled structures belong to the load-carrying elements characterized by high
stiffness and strength while maintaining low weight [1–4] and that allows designers to
have freedom in shaping the construction form. Thanks to the mentioned properties,
these kinds of structures have wide application, where the low weight is important, i.e.,
aerospace and automotive sectors and civil engineering [1,5,6]. Unfortunately, as in any
thin-walled elements, they have important disadvantages such as loss of stability when
they are compressed or sheared [7–10]. However, they have one of the most important
features which is the possibility of working in the postcritical state when the buckling of
a thin-walled element is local and elastic [11–16]. In the worldwide available literature,
more studies about linear and nonlinear problems of thin-walled structures’ stability can
be found [17–19]. Moreover, thin-walled elements often demand perforation for weight
reduction and to ease servicing and maintenance operations, for example, in aircraft wing
ribs. These perforations cause a redistribution of stresses in the structure that may change
the strength of the structural element and the elastic stiffness. The buckling behavior
of structural perforated profiles is significantly influenced by the size, shape, location
or number of perforations. Previous investigations on composite plates [20–24] have
shown the significant effect of the geometric parameters and shape of holes, as well as
the composite configuration, on the stability behavior. Therefore, it seems imperative to
investigate the influence of the abovementioned parameters on thin-walled perforated
profiles’ buckling behavior.

Thin-walled channel profiles are currently widely used and often weakened by holes
to reduce their volume. An example of such elements are perforated profiles used, among
others, for shelves, balustrades, etc. In Figure 1, an example of popular design solutions
based on the use of openwork beams as load-carrying structures is shown.
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Figure 1. Example of application of perforated elements.

In the literature, there are a lot of investigations about the design and behavior of
columns with different kinds of cross-sections made of composite [4,25,26] or traditional
materials [27,28]. Moreover, in the available literature there are some examinations where
the authors tested elements with different kinds of hole shapes [29–31]. However, the
obtained results showed that most studies of the literature concern structures without holes,
or with holes, but made of traditional materials. However, the knowledge about buckling
behavior of perforated composite columns is insufficient. Furthermore, there are no specific
standards for composite perforated profiles such as in case of perforated profilers made of
steel or aluminum.

The load-bearing capacity of composite profiles, due to wide usage of composite
elements in a thin plate form, is very important. Furthermore, different kinds of cut-outs
are very often made as a part of the project. This makes the information about the buckling
and postbuckling behavior of composite profiles weakened by holes necessary.

The idea of this work is based on the study carried out by Khazaal et al. [32], who
tested aluminum alloy profiles subjected to compression. To optimize the results and to
check which parameter has the most influence on the buckling behavior of the aluminum
thin-walled elements, they investigated three shapes of hole: rectangular, circular and
hexagonal. A very similar investigation was described in paper [33], where the authors
took under consideration profiles made from GFRP composite. It is worth adding here
that, in previous articles [34,35], the authors tested composite profiles with different kinds
of cross-section but without perforation. Therefore, the abovementioned studies together
with [32,33] have ignited motivation for the presented study, hence contributing towards
the knowledge on thin-walled composite structures with holes.

This paper includes the linear and nonlinear analysis of compressed, thin-walled,
perforated profiles with a channel cross-section. Numerical calculations were carried
out with the commercial Abaqus program using the finite element method (FEM). The
effect of parameters such as hole shapes, spacing ratio, opening ratio and arrangement
of layers’ layout on the buckling and postbuckling behavior of the perforated channel
cross-section profiles was investigated. Moreover, obtained results were compared with
unperforated profiles which were tested in previous works [9,35,36]. It should be added
here that the tested columns were made of CFRP composite material, and previous research
has been carried out on unperforated profiles or on perforated profiles but made from
classic materials, including paper [31], where the authors tested perforated profiles made
of GFRP composite. It should also be mentioned here that there are no specific standards
for the perforation of composite profiles. Furthermore, columns made of CFRP composite
have not been taken under this kind of consideration. Therefore, it was a good motivation
for conducting the analysis presented in this paper.

2. Research Subject and Methodology

The research subjects were thin-walled composite profiles with a C cross-section
subjected to axial compression. The geometric parameters of tested profiles are shown



Materials 2022, 15, 8919 3 of 12

in Figure 2 (length—250 mm, the web—60 mm, the profile wall h = 30 mm). The tested
columns consisted of 8 plies symmetric to the laminate mid-plane. Each ply of profiles had
a thickness of 0.105 mm and the total thickness of the wall was 0.84 mm. The profiles were
made of CFRP composite, whose mechanical properties are presented in Table 1.
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Figure 2. Geometric parameters of the tested profile.

Table 1. Mechanical properties of a CFRP lamina.

Young’s Modulus
[MPa]

Shear Modulus
[MPa]

Poisson’s
Ratio

Tensile Strength
[MPa]

Shear Strength
[MPa]

Compression Strength
[MPa]

E1
0◦

E2
90◦ G1,2 V12

FTU1
0◦

FTU2
90◦

FSU
45◦

FCU1
0◦

FCU2
90◦

143,530 5826 3845 0.36 2221 49 83.5 641 114

According to the previous research [7,36,37], four configurations of composite were
chosen for the analysis: P1: [0/45/−45/90]s, P2: [45/−45/90/0]s, P3: [90/−45/45/0]s,
P4: [90/0/90/0]s. The profiles were compared with profiles without cut-outs, which were
also tested experimentally and numerically in previous works [34,37,38]. The exemplary
obtained buckling and postcritical deformation forms are shown in Figure 3.
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The results presented above became a reference point for the research performed and
presented in this paper. The current paper focuses on the behavior of channel cross-section
profiles weakened by holes and subjected to axial compression. This work does not concern
the in-depth presentation of the experimental results, it focuses on the numerical analysis,
but this is the start for further experimental research.

In this work, according to [32,33], three shapes of holes (circular, square, hexagonal)
made in the profile web were designed (Figure 4). The overall geometric parameters were
constant. In [32], the authors tested aluminum profiles where the geometry of web holes
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must be within the given ranges of Eurocode (Equations (1) and (2)) in order to prevent
any unwanted failures such as cracks between holes, and to achieve a maximum possible
reduction in weight.

1.25 < D/D0 < 1.75 (1)

1.08 < S/D0 < 1.5 (2)

where: D—width of profile web; D0—diameter/width of hole; S—distance between holes;
D/D0—opening ratio; S/D0—spacing ratio.
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For composite profiles, this kind of Eurocode does not exist but it was a good reason
to take those equations under consideration and perform numerical analysis for compos-
ite columns with a channel section. The above equations were used in [33] to analyze
perforated profiles made of GFRP composite.

Three parameters, opening ratio (D/D0), spacing ratio (S/D0) and hole shape, were
taken under consideration, and their influence on buckling and postbuckling behavior was
measured. The opening ratio (D/D0) and spacing ratio (S/D0) were selected according to
Equations (1) and (2). Parameters which were outside the bounds of the above equations
were also taken into consideration. The parameters and levels are presented in Table 2.

Table 2. Parameters and levels.

Parameter
Levels

1 2 3

Shapes of holes Circular Square Hexagonal

D/D0 (S = const) 2 1.67 1.5

S/D0 (D0 = const) 1.25 1.45 1.6

3. Numerical Analysis

The numerical calculations were carried out in the Abaqus program with the finite
element method, which has a very wide range of applications [39,40]. Analysis was
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performed in two stages. The first stage was the linear stability analysis, based on the
solution of the following generalized eigenvalue problem:

|[K] + λi [H]| = 0 (3)

where: [K]—structural stiffness matrix, λi—the i-th eigenvalue, [H]—stress stiffness matrix.
The critical state of the structure was described by a linear model using the minimum

total potential energy principle. Equation (3) presents mathematical notation of the loss of
stability phenomenon. The scope of numerical simulations involved describing the critical
state of the structure and influence of shape and parameters of cut-outs on critical force.

The second stage of analysis tackled the nonlinear stability problem, based on the
incremental iterative Newton–Raphson method. This analysis allowed us to determine the
equilibrium path for the structure. The calculations were performed until failure initiation
of first layer according to the Tsai–Wu criterion [41].

The discrete model was prepared by using 8-node shell elements (S8R) of second order
with reduced integration. The structure of the composite material was defined depending
the thickness of the finite element. Mesh density, which was used for the composite profiles,
equaled 4 mm and was selected as the optimal density according to the previous analyses
on unperforated profiles with channel cross-sections [32]. The value of buckling load
obtained for mesh size 4 mm was the closest to the buckling load obtained by experiment
and the percentage error was around 2%. However, additionally, the convergence was
studied for three different mesh sizes: 3 mm, 4 mm and 5 mm. The results of tests for
profiles with P2 lay-up are presented in Figure 5. Obtained results showed that the mesh
size has no significant influence on buckling behavior. Furthermore, denser mesh lengthens
the processing time. Similar conclusions were presented in [34,40,42].
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The boundary conditions of the tested model are presented in Figure 6. The model
consisted of two rigid plates as a support. The upper plate had the ability to move along
the Z-axis (compressive force direction) and the lower plate was fully fixed. The boundary
conditions were defined in a created reference point (RP), connected to plates. Between the
plates and composite profile, a contact interaction was introduced with a friction coefficient
of 0.2.
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Figure 6. Boundary conditions of tested profile.

4. Results and Discussion

In this section, the results from the performed numerical analysis are presented. Table 3
shows the values of critical forces for all tested cases with different kinds of holes shape.
The below results present the buckling load for the P1 configuration of the composite.
Ratios which exceed ranges of Equations (2) and (3) are marked in red. In the last column is
the percentage difference between critical force for unperforated profiles and for perforated
tested profiles. In Figure 7, for better visualization, the effect of spacing and opening ratio
on the buckling load for three different hole shapes is presented.

Table 3. Buckling load value for all tested cases for P1 composite configuration.

No. Hole Shape Opening Ratio
D/D0

Spacing Ratio
S/D0

Pcr
[N]

Difference
[%]

1 Without holes — — 2172.4 -

2 Circular

2 1.67

1802.3 17.04

3 Square 1709.6 21.30

4 Hexagonal 1764.8 18.76

5 Circular

1.67 1.39

1667.3 23.25

6 Square 1541 29.06

7 Hexagonal 1612.9 25.75

8 Circular

1.5 1.25

1561.3 28.13

9 Square 1415.2 34.85

10 Hexagonal 1492.1 31.32

11 Circular

1.5 1.45

1551.3 28.59

12 Square 1410.8 35.06

13 Hexagonal 1487.3 31.54

14 Circular

1.5 1.6

1553.8 28.48

15 Square 1422.9 34,50

16 Hexagonal 1493.2 31.26
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Figure 7. The effect of opening ratio (a) and spacing ratio (b) on buckling load for three different
hole shapes.

The presented results from FE analysis show that the introduction of perforation leads
to the load decrease. The circular holes caused a smaller decrease of critical load and
for all tested cases it was in the range of 17 ÷ 28.48%. For square holes, this range was
21.30 ÷ 35.06% and for the hexagonal holes it was 18.76 ÷ 31.54%. It can be observed that
when increasing the opening ratio, the buckling load also increased (Figure 7a), whereas
the effect of the spacing ratio (Figure 7b) did not show any significant influence on the
value of critical load. Those observations confirm the results obtained in [33] for GFRP
composite profiles.

It can be observed that among all tested samples with different kinds of hole shapes, the
circular holes had the greatest impact on the buckling load with opening ratio
D/D0 = 2 and with spacing ratio S/D0 = 1.67. In [33], the best ultimate strength was
also seen for the circular shape, while in [32] the best results were for the hexagonal shape.

In this section, the results of the lay-up effect on the buckling behavior of the tested
profiles are presented. Table 4 shows the obtained values of critical loads for perforated and
unperforated profiles, for four different composite lay-ups. For this analysis, the profile
with a circular hole shape with the best results of parameters, which were tested in the first
part of the analysis, was chosen. Figure 8 additionally presents the same results but in the
form of a column chart.

Table 4. Values of critical load for perforated and unperforated profiles, for four different composite
lay-ups for chosen case.

Laminate Lay-Up Symbol
Pcr [N]

Difference [%]
Unperforated Profile Perforated Profile

[0/45/−45/90/0]s P1 2172.4 1802.3 17.04

[45/−45/90/0]s P2 3259.3 2761.5 15.27

[90/−45/45/0]s P3 2183.3 1788.5 18.08

[90/0/90/0]s P4 1590.6 1124.2 29.32

It can be observed that the laminate lay-up has a significant effect on buckling load.
Furthermore, the weakest configuration is P4 and the difference between buckling load for
unperforated and perforated profiles for this configuration is more than 20%, compared
to the other three configurations where the difference was less than 20%. The highest
critical load was obtained for the P2 lay-up. This is ascribable to the fact that, for P2,
most outer layers are at an angle of 45 degrees, whereas for P4 the lay-up consists of a
few layers at an angle of 90 degrees, which reduces the overall structural stiffness. In all
cases, the shape of the buckling mode maintained its symmetrical character with respect to
the symmetry plane of the C-profile (Figure 9). However, for almost all lay-ups, the local
buckling of the web and shelf was characterized by different numbers of half-waves. The
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number of half-waves for the perforated profiles was lower by one or two compared to the
unperforated profiles.
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Figure 9. Buckling simulation results for the P2 lay-up: (a) unperforated profile, (b) profile with
circular holes.

The place of maximum deformation was also different: for the P1 and P2 configura-
tions, it was on the shelf closest to the rigid plate and for the P3 and P4 configuration it was
in the middle of the profile shelf.

In the second part of the research, the nonlinear stability of the structure in the
postbuckling range was measured. The aim of the analysis was to investigate the profile
behavior in the postcritical state with the implemented lower buckling mode, which was
determined in the first part of the tests. During the loading of the structure, a deepening
form of laminate buckling was observed. The load-carrying capacity of tested profiles
was determined by the Tsai–Wu failure criterion. This criterion was successfully used to
determine the failure load of a compressed thin-walled composite plate element weakened
by holes and columns with complex cross-sectional shapes in [21,43,44]. Figure 10 shows a
designated example map of the Tsai–Wu criterion, where areas in which damage initiation
of the first composite layer may occur, corresponding to the achievement of the value of
1 critical parameter, determined according to the above criterion, are presented. Moreover,
in Figure 11, failure maps for perforated and for unperforated profiles for the chosen P2
configuration are compared.
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It can be observed that the most critical area is the corner near to the end of the
cross-section. Moreover, the introduction of perforation did not change this localization.
Figure 12 additionally presents the obtained equilibrium paths for the perforated profiles
for the four considered lay-ups. Moreover, in Figure 13, the equilibrium paths are compared
for the perforated and unperforated profiles with P2 lay-up.
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profiles with P2 lay-up (results from numerical and experimental analysis).

The obtained results show that for all of the tested profiles, the postbuckling equilib-
rium paths are stable. In addition, the postbuckling behavior of perforated and unperfo-
rated profiles is similar at the beginning. However, with the deepening of the deflection,
the differences between the equilibrium paths increase. The highest deflection at failure
was observed for the P4 lay-up and the lowest one for the P2 lay-up. Furthermore, the
equilibrium path for the P2 laminate lay-up seems to be the one with the highest stiffness.

5. Conclusions

In this study, the linear and nonlinear analysis of perforated composite profiles with a C
cross-section subjected to axial compression was performed. The effect of three hole shapes,
opening ratio D/D0, the spacing ratio S/D0 and composite arrangement of layout on
buckling behavior of perforated profiles was studied. The obtained results were compared
with profiles without holes. On the basis of the obtained results, some conclusions can
be drawn:

â The introduction of perforations caused a decrease in the buckling loads:
21.30 ÷ 35.06% for the square shape, 17 ÷ 28.48% for the circular shape and
18.76 ÷ 31.54% for the hexagonal shape.

â The obtained results show that the shape of holes, opening ratio and arrangement of
laminate layers have the greatest impact on the value of buckling load, whereas the
spacing ratio has no significant influence on the buckling load.
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â The circular holes with D/D0 = 2 and S/D0 = 1.67 gave the highest value of
critical force.

â The highest critical load was obtained for the P2 lay-up, while the lowest one for the
P4 lay-up.

â The introduced perforation caused not only a decrease in the critical load value, but
also a change in the buckling form. The decrease in the critical load for all tested
configurations was: 17.4% for P1, 15.27% for P2, 18.08% for P3 and 29.32% for P4.

The presented results allow us to expand our knowledge about the design of thin-
walled composite structures weakened by holes with potential significance for practical
applications. However, to confirm the obtained numerical results, a deeper analysis of
nonlinear stability conditions and experimental validation are necessary.
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